
Intelligent Multi-platform Middleware
for Wireless Sensor and Actuator Networks

Rui Francisco1,3 and Artur Arsenio2,3(&)

1 Computer Science Department, Universidade de Lisboa, Lisbon, Portugal
rui.francisco@ydreamsrobotics.com

2 Computer Science Department, Universidade da Beira Interior,
Covilhã, Portugal

artur.arsenio@ydreamsrobotics.com
3 YDreams Robotics, Lisbon, SA, Portugal

Abstract. Wireless Sensor and Actuator Networks (WSAN), composed by
small sensing nodes for acquisition, collection and analysis of data, are often
employed for communication between Internet objects. However the WSAN
have some problems such as sensors’ energetic consumption and CPU load. The
massive storage capacity, large processing speeds and the rapid elasticity makes
Cloud Computing a very good solution to these problems. To efficiently manage
devices’ resources, and achieve efficient communication with various platforms
(cloud, mobile), this paper proposes a middleware that allows flows of AI
applications’ execution to be transferred between a device and the cloud.

Keywords: Internet of things � Wireless sensor and actuator networks � Cloud
computing � Middleware � State machines

1 Introduction

It is expect that in a few years our lives become more dependent of internet objects
connected by WSAN in areas such as environmental, medical, transportation, enter-
tainment and city management. Although there has been an evolution of the nodes in
WSAN, these continue to have limited battery, limited computation power, etc. Due to
these problems, the network node can crash due to lack of sufficient resources to
perform, and jeopardize the smooth operation of the infrastructure. So, especially for
demanding AI applications, internet objects using sensors and actuators require specific
middleware for integrated operation with networked resources [1, 2].

Cloud computing provides attractive solutions for these issues [3]. Indeed, it allows
the reduction of the initial costs associated with the computational infrastructure.
Another relevant aspect is that the cloud computing resources are easily and auto-
matically adjustable according to the real infrastructure needs. This way, the compu-
tational resources are easily scalable following the growth of the infrastructure. Another
important point is related with the fact that the customer only pays for the cloud
resources that he actually uses. Mostly important, cloud computing resources provide
almost unlimited battery, storage, and computing power.

So, we need an efficient solution that monitors the WSAN node capability to
execute operations, and communicates transparently with the cloud infrastructure.

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
R. Giaffreda et al. (Eds.): IoT360 2014, Part I, LNICST 150, pp. 16–22, 2015.
DOI: 10.1007/978-3-319-19656-5_3

2 Solution Architecture

The system consists of devices running applications (egg clients: cell phones, tablets,
and computers, as shown in Fig. 1a) and the cloud that makes data processing and
saves data. The communication protocols are TCP, UDP, SSH and HTTP Rest, and a
publish/subscribe model for internal communications in the device. Devices run
applications developed by programmers, having constraints such as limited memory
and battery (contrary to the cloud). These applications will run the management and
cloud client side modules for programmers to use our middleware. The former monitors
hardware components, and communicates to the cloud client whenever a component
reaches a critical condition. The cloud client interchanges application’s control mes-
sages and data to the cloud server module (see Fig. 1b).

2.1 Manager Module

The management module aims to determine hardware components state (battery, CPU
and memory), as well as the Wi-Fi connection state. The programmer defines each
component’s critical state on a configuration file, before the middleware starts to be
used. Whenever one of these components achieves a value above a critical value (and
WiFi signal is strong) a certain execution will no longer be run on the device, being
transferred to the cloud. Figure 2a shows the management model’s state machine.

The management model is initialized in the “Middleware” state when the
“Application” state sends an initialization command. The “Middleware” state contains
the monitored component conditions, which are updated by the “Monitoring” state
through a shared queue between the two states. The “Middleware” state is always
checking the conditions of the Wi-Fi signal quality and the conditions of the battery,
CPU and memory, through calls to device hardware that runs the middleware. The
values obtained are compared with the critical values stipulated by the application
programmer. The load CPU analysis is a bit different from the other checks, because a
notification is only sent if the read values are superior to the critical value for three
times in a row (to avoid reactions to sporadic peaks). If the signal quality of the
wireless network is below the critical value stipulated by the programmer the remaining
monitoring tests will not be performed. After each monitoring cycle of the hardware
components, the “Monitoring” state goes into sleep mode for one minute.

a) b)

Fig. 1. (a) System Architecture and (b) its Components.

Intelligent Multi-Platform Middleware for Wireless Sensor 17

The “Application” state sends requests to the “Middleware” state on the conditions
of a component (e.g. battery). If the reply is “False” (transition between the “Appli-
cation” and “Function” states), it means no action is needed, since the state of the
component is below the critical status (and hence running with enough resources on the
device). This way the programmer’s application can continue to run without any
changes, and no event is initiated. In case of a “True” response sent by the “Appli-
cation” state, the machine transits to the “Do Something” state, meaning the component
exceeds the critical value. In this case the programmer chooses the actions to take after
receiving the message. One possible option is to use cloud platform provided services
for performing certain actions. This way it is removed some load on the device that is
running the application, releasing resources (e.g. memory).

2.2 Cloud Model - Client

The cloud module state machine is shown in Fig. 2b. The communication between the
application and the cloud is initialized when the programmer application makes an
initialization call to the middleware. The first step is for the client to boot the server in
the cloud via an SSH command and to create TCP and UDP sockets. The access
settings of Post and Get commands of HTTP Rest protocol are also configured, so that
whenever the programmer intends an application to perform an upload or download of
information in the cloud, it is sent a Post or Get command to the cloud.

The middleware in the cloud responds (transitions between “Application”,
“Upload/Download” and “Cloud”) states either: (i) with a confirmation that the
information was successfully saved; or (ii) there was an error while performing the
operation of storage; or (iii) the information as requested by the get command; or (iv)
error due to failure on obtaining the requested information.

In a blocking call connection, a message is sent to the cloud with the following
information: the function ID and its arguments. After the message is sent the state

a) b)

Fig. 2. (a) Management, and (b) Cloud, state machines.

18 R. Francisco and A. Arsenio

“Blocking Socket” enters in a blocking state and waits for the result of the function that
is going to be executed in the cloud, delivered by the state “Reading Socket”. In the
non-blocking case, the state is not blocked after the message is sent (the program
continues to run). Once the cloud returns the response, this is saved in the device
memory until the program needs to access it. The state “Reading Socket” after being
initialized enters in block mode waiting for new entries in the socket that arrive from
the state “Cloud”. A new message on the socket will be processed differently
depending on the information of one message field. If the message is from a blocking
function, the result is sent to the state “Sending Blocking”, otherwise the function ID
and its result will be stored in the device memory until the program needs the result.

2.3 Cloud Model - Server

The Cloud Server side module is initialized at the application server once it receives an
SSH connection with the start command, locking the “Cloud” state, and waiting to
receive messages from the client. Upon receipt of the message and its decoding, it is
possible to identify the function ID that is intended to be performed and its arguments
(going from state “Cloud” to “Function” state). The “Function” state consists of the
execution of the functions that were chosen by the programmer to run in the cloud. At
the end of the execution of a function a message is sent to the client (state “Reading
Socket) with the function ID and its result. It is also sent a small packet to identify if the
response is to the blocking or the non-blocking function.

3 Experimental Results Assessment

The metrics were the Percentage of Energy consumed and CPU Load. It was used 1 BQ
Edison with Android OS, and one virtual machine with one core and 1,75 GB of RAM.
We applied OpenCV to build a face detection and tracking application, heavy in terms
of CPU processing power, battery consumption and generated traffic, since it makes
significant image processing. Two experimental setups were implemented:

1. The baseline: the application that detects/tracks the human face is the only running
on the Android OS (no middleware).

2. Integration with the middleware: the same application only sends messages com-
posed with frames, getting these from the camera, and sending these to the cloud,
being the frames’ analysis made in the cloud.

3.1 Energy Consumed

The experiments on the 2 aforementioned scenarios lasted 40 min and were repeated 5
times. As shown in Fig. 3. and Table 1, there is no evidence of gains by transferring
some application execution flows to the cloud. Results are even slightly better when the
middleware was not used (difference never exceeded 8 %).

Intelligent Multi-Platform Middleware for Wireless Sensor 19

This similarity may be due to excessive use of the video camera, which consumes a
lot of battery power, although this component is also used extensively without the
middleware. The constant access to the wireless network should be the largest impact
on the results, since the higher transmission rate implies higher energy spending [4].

3.2 CPU Load

To check potential middleware advantages in relation to CPU load, the “Face Detect/
Tracking” application was subjected to tests lasting 20 m and repeated five times.
In Table 1 and Fig. 4, there is a significant gain with the migration of the detection and
tracking algorithms to the cloud. This gain is due to the heavier work done now in the
cloud, which alleviates the processing needs of the device’s CPU running the appli-
cation (just grabs image frames on the device and sends them).

)b)a

Fig. 3. Energy Consumed (a) without using the cloud; and (b) using the cloud.

Table 1. Energy Consumed (as percentage of battery charge) and CPU Load

)b)a

Fig. 4. CPU Load (a) without, and (b) with, the presence of the middleware

20 R. Francisco and A. Arsenio

Hence, in situations where applications compete for CPU time in processing
constrained devices, this solution can bring very interesting benefits. The image pro-
cessing algorithms requires a lot of CPU load to be executed, which may prevent
simultaneously other applications to run properly. The same also happens with image
processing application that ceases to have the CPU just for itself, competing for
resources such as CPU processing time, and this competition may create difficulties to
its execution, such as a smaller frame rate, getting this way less frames per second.

To check if the middleware solution can solve this competition problem for limited
resources, the following test scenarios were performed: checking the CPU status
whenever an exhaustive analysis of 100 frames needs to be made, and checking the
time consumed for both processing these set of images in the tablet or in the cloud.

According to Table 2, CPU load reaches saturation values for single tablet pro-
cessing. But usage of cloud processing originates a significantly lower CPU load at the
tablet. Hence the integration of the middleware may be beneficial to run reliably
multiple applications on a device of limited resources, because with the transferring of
execution flows to the cloud much of the processing is done outside the device, thus
freeing some of the CPU load, so that other device applications can also be executed.

4 Conclusions

This paper proposed a state machine based middleware to manage the transferring of
execution flows between terminal devices and the cloud. The main goal was, using
cloud technology, to address the problem of a device’s lack of resources such as limited
memory and battery. Experimental evaluation showed that offloading the execution
flows into the cloud does not necessarily reduces energy consumption (or increases
battery lifetime), because more battery energy may be required for wireless commu-
nications. Experiments indicate however that using the cloud to solve the lack of device
resources is quite advantageous, because it allows reducing the CPU load. This may
lead to battery with extended autonomy. But most importantly, it avoids applications
entering in blocking states due to lack of memory, and allows running more applica-
tions in a simple device that otherwise would exceed the available resources. The
decision whether to run an application locally or remotely is done dynamically,
according to the status of available resources, as checked through active monitoring.
More recently [5], we have successfully integrated the proposed middleware with a
WSAN platform, OpenHAB, for smart home automation.

This middleware will be most beneficial for programmers who want to make the
most of the hardware resources available on the devices.

Table 2. CPU Comparative load in exhaustive case.

Without Cloud With Cloud

CPU Load average (%) 98,69 25,53
CPU Load standard deviation (%) 1,20 2,28
Average (execution time)(ms) 1292 1100
Standard deviation (ms) 5,60 4,80

Intelligent Multi-Platform Middleware for Wireless Sensor 21

Acknowledgments. Work developed in the scope of the Monarch project: Multi-Robot
Cognitive Systems Operating in Hospitals, FP7-ICT-2011-9-601033, supported by EU funds.
Artur Arsenio was also supported by CMU-Portuguese program through Fundação para Ciência
e Tecnologia, under Augmented Human Assistance project CMUP-ERI/HCI/0046/2013.

References

1. Kranz, M., Rusu, R., Maldonado, A., Beetz, M., Schmidth, A.: A player/stage system for
context-aware intelligent environments. In: Proceedings of the System Support for Ubiquitous
Computing Workshop (UbiSys), September 2006

2. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R.,
Ng, A.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source
Software, vol. 3. No. 3.2 (2009)

3. Hunziker, D., Gajamohan, M., Waibel, M., D’Andrea, R.: Rapyuta: The roboearth cloud
engine. In: IEEE International Conference on Robotics and Automation (ICRA) (2013)

4. Balasubramanian, N., Balasubramanian, A., Venkataramani, A.: Energy consumption in
mobile phones: a measurement study and implications for network applications. In: Pro-
ceedings 9th ACM SIGCOMM Conference on Internet Measurement Conference (2009)

5. Francisco, R.: Flexible, Multi-platform Middleware for Wireless Sensor and Actuator Net-
works. MsC Thesis, IST (2014)

22 R. Francisco and A. Arsenio

	Intelligent Multi-platform Middleware for Wireless Sensor and Actuator Networks
	Abstract
	1 Introduction
	2 Solution Architecture
	2.1 Manager Module
	2.2 Cloud Model - Client
	2.3 Cloud Model - Server

	3 Experimental Results Assessment
	3.1 Energy Consumed
	3.2 CPU Load

	4 Conclusions
	Acknowledgments
	References

