
To Run or Not to Run: Predicting Resource
Usage Pattern in a Smartphone

Arijit Mukherjee1(B), Anupam Basu2, Swarnava Dey1, Pubali Datta1,
and Himadri Sekhar Paul1

1 Innovation Labs, Tata Consultancy Services, Kolkata, India
mukherjee.arijit@tcs.com

2 Department of Computer Science and Engineering, IIT Kharagpur,
Kharagpur, India

Abstract. Smart mobile phones are vital to the Mobile Cloud Comput-
ing (MCC) paradigm where compute jobs can be offloaded to the devices
from the Cloud and vice-versa, or the devices can act as peers to collab-
oratively perform a task. Recent research in IoT context also points to
the use of smartphones as sensor gateways highlighting the importance of
data processing at the network edge. In either case, when a smart phone
is used as a compute resource or a sensor gateway, the corresponding
tasks must be executed in addition to the user’s normal activities on the
device without affecting the user experience. In this paper, we propose
a framework that can act as an enabler of such features by classifying
the availability of system resources like CPU, memory, network usage
based on applications running on an Android phone. We show that, such
app-based classifications are user-specific and app usage varies with dif-
ferent handsets, leading to different classifications. We further show that
irrespective of such variation in classification, distinct patterns exist for
all users with available opportunity to schedule external tasks, without
affecting user experience. Based on the next to-be-used applications, we
output a predicted set of system resources. The resource levels along with
handset architecture may be used to estimate worst case execution time
for external jobs.

Keywords: Smart phone · Usage prediction · Resource utilisation ·
Machine learning · Mobile cloud computing · IoT · Sensor data

1 Introduction

With the advancement of technology more people are using high end mobile
phones with increased hardware capabilities. Though such phones are being used
for functionalities more than just communication, they remain idle for major-
ity of the time. One of the focus areas of Mobile Cloud Computing (MCC)
is to explore possibilities of utilizing mobile phones as compute resources to
augment the Cloud infrastructure. In [1], jobs are executed on mobile phones
using a map-reduce framework. Authors in [2,3] propose offloading jobs between
mobiles where the phones act as compute peers. More recently, in the context of
Internet of Things (IoT), the idea of edge devices being used to precess data at
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
R. Giaffreda et al. (Eds.): IoT360 2014, Part I, LNICST 150, pp. 367–375, 2015.
DOI: 10.1007/978-3-319-19656-5 49



368 A. Mukherjee et al.

the network edge was introduced in Fog Computing [4] and the present authors
have implemented a preliminary prototype which is outlined in [5]. The authors
believe that in a smart city scenario, with numerous sensors and edge devices
emitting highly fluctuating volume of data, an MCC framework augmenting the
cloud may indeed be useful. Recent works by McCann et al. have also pointed
towards the use of personal devices as sensor gateways and data-forwarding
entities [6,7]. We are of the belief that during such phases, the devices may
also be utilised for small amounts of computation in order to reduce the cost
incurred in pushing the data to the cloud and in turn save energy (as apart from
incurring a communication cost, any network transfer is energy intense). How-
ever, to effectively schedule jobs on available phones and other edge devices, the
cloud servers would require an estimation of available cpu, memory and other
parameters for those devices as the execution time of an externally assigned com-
putation will vary depending on the foreground(user) and background activities
running on the phone. The same is true if the devices are used as sensor gate-
ways. This implies that the user experience must not get affected while executing
the assigned job or transfering sensor data to the cloud. In other words, it can
be said that the user experience is not affected if such tasks are scheduled at
the right time, when the device is relatively idle. Figure 1 explains the context
described herein.

Fig. 1. Using mobile phones in an IoT context

A number of studies have attempted to classify android applications based
on android package details, power consumption and static code analysis. Com-
mercial and free benchmark tools have also been used to measure relative per-
formance of a handset and profile apps. The diversity of smartphone app usage
behavior among users was highlighted in [8,9]. These approaches showed that
unique usage patterns exist, albeit on a per user basis. With this idea of user
specific patterns, we propose to predict system resources influencing the per-
formance of an android mobile, based on the currently running android apps,
per user.

Our work focuses on analyzing the CPU, memory etc. resource usage, when
apps are running on the devices to detect phases when the system resources are
relatively free for external job execution. We classify CPU and RAM based on
android apps used on a handset by the user of the handset by analysing the log
containing running apps snapshots, overall idle CPU time, available memory etc.
using machine learning techniques and decide whether to run or not to run any



To Run or Not to Run: Predicting Resource Usage Pattern in a Smartphone 369

externally assigned task. We also show the variation of the classification results
with user and handset and present the result of our field-study showing the cor-
relation of our prediction with benchmark scores from a well known benchmark
tool, AndEbench [10].

The rest of the paper is organized as follows. We analyze the previous
work done in android app classification and android benchmarking in Sect. 2.
In Sect. 3, we describe our approach regarding data collection, preprocessing,
feature selection classifier selection and field study. We present the results in
Sect. 4 and conclude with a summary of the contributions and some pointers for
future work.

2 Related Work

Not many systems exist for classifying smart-phone system resources based on
app usage. A number of research works have focused on classifying android apps
based on android package details, power consumption and static code analysis.
The main focus of such analysis is to segregate apps from malwares. Several
commercial tools benchmark system resources at both app and handset levels.

Zefferer et al. [11] presented a scheme of malware detection by classifying
android apps based on power consumption. They found that the power-
consumption signature for a given application or phone state could not be deter-
mined uniquely and the signature for the same app was analogous to wide pitch
and frequency variance of the different speech records from the same person.
Sanz et al. [12] developed a new app classification scheme using extracted fea-
tures from said app and the Android Market. They worked with a large set
of 820 apps categorizing them into seven categories by using classification tech-
niques and providing a comparative evaluation using the Area Under ROC Curve
(AUC). Shabtai et al. [13] focussed on app classification using framework meth-
ods and classes used by the app, user interface widgets etc. and identified the
optimum combination for feature selection method, top features selected and the
classifier.

Several commercial tools are available for benchmarking. Notable among
these is the Trepn Profiler [14] from Qualcomm which provides system or app
specific cpu profiling. AndEBench is another tool that we used extensively in
this work and it shows a native and java score for each phone. However, none
of the benchmark tools however categorize apps based on the system resource
usage or provide a relative scoring for each app. Our work aims to classify system
resources based on android apps per user per phone, leveraging the unique usage
pattern.

3 Approach

A logging application for android devices was deployed on the mobile phones of
several users which was used to gather data over a period of two weeks for each
user. This application gathers last app, last service component, data transfer



370 A. Mukherjee et al.

and memory available using android APIs. For system CPU usage and process
details, the system parses the top command output which outputs processes like
system server, uevent and several other system activities that are not available
using android APIs. As the logger logs data in a very precise form, with only
the required values for our analysis, the log file size (at most 2MB in two weeks)
is never a concern for the volunteers.

To determine the cpu availability, we used the jiffy values from android top
output and calculated the percentage of time the cpu was idle. For the two
class classification (in this case, high and low), we applied k-means clustering
technique [15] on the idle cpu percentage values. For multiprocessor systems, top
provides a measure of summation over (number of cores x percentage utilized in
each core). We scaled the overall value for all cores by dividing it by the number
of cores for that phone System On Chip (SoC). We collected available memory
information using the getMemoryInfo API of android ActivityManager and the
system memory information from /proc/meminfo. An equally weighted average
of the two values was used to express the memory free percentage. Similar to
the cpu values, k-means clustering was applied on the free memory percentage
values, to create two clusters high and low.

One pertinent note at this point may be that - out of a myriad of available
android applications (as per [16] the latest number is 1175286) we are classifying
on the basis of only a small subset. To justify our approach, it may be said that
as we apply our system on a per user basis, the applications usually running
on the phone of the user determines the classification of system resources. The
analysis using Principal Component Analysis (PCA) and the ranker algorithm
also proves that only a subset of all the apps installed in a phone have any
visible effect on the resources as is shown in Table 1, which lists the top-6 ranked
features for two different users using two different handsets.

Table 1. Table of top ranked features in phones A110q and Xperia L

A110 top features Xperia L top features

surfaceflinger surfaceflinger

mediaserver system server

mediatek.bluetooth mediaserver

android.chrome king.candycrushsaga

android.systemui textinput.uxp

android.youtube android.systemui

We used machine learning concepts to depict the dependency between appli-
cation running in a phone and the level of the available system resources. How-
ever, we haven’t yet implemented a full-fledged online app prediction system and
rather have taken cues from [17] to create a Näıve Bayes classification of offline
data from the mobile phones on which we evaluated the current system. We built
a prediction model using the WEKA [18] tool and evaluated using test data for



To Run or Not to Run: Predicting Resource Usage Pattern in a Smartphone 371

top four apps being used in the system, during a 5 second interval. To evaluate
our system on real mobile phones we used the Weka-for-Android [19] implemen-
tation for the Näıve bayes classifier along with the offline model created for that
phone using desktop WEKA. With the next four running app prediction at hand
along with all other features required for system resource classification, we used
a modification of the LibSVM-androjni [20] project to run our Logistic Regres-
sion classifier. We chose the Logistic Regression classifier for the field study as an
android port was easily available and it performed reasonably well, as detailed
in the Sect. 4. We mapped the output of the classifier (system resource level high
or low) to our final decision - to run or not to run the external task.

As the MCC frameworks ANGELS [5] is still under development, we decided
to use a different innovative measure to evaluate the output. We designed a set
of experiments (a snapshot of which is given in Fig. 2a) to obtain a correlation
between the AndEBench score and the underlying activities. In each experiment,

Fig. 2. Experimental scenario and AndEBench scores for native & Java on A110q



372 A. Mukherjee et al.

the sanitize step kills user processes, cleans the cache from task manager, starts
AndEBench, performs test scenarios and finally records the scores. We observed
this and triggered a run of AndEBench, based on recommendation output from
the system resource classifier. As a single AndEBench run takes around one
minute, we kept the prediction cycles separated by five minutes for evaluation.
Our aim was to correlate the prediction of system resource level for the next
cycle to the score from AndEBench in the next cycle. For a high level for system
resource prediction, if the score of AndEBench is also high, we considered the
prediction to be accurate. The apparent correlation between the benchmark
score and underlying activities for a snapshot of the experiments is shown in
Fig. 2b and c.

4 Results

We used two sets of comparisons to differentiate the classifiers the area under
the ROC curve (AUC), as recommended in several literatures including [21]
and traditional error rate based measure as suggested in [22]. We included the
latter keeping in mind the drawbacks of AUC, highlighted in [23]. The results
are shown in Tables 2a and b1 from where it can be seen that as per the AUC
measure Logistic Regression and Random Forest performed best for both the

Table 2. Result from classification algorithms

1 RMSE: Root mean-squared error, MAE: Mean absolute error, RRSE: Root relative
squared error, RAE: Relative absolute error.



To Run or Not to Run: Predicting Resource Usage Pattern in a Smartphone 373

phones. On the other hand, based on the error rate measure Random Forest
and SVM gave better results than all other classifiers for A110q phone. For the
Xperia L phone Random Forest, SVM and Logistic Regression performed well.
During the classification effort, we also observed from the training data that the
system resource availability level is high 81 % of time in the A110q phone and
82 % of the time in Xperia L phone. Thus we are able to observe distinct patterns
(from classification accuracy) for both the users with available opportunity to
schedule external jobs, without affecting user experience.

As stated before in Sect. 3, we triggered a run of AndEBench after a 5 min
interval based on the recommendation from our system resource prediction sys-
tem. The actual run happens only when the system resources are classified as
high. We present a snapshot run in Fig. 3a to depict the correctness of recommen-
dations. We also profiled our own app using the Trepn profiler [14] and the result
is given in Fig. 3b which shows a fairly good performance measure, although we
will consider the optimization of this prediction app as a future work.

(a) A sample run of the AndEBench tool for our evaluation scheme

(b) An execution profile of our system using Trepn profiler

Fig. 3. Results of the prediction system



374 A. Mukherjee et al.

5 Conclusion

In this work we have addressed the issue of predicting the available system
resources in the face of a set of apps to be executed. We have applied Logis-
tic regression to classify the availability of resources. We have further showed
that the resultant classification correlates with the scores from a well known
benchmark tool. The major contribution of the work is the demonstration of the
efficacy of the classification approach to predict the resource availability. This
can be fruitfully employed while selecting mobile phones where MCC based jobs
can be executed in a smart city context. As a sidebar of this research we have
also found that android system and background tasks are particularly useful in
predicting the resource availability and those can be predicted using data from
android phones and past execution history of such tasks.

References

1. Marinelli, E.E.: Hyrax: Cloud Computing on Mobile Devices using MapReduce
(2009)

2. Shi, C., Ammar, M.H. Zegura, E.W., Naik, M.: Computing in cirrus clouds: the
challenge of intermittent connectivity. In: Proceedings of the First Edition of the
MCC Workshop on Mobile Cloud Computing, MCC 2012, New York, NY, USA,
pp. 23–28. ACM (2012)

3. Shi, C., Lakafosis, V., Ammar, M.H., Zegura, E.W.: Serendipity: enabling remote
computing among intermittently connected mobile devices. In: Proceedings of the
13th ACM International Symposium on Mobile Ad Hoc Networking and Comput-
ing, MobiHoc 2012, New York, NY, USA, pp. 145–154. ACM (2012)

4. Bonomi, F., Milito, R., Zhu, J., Addepalli, S:. Fog computing and its role in the
internet of things. In: Proceedings of the First Edition of the MCC Workshop
on Mobile Cloud Computing, MCC 2012, New York, NY, USA, pp. 13–16. ACM
(2012)

5. Mukherjee, A., Paul, H.S., Dey, S., Banerjee, A.: Angels for distributed analytics
in IoT. In: 2014 IEEE World Forum on Internet of Things (WF-IoT), pp. 565–570.
IEEE (2014)

6. Adeel, U., Yang, S., McCann, J.A.: Self-optimizing citizen-centric mobile urban
sensing systems. In: 11th International Conference on Autonomic Computing
(ICAC 2014), Philadelphia, PA, pp. 16–1167. USENIX Association, June 2014

7. Yang, S., Adeel, U., McCann, J.: Selfish mules: social profit maximization in sparse
sensornets using rationally-selfish human relays. IEEE J. Sele. Areas Commun. 31,
1124–1134 (2013)

8. Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., Estrin, D.:
Diversity in smartphone usage. In: Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services, MobiSys 2010, New York, NY,
USA, pp. 179–194. ACM (2010)

9. Xu, Q., Erman, J., Gerber, A., Mao, Z., Pang, J., Venkataraman, S.: Identifying
diverse usage behaviors of smartphone apps. In: Proceedings of the 2011 ACM SIG-
COMM Conference on Internet Measurement Conference, IMC 2011, New York,
NY, USA, pp. 329–344. ACM (2011)

10. An EEMBC Benchmark for Android Devices. http://www.eembc.org/andebench/

http://www.eembc.org/andebench/


To Run or Not to Run: Predicting Resource Usage Pattern in a Smartphone 375

11. Zefferer, T., Teufl, P., Derler, D., Potzmader, K., Oprisnik, A., Gasparitz, H.,
Hoeller, A.: Power Consumption-based Application Classification and Malware
Detection on Android Using Machine-Learning Techniques (2009)

12. Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Bringas, P.G.: On the auto-
matic categorisation of android applications. In: CCNC, pp. 149–153. IEEE (2012)

13. Shabtai, A., Fledel, Y., Elovici, Y.: Automated static code analysis for classifying
android applications using machine learning. In: 2010 International Conference on
Computational Intelligence and Security (CIS), pp. 329–333, December 2010

14. Trepn Profiler. https://developer.qualcomm.com/mobile-development/increase-
app-performance/trepn-profiler

15. MacQueen, J.: Some methods for classification and analysis of multivariate obser-
vations (1967)

16. Number of Android applications. http://www.appbrain.com/stats/number-of-
android-apps

17. Shin, C., Hong, J.-H., Dey, A.K.: Understanding and prediction of mobile appli-
cation usage for smart phones. In: Proceedings of the 2012 ACM Conference on
Ubiquitous Computing, UbiComp 2012, New York, NY, USA, pp. 173–182. ACM
(2012)

18. Garner, S.R.: Weka: The waikato environment for knowledge analysis. In: Pro-
ceedings of the New Zealand Computer Science Research Students Conference,
pp. 57–64 (1995)

19. Weka-for-Android. https://github.com/rjmarsan/Weka-for-Android
20. Libsvm-androidjni. https://github.com/cnbuff410/Libsvm-androidjni
21. Ling, C.X., Huang, J., Zhang, H.: AUC: a better measure than accuracy in com-

paring learning algorithms. In: Xiang, Y., Chaib-draa, B. (eds.) Canadian AI 2003.
LNCS (LNAI), vol. 2671, pp. 329–341. Springer, Heidelberg (2003)

22. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques. Morgan Kaufmann Series in Data Management Systems, 2nd edn. Morgan
Kaufmann Publishers Inc., San Francisco (2005)

23. Hand, D.J.: Measuring classifier performance: A coherent alternative to the area
under the roc curve. Mach. Learn. 77, 103–123 (2009)

https://developer.qualcomm.com/mobile-development/increase-app-performa nce/trepn-profiler
https://developer.qualcomm.com/mobile-development/increase-app-performa nce/trepn-profiler
http://www.appbrain.com/stats/number-of-android-apps
http://www.appbrain.com/stats/number-of-android-apps
https://github.com/rjmarsan/Weka-for-Android
https://github.com/cnbuff410/Libsvm-androidjni

	To Run or Not to Run: Predicting Resource Usage Pattern in a Smartphone
	1 Introduction
	2 Related Work
	3 Approach
	4 Results
	5 Conclusion
	References


