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Abstract. The Robotic Ecology vision shares many similarities with
the one pursued by the IoT community: The ideal aim on both fronts is
that arbitrary combinations of devices should be able to be deployed in
unstructured environments, such as those exemplified in a typical house-
hold, and there efficiently cooperate to the achievement of complex tasks.
While this has the potential to deliver a range of modular and disrup-
tive applications, a pressing and open research question is how to reduce
the amount of pre-programming required for their deployment in real
world applications. In order to inspire similar advancements within the
IoT community, this extended abstract discusses how this goal has been
addressed by pioneering the concept of a self-learning robotic ecology
within the EU project RUBICON (Robotic UBIquitous Cognitive Net-
work); how such an approach relates to the concept of Affordances at
the basis of Gibsons’ theory of ecological psychology; and how it can be
used to drive the gradual adaptation of a robotic ecology to changing
contexts and evolving requirements.
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1 Robotic Ecologies

In [1], Saffiotti and Broxvall discuss the implications of their PEIS-Ecology
instantiation of the Robotic Ecology approach from an ecological (Gibsonian)
point of view, by conceiving the interaction between each device and its envi-
ronment in terms of mutuality and reciprocity. An ecology of simple devices can
achieve complex tasks by performing several steps in a coordinated fashion while
also exchanging sensor data and other useful information in the process. Note
how such a viewpoint falls into the framing assumption of ecological psychology,
which, as Greeno notes [2] “. . . involves a shift of the level of primary focus of
cognitive analysis from processes that can be attributed to individual agents to
interactive processes in which agents participate, cooperatively, with other agents
and with their physical systems that they interact with”.

Saffiotti and Broxvall emphasise how its embodied nature is what makes
confronting an ecological view in a robotic ecology characteristically different
from what is usually done in pure software systems, e.g., for the orchestration
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of web-services. Noticeably, the semantic of services (the function that they can
provide) is usually advertised to the network irrespective of the components that
may actually come to use them. On the contrary, just as with Affordances [3],
intended as behavioural possibilities, a robotic ecology must be described in
terms of relations (configurations) between its components. For instance, a ceil-
ing camera can track and inform a mobile robot about its location in the envi-
ronment (thus affording localization to the robot). However, this can be done as
long as the robot in question (i) is not too small, (ii) is inside the field of view
of the camera, and (iii) its color can be distinguished from the one of the floor.

A PEIS Ecology adopts temporal constraints to represent the possible rela-
tions between PEIS components, e.g., stating that navigation must occur while
location information is available, or that a class of robots is able to push a given
object. These relations are then shared and resolved into global configurations,
by using either a centralized constraint satisfaction solver or a multi-agent, reac-
tive approach. However, both methods lack learning capabilities and rely instead
on pre-programmed, static and brittle domain knowledge. The inability of mod-
elling other (unforeseen at design time) information in the domain, including
possible synergies, conflicts and other inter-dependencies between their many
components, is what breaks the modularity of the development of these systems,
and ultimately impacts on their ability to pro-actively and smoothly adapt to
changing contexts and evolving requirements. These are the key issues addressed
in RUBICON [4], as outlined in the next section.

2 The RUBICON Approach

The most appealing aspects of the concept of affordances as a source of inspi-
ration in Robotics are (i) its implicit emphasis on the relationship between an
agent and the environment, and (ii) its grounding in the paradigm of direct per-
ception. The central question for Gibson was whether affordances can be directly
perceived. In their stride to build physically embodied agents, roboticists have
thus sought to enable robots with the ability to learn to recognize affordances,
thus ultimately reducing the complexity of representation and reasoning.

A common approach has been the utilization of an exploratory stage, in
which the robot tries out different action primitives and observes their conse-
quences. To this end, roboticists have usually based their works on more formal,
e.g., functional elaboration of affordances seen as opportunities for action and
inherently suited to be used as pre-conditions in a planning context by virtue of
their predictive quality (see [5] for a survey). A service robot may thus learn how
to poke, push, pull, rotate and lift objects, and also for what objects and in what
situations its actions can more successfully achieve given results. A mobile robot
may learn to infer the traversability of its surroundings by mapping from the
space of the features extracted from its range sensors, to the effects (success/fail)
of a number of basic manoeuvres. Techniques supporting online learning usually
exploit curiosity measures to guide the robot’s exploration process, by reducing
unnecessary interaction with the environment when the robot is confident that
it will not bring about new information.
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Equipping robotic ecologies with similar learning abilities poses a formidable
number of issues: from the computational constraints and the number of the
devices involved, to the difficulty of identifying suitable and reliable teaching
information to drive system’s adaptation. RUBICON [4] addressed these prob-
lems by supporting a self-sustaining dynamic between cognitive capabilities real-
ized in a modular architecture, shown in Fig. 1.

Fig. 1. High-level, hierarchical RUBICON architecture: Sensor data is processed as
much as possible locally on computational constrained and robotic devices. Information
is extracted and exploited by the higher layers.

The central component of the RUBICON architecture is a plan-based Control
Layer (an evolution of the system employed in PEIS, as described in Sect. 1),
which is able to decide which components (e.g. robot behaviours) and/or devices
need to collaborate to achieve given service goals. The key approach to enabling
system adaptation is to (i) improve its ability to extract meaning from noisy
and imprecise sensed data, and (ii) learn what goals to pursue, and (iii) how
to pursue them, from experience, rather than by relying on pre-programmed
goal-deliberation strategies and plan pre-conditions.

The first and the last of these challenges are met by the Learning Layer, a
distributed and adaptable learning infrastructure based on echo state networks,
and which is used to process time series of data gathered by the sensors in the
ecology. Its outputs are used to recognize events concerning the state of the
environment and of the users, and predict the success/fail rate in using given
devices and/or other components in the ecology. This information is used by the
Control Layer to inform its configuration of the ecology. The second challenge
is the responsibility of the Cognitive Layer, which uses Self-Organising Fuzzy
Neural Networks to reason over the events recognized by the Learning Layer in
order to predict the user’s activation of appliances and robotic services.

In our reports [4], we have described how our system, equipped with some
initial knowledge and supervised information, can be trained to provide some
basic services. The system can use this as a starting point and self-adapt to
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the preferences of the user and to modification to the environment in a number
of ways: firstly, the Cognitive Layer can learn to predict the user’s routines.
For instance, by observing past instances in which the user has summoned her
cleaner robot to the kitchen after eating her meal, the system learns to send the
robot without waiting for the user’s request. Secondly, the Control Layer can
monitor the performances and the outcomes of its own plans, and feed them
(as teaching signals) to the Learning Layer in order to learn previously un-
modelled plan pre-conditions. For instance, in [6], we have shown how a robot
can learn to use the information it receives from itw own sensors and the sensors
embedded in the environment (e.g. infrared sensors signalling the movements of
the user and/or the robot) to predict (i) what are the best situations in which
cleaning a certain room will be less likely to annoy the user, and (ii) when is best
to use the RFID-based localization component in place of its own laser (e.g.,
after the user installs a new mirror that disturbs the robot’s laser). Finally,
the Cognitive Layer can “explore” (in a manner similar to the one adopted
in curiosity-driven, robot manipulators) by trying out new goals in different
situations in order to gather further experience and/or feedback from the user.

Our approach allows robotic ecologies to be driven by easily identifiable
(albeit rough) rules, while delegating, over time, symbolic reasoning to data-
driven inference for the purpose of learning to recognize the affordances of their
environment, directly from sensor features. This is a clear improvement over
past solutions, which demanded for all goal rules and plan pre-conditions to be
specified a priori. What makes it a practical approach, which limits the com-
putational cost of our learning solutions and enables us to use fully automatic
feature selection algorithms, is (i) the existence of a finite set of pre-defined
and simple goals, (ii) their clear distinction to the plans to achieve them, and
(iii) the reduced number of sensor sources included in current smart homes.
Future research should increase the scalability of these systems, and address the
challenging problem of autonomously learning what goals are achievable to the
ecology.
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