Model-Driven Development for Internet
of Things: Towards Easing the Concerns
of Application Developers

Arpan Pal, Arijit Mukherjee(M), and Balamuralidhar P.

Innovation Labs, Tata Consultancy Services, Kolkata, Bangalore, India
{arpan. pal, mukherjee.arijit, balamurali.p}@tcs. com

Abstract. Internet-of-Things (IoT) is poised for a disruptive growth in near
future with wide and easy deployments of sensor connected to Internet. Hori-
zontal service platforms for IoT are increasingly gaining prominence for quick
development and deployment of IoT applications. However, IoT application
development needs diverse skill and knowledge from domain, analytics, infra-
structure and programming, which is difficult to find in one application devel-
oper. In this paper we introduce a Model-driven-development (MDD)
framework that tries to address the above issue by separating out the concern of
different stakeholders through models and knowledgebases.

Keywords: Iot - MDD - Knowledgebase - Meta model - Service platform

1 Introduction

The Internet of Things (IoT) has already been recognized by researchers and analysts as
one of the most disruptive technologies that will transform human lives and have major
economic impact. People foresee lot of penetration of IoT technology in large-scale,
complex applications such as Smart Cities, Smart Transportation, Smart Manufactur-
ing, Smart Healthcare etc. Given the complexity of the system, there is increasing
requirement for IoT development platforms providing different services.

In this paper we present the case for a model-driven framework to develop and
deploy IoT applications and services on top of an IoT platform. In Sect. 2, we present
the requirements of such a framework and provide a technology gap analysis. In
Sect. 3, we present the proposed Model-driven-development (MDD) framework for
IoT platforms. Finally we summarize and conclude in Sect. 4.

2 Need for Model-Driven-Development in IoT

IoT applications, traditionally, like all other embedded applications, are built bottom up
as per vertical requirements. It starts with sensor integration, moving into sensor data
collection using sensor networking, storing the collected data and finally analyzing the
stored data to draw actionable insights [1, 2].

However, instead of taking the bottom-up vertical approach for application
development, it is beneficial to have a horizontal, platform-driven approach [3].

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
R. Giaffreda et al. (Eds.): IoT360 2014, LNICST 150, pp. 339-346, 2015.
DOI: 10.1007/978-3-319-19656-5_46



340 A. Pal et al.

A model-driven-development (MDD) approach that can abstract out the meta-
model of the IoT system and automate much of the application development process
allowing the application developer to focus only on domain specific concerns will be of
high interest to the industry.

Many of the existing IoT service platforms, support features like user management,
resource provisioning, application life cycle management, device management and
configuration, connectivity service provisioning and management etc. [3]. Another
such platform (TCS Connected Universe Platform - TCUP) [4] tries to address a few of
the above concerns by providing an integrated application development platform
covering device management, data storage and management, an API based application
development framework and a distributed application deployment framework.

However, none of these actually addresses the issues related to ease of application
development like code reusability, need for multiple skills in domain, analytics, sen-
sors, programming etc., or visibility of data across application.. These can be addressed
through the concept of separation of concerns among different stakeholders — this has
been already prevalent in the area of MDD and recently it has been also applied in the
context of IoT [5, 6] which provides a framework to specify the requirements at
different levels. However, this framework does not address issues like analytics algo-
rithm re-use, distributed execution of analytics, generation of analytics and reasoning
workflows, a common ontology and semantics for sensor data etc. needed for a full-
fledged MDD.

On MDD systems implementation side, OASIS [12] has brought out a new stan-
dard meta model for IT services “The Topology and Orchestration Specification for
Cloud Applications” (TOSCA) [13] for improving portability of cloud applications to
address the challenges related to heterogeneous application environments. In TOSCA,
the structure of a service is defined by the Topology Template, a directed graph, which
consists of Node Templates and Relationship Templates. Node Template is an
instantiation of Node Type which defines the properties and operations of a component.
TOSCA uses plans, a process model defining complex workflows that can be used for
the management process of creating, deploying and terminating services. TOSCA
specifies an XML based syntax for defining the entities described above. For the plans
it relies on existing business process modeling languages such as BPEL [14] and
BPMN [15]. Some initial exploration has been reported on using TOSCA as a meta-
model for IoT services [11]. From our studies we observe that this approach has a
potential for addressing multiple views of the IoT application development and is much
suited for offering the services following a Platform-as-a-Service (PaaS) model.

In this paper, we propose an integrated MDD framework as part of an IoT Service
Platform.

3 Proposed Model-Driven Framework

A typical IoT platform caters to the needs of four different types of users or stake-
holders — Applications Developers, Sensor Providers, End Users and Platform
Administrators. Out of these four types of stakeholders, the focus of the proposed
MDD framework is the Application Developer and the Sensor Provider. We further



Model-Driven Development for Internet of Things: Towards Easing the Concerns 341

sub-divide sensor providers into sensor manufacturers and sensor service providers and
application developers into domain experts, application programmers and algorithm
experts. In subsequent paragraphs we show how these stakeholders interact with the
MDD framework.

3.1 Support Knowledgebase for MDD

Sensor Knowledgebase — The sensor knowledgebase is contributed by multiple
stakeholders. The sensor device manufacturer can register the sensor in the system
providing information on sensor make/model, features, operating conditions (infor-
mation that is available in datasheets of sensors) along with details on sensor com-
munication interfaces/protocols, device drivers, sensor data models etc. The sensors are
normally instantiated and provisioned in the system by the sensor service provider
where they add additional metadata like deployment time/location, user details etc. This
knowledge base then can be used by the application developer to query specific sensors
via the Sensor Explorer Interface [7].

Analytics Algorithm Knowledgebase — The analytics algorithm knowledgebase is
contributed mainly by the algorithm writers and experts. It not only contains the
archive of algorithm executables in form of libraries, it also contains metadata about
algorithms detailing their application areas, performance parameters, accuracy, CPU
complexity, memory load etc. This knowledge base can be used by the application
developers to query and look for specific algorithms suitable for their application [8].

Domain-Specific Knowledgebase — Finally the application developers are primarily
concerned about solving a specific set of domain problems. They are expected to be
having good programming skill but limited domain knowledge, sensor knowledge and
algorithm analytics knowledge. The domain-specific knowledgebase that is populated
by domain experts intend to bridge this gap by providing knowledge like mapping
between physical phenomenon and sensor observation, mapping between sensor
application and sensor technology etc.

Infrastructure Knowledgebase — Application developers, after development of
applications, need to deploy them — typically part of the applications run on edge or
gateway devices collecting sensor data and part of the applications run on the cloud [9,
10]. The infrastructure knowledgebase needs to collect information about the compute/
memory/communication capabilities of the available gateway devices, available gate-
way-to-cloud communication channels, storage capacity of the cloud and detail of
available compute hardware in infrastructure of the cloud. All this knowledgebase is
typically contributed by the System Administrator.

3.2 Proposed Model Driven Framework

Here we propose a model driven framework for easy development and life-cycle
management of IoT applications. The motivation is to use the skills of existing IT



342 A. Pal et al.

workforce to easily understand and develop the IoT applications using an abstract layer
hiding the heterogeneity and complexity of underlying diverse technologies.

An IoT application in totality has multiple views and respective design concerns
(Fig. 3). Following views can be considered to capture major design dimensions (as
illustrated in Fig. 1 with their respective dependencies on knowledgebase):

3
w Application Developer

Sensor Explorer Algorithm Explorer

CEP / Reasoning Engine with Query Processing

L

Sensor Manufacturer
Sensor Service Provider

Algorithm Developer
Algorithm Expert

Domain %(pert System Ad.ministrator

m

\ RDF Store / Graph Store ‘

Fig. 1. Support knowledgebase structure for MDD

Information Flow and Evolution — An IoT application can be viewed as a set of data
flows from sensor to sinks (actuator, database, reports, visualizer) traversing many
computing operations that transforms the data to various information elements. This
information flow can be modeled as a directed graph with nodes as computing modules
that computes the designated information element. The edges indicate the input/output
dependency relation. This also serves as a semantic model for the IoT application. It
can also map to domain ontology (Sect. 3.1) through a suitable semantic mapping.
Figure 2 depicts the flow graph corresponding to an example vehicle telematics service.

DrivingBehavior

InsurancePremium

Fig. 2. Information flow graph corresponding to a vehicle telematics application - the raw sensor
data is generated at the root nodes (Speedometer, accelerometer, GPS, fuel level)

Each of these nodes requires a specification of the computing model or algorithm to
be used for computing the designated information element(s). There could be standard
re-usable computing blocks that can be used across applications or there can be



Model-Driven Development for Internet of Things: Towards Easing the Concerns 343

application specific algorithms. Some of the computing operations may involve a
rule engine or a complex event processing. But in general they are highly domain specific
and need to be developed with the help of domain experts. The developer may seek the
help of an algorithm explorer tool (introduced in Sect. 3.1) to pick the most suitable
algorithm to compute the desired information element and specify it as a node property.

Node Binding to Devices — In a typical IoT application, sensing and computing may
span multiple devices/platforms. For example in healthcare application a smartphone
may be used to sense the vital parameters and the preprocessing, aggregation and
diagnostics may be partitioned across smart phone, and cloud platform. Here we view
the partitioning of the computing flow graph into sub-graphs and binding suitable
computing devices to execute them. A sub-graph may be assigned to run on a Linux
box, or a mobile phone. Further it may use a CEP engine or a JavaME environment to
run. Specific device with its detailed specifications can be selected from the Infra-
structure Knowledgebase and set the related node property. If it is computing node then
the designated algorithm should have compatibility with the device chosen. If it is a
sensor node then the selected device should have the required support. The respective
knowledgebase (KB) described in Sect. 3.1 will be helpful in ensuring this
compatibility.

Communication of Software Modules Within and Across Devices — When the
computing operations are modularized, there is need for specifying the communication
mechanism between these modules. The connected modules within same computing
environment can use standard parameter passing mechanisms, messaging or inter-
process communication primitives. Communication across devices will require external
interfaces such as USB, Bluetooth, Zigbee, Wi-Fi 2G/3G etc. Further the nature of data
exchange may follow models of REST, Pub-Sub, Proxy etc. The edges in the flow
graph model can be used to capture the communication interface details. As in the case
of device binding, the infrastructure knowledge base will be used to check the com-
patibility and consistency.

Security Bindings to Devices, Software and Information — The security schemes for
data while communicating, storage and transformation are captured in this view. The
specification is applied to a path in the sub graph spanning two end-points. Identity,
credentials and security keys are also to be specified.

Deployment and Orchestration — This view captures the information to build the
executable software modules, test and deploy them to the target devices. Also the
specification of operational behaviors of the entire system that need to orchestrate
during the operation is also specified in this view.

We need to have an underlying meta-model to represent all of the above dimen-
sions of an IoT service and a user friendly environment to build and deploy the
application from its specifications. Recently there is a development framework pro-
posed in [6, 7] which uses Srijan language specifications as a meta-model. In our
opinion they have some shortcomings in representing some of the specific contexts of
IoT applications including communications, temporal behavior of the system and
business process orchestrations. Probably that language can be extended to support



344 A. Pal et al.

-~
. Dom.)nf\ ~ -
information ~
~
flowgraph ~
il Oeployment -~ g
and Dewi.2 binding
Orchestration
~
N7
= ., e~

loT
Service

Model

Sensor KB
Domain KB
Communication

Fig. 3. Different views of an IoT application

these aspects. Here we explore the use of another meta-model specified for cloud
applications.

4 Initial Prototype and Experimental Results

We have built an initial prototype which covers some of the aspects mentioned in the
paper. The prototype is built and tested on a set of use-cases primarily linked with the
healthcare domain. In this section, we explain the principles using one of the use-cases
where a mobile phone camera is used as an optical sensor to capture the video of a
person’s index finger using which the heart-rate is calculated based on the concepts of
PPG (photoplethysmogram) [17]. In this method, the video signal from the camera is
converted to a PPG signal which is then processed following the steps of a typical
signal processing workflow (as shown in Fig. 4).

Usable Range

Heart Rate
Calculation

-eature Extraction

Outlier Detection

Fig. 4. Workflow showing steps to calculate heart-rate using PPG

To assist the application developer at each stage, several components have been
built, although each of these is at a very nascent stage, but are capable of sufficiently
underlying the concepts proposed in this paper. As a starting point, an application
developer must discover sensors capable of generating a video signal which can be
used for PPG. Figure 5 shows a snapshot of the SensorExplorer component (the sensor
knowledgebase) which semantically links the sensors and the metadata from which the
application developer can discover sensors using temporal/spatial/spatio-temporal
queries [18]. We have used standard technologies such as SensorML, RDF to create
ontologies for all involved entities such as sensors, algorithms etc. These graph based
models enable the development of a visual programming interface where the developer



Model-Driven Development for Internet of Things: Towards Easing the Concerns 345

can assemble a flow graph using nodes and relations from a library. With suitable pre-
built command they can test and validate the compiled application and deploy over a
real infrastructure. The open source tool “Node_RED” [16] is an example of such
visual tool for workflow development which we plan to use in our implementation.

Ammomemwm

m Mom\erneScns

Rela\wmmm
3

Fig. 5. Semantic linking of sensors and algorithms

Once a sensor and the corresponding data stream is discovered, the application
developer creates the signal processing workflow by selecting different algorithms for
each workflow step. At this stage, another component, namely the Algopedia (the
algorithm knowledgebase), which is an annotated repository of algorithms (shown in
Fig. 5), assists the developer to select the algorithms based on the data type, sensor
type, and other algorithmic requirements which are available as metadata in the
algorithm ontology. The workflow created at this step is then tested and deployed using
information from the infrastructure knowledgebase and it has been found that the
results are comparable to the output of similar workflows created after numerous
experiments and considerable development effort by developers who are experienced in
the domain. The sensor and algorithm knowledgebase semantically link information of
sensors used to capture information in the healthcare domain and algorithms used to
process the signals from such sensors. As of now, the domain knowledgebase is
rudimentary in nature, but we plan to build it using information retrieved from several
sources available over the Web.

5 Conclusion

In this paper we have introduced a MDD based framework for application development
for IoT platforms. The concept of MDD specific to IoT is a recent one. Our proposed
framework tries to separate and abstract out concerns of different stakeholders in IoT
application development through use of models and knowledgebase, thereby improving
the ease of application development. In this paper we present the concept and possible
approaches to implement it. As future work, we intend to develop specific applications
using the proposed framework and measure the ease of application development
experienced by the developer community.



346

A. Pal et al.

References

10.

11.

12.

13.

14.

15.

16.
17.

18.

. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a vision,

architectural elements, and future directions. Elsevier J. Future Gener. Comput. Syst. 29,
1645-1660 (2013)

Balamurali, P., Misra, P., Pal, A.: Software platforms for Internet of Things and M2M.
J. Indian Inst. Sci. Multi. Rev. J. 93(3), 1-12 (2013). ISSN: 0970-4140 Coden-JIISAD

. Kohler, M., Worner, D., Wortmann, F.: Platforms for the Internet of Things — An Analysis

of Existing Solutions. http://cocoa.ethz.ch/downloads/2014/02/1682_20140212%20-%
20Bocse.pdf

Misra, P., et al.: A computing platform for development and deployment of sensor data
based applications and services. Patent No. W02013072925 A2

Patel, P., Morin, B., Chaudhary, S.: A model-driven development framework for developing
sense-compute-control applications. In: MoSEMInA 2014, 31 May 2014

Patel, P., Pathak, A., Cassou, D., Issarny, V.: Enabling high-level application development
in the Internet of Things. In: Zuniga, M., Dini, G. (eds.) S-Cube. LNICST, vol. 122,
pp- 111-126. Springer, Heidelberg (2013)

Dasgupta, R.; Dey, S.; A comprehensive sensor taxonomy and semantic knowledge
representation: energy meter use case. In: 7th International Conference on Sensing
Technology (2013)

. Maiti, S., et al.: Repository and Recommendation System for Computer Implemented

Functions. Indian Patent Application No: 918/MUM/2014

Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the Internet of
Things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud
Computing, MCC 2012, New York, NY, USA, pp. 13-16. ACM (2012)

Mukherjee, A., Paul, H.S., Dey, S., Banerjee, A.: Angels for distributed analytics in IoT. In:
2014 IEEE World Forum on Internet of Things (WF-1oT), pp. 565-570. IEEE (2014)

Li, F., Vogler, M., ClaeBens, M., Dustdar, S.: Towards automated IoT application
deployment by a cloud-based approach. In: IEEE 6th International Conference on Service-
Oriented Computing and Applications (SOCA) (2013)

Organization for the Advancement of Structured Information Standards (OASIS) https:/
WWWw.oasis-open.org/

Topology and Orchestration Specification for Cloud Applications, V1.0. November 2013.
OASIS. http://docs.oasis-open.org/tosca/TOSCA/v1.0/0s/TOSCA-v1.0-0s.html

Business Process Execution Language (BPEL). https://www.oasis-open.org/committees/
wsbpel

Business Process Model and Notation (BPMN). http://www.bpmn.org/

Node-Red, A visual tool for wiring the Internet of Things. http:/nodered.org/

Pal, A., Sinha, A., Choudhury, A.D., Chattopadhyay, T., Viswanathan, A.: A robust heart-
rate detection using smartphone video. In: 3rd ACM MobiHoc Workshop on Pervasive
Wireless Healthcare (2013)

Dasgupta, R., Dey, S.: A comprehensive sensor taxonomy and semantic knowledge
representation: energy meter usecase. In: 7th International Conference on Sensing
Technology (ICST), pp 791-799 (2013)


http://cocoa.ethz.ch/downloads/2014/02/1682_20140212%20-%20Bocse.pdf
http://cocoa.ethz.ch/downloads/2014/02/1682_20140212%20-%20Bocse.pdf
https://www.oasis-open.org/
https://www.oasis-open.org/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
https://www.oasis-open.org/committees/wsbpel
https://www.oasis-open.org/committees/wsbpel
http://www.bpmn.org/
http://nodered.org/

	Model-Driven Development for Internet of Things: Towards Easing the Concerns of Application Developers
	Abstract
	1 Introduction
	2 Need for Model-Driven-Development in IoT
	3 Proposed Model-Driven Framework
	3.1 Support Knowledgebase for MDD
	3.2 Proposed Model Driven Framework

	4 Initial Prototype and Experimental Results
	5 Conclusion
	References


