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Abstract. In order to prevent the lack of appropriate respiratory ventilation
which causes brain damage and critical problems, it is required to continuously
monitor the breathing signal of a patient. There are different conventional
methods for capturing respiration signal, such as polysomnography and spi-
rometer. In spite of their accuracy, these methods are expensive and could not be
integrated in a body sensor network. In this work, we present a real-time cloud-
based respiration monitoring platform which allows the patient to continue
treatment and diagnosis from different places such as home. These remote
services are designed for patients who suffer from breathing problems or sleep
disorders. Our system includes calibrated accelerometer sensor, Bluetooth Low
Energy (BLE) and cloud database. Based on the high correlation between spi-
rometer and accelerometer signals, the Detrended Fluctuation Analysis (DFA)
has been applied on respiration signals. The obtained results show that DFA can
be used as an efficient feature while classifying the healthy people from patients
suffering from breath abnormalities.
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1 Introduction

Recently, there are different studies and reports which show the importance of moni-
toring and analyzing the respiration signals in many fields such as medicine and
physiology [1–4]. Today about 7 % of the population of developed countries suffer
from Chronic Obstructive Pulmonary Disease (COPD), and it is a growing problem in
developing countries. For example, an estimated of 3.7 million people live with COPD
in UK, predicted to increase by one-third by 2030, costing the NHS £1.2 billion/yr [3].
Moreover, professionals in breathing and sleep centers are demanded to assist people
with shortness of breath, cardiovascular problems, such as hypertension, atherosclerosis,
stroke, heart failure, cardiac arrhythmias, and sudden infant death syndrome (SISD).
Therefore, a real-time monitoring of the respiration rhythm plays an important role in
both diagnosis and treatment of different disorders. Remote monitoring also helps in
prevention and early diagnosis of adult diseases, such as obesity, diabetic ketoacidosis
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(DKA), brain disorders as well as abnormal breathing of newborns at home. There are
different conventional methods for respiration waveform measurement, such as spi-
rometry, nasal thermocouples, impedance plethysmography, inductance pneumography
strain gauge measurements of thoracic circumference, whole-body plethysmography
[4], pneumatic respiration transducers, the fiber-optic sensor method [4, 5], the Doppler
radar [5, 6], and electrocardiogram (ECG)-based derived respiration measurements
[7–9]. However, in spite of their accuracies, these methods are expensive and inflexible
which may bring discomfort to the patients and physicians. One recent area of interest is
applying motion sensors to detect the small movements of the chest wall that occur
during expansion and contraction of the lungs. In preliminary trials on hospital patients,
it has been shown that [10] with proper signal processing, this method can produce
results that closely match with measurements of nasal cannula pressure [10]. A vali-
dation of respiratory signal derived from suprasternal, notch acceleration has been
investigated by [11] for different body positions. Their data storage and processing is
performed on a computer with their custom build LabVIEW Virtual Instrument. The
main objective of this study is to provide a new cloud-based tool for monitoring and
analyzing the respiration patterns with accelerometer sensor. The previous approaches
are primarily based on the use of offline data loggers and on-board signal processing.
However, in our system we use cloud database which can offer significant advantages
over traditional methods, including increased on-line accessibility, scalability, automatic
failover and fast automated recovery from failures. The accelerometer data is transmitted
via Bluetooth Low Energy (BLE) to PC/iPhone and then it is sent to the cloud to be
processed and saved, immediately. Therefore, the physicians can track the patients
wherever they are with devices such as an iPhone, iPad or the web regardless of their
proximity to the patients. Moreover the fluctuation analysis of the signals for each
patient is investigated as an effective feature to distinguish breath problems.

In Sect. 2, the signal processing procedures applied on accelerometer signal are
explained. In Sect. 3, the Detrended Fluctuation Analysis (DFA) has been applied on
respiration signals derived from the accelerometer to help distinguishing between
normal and abnormal respiration patterns. Experimental results are presented and
discussed in Sect. 4. Finally Sect. 5 concludes the paper.

2 Data Preprocessing

We mounted the sensor on the chest where is more comfortable compared to supra-
sternal notch position used in [11]. In order to make sure that the sensors’ readings are
accurate enough to be processed, we calibrate our accelerometer sensor using linear
least square method proposed by [12]. Due to inherent deficiency or aging problems in
cyber-biological systems, sensors calibration is suggested. Calibration, which is defined
as the process of mapping raw sensor readings into corrected values, can be used to
compensate the systematic offset and gain [13]. Generally, calibration of sensors
requires experience and special accurate tools; however, a straightforward method to
calibrate an accelerometer is performed at 6 stationary positions. We need to collect a
few seconds of accelerometer raw data at each position. Then the least square method
is applied to obtain the 12 accelerometer calibration parameters. The calibration
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procedure is simple, and needs to be executed once. The calibration procedure can be
briefly explained as:

ax0ay0az0
� � ¼ ax ay az 1

� �
:
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acc13 acc23 acc33
acc10 acc20 acc30

2
664

3
775; y ¼ w:X

where:

• Vector w is accelerator sensor raw data collected at 6 stationary positions.
• Vector y is the known normalized Earth gravity vector.
• Matrix X is the 12 calibration parameters that is determined as below:

X ¼ wT :w
� ��1

:wT : y

Based on the fixed sensor position, the data processing and analysis are performed on
z-axis of the accelerometer. The accelerometer data is filtered through a 10th order
Butterworth low pass filter with cutoff frequency 1 Hz. In the next part we are going to
analyze the fluctuation of different breathing patterns resulted from five types of res-
piration disorders.

3 Detrended Fluctuation Analysis (DFA)

Detrended Fluctuation Analysis (DFA) quantifies fractal like auto-correlation proper-
ties of the signals [14]. It is generally accepted that the significant complexity of
biological signals is due to two main factors [15] i.e. high complexity of systems and
their susceptibility to environmental factors [14]. Biological signals are difficult to
analyze because they are mostly non-stationary and from a wide range of physiological
phenomena possess a scale invariant structure [16, 17]. Indeed, they have a scale
invariant structure when the structure repeats itself on subintervals of the signal [17].

The validation of accelerometer driven respiration signal is investigated in [18] and
the mean correlation of 0.84 which shows a very close correspondence of the accel-
erometer sensor and spirometer data is obtained. Therefore, here we make use of this
result and DFA effectiveness is analyzed to discriminate healthy from pathological
accelerometer driven respiration patterns.

DFA was first introduced by Peng et al. [19]; and Acharya et al. [20] uses DFA for
disease classification in ECG studies. In many cases the DFA scaling exponent can be
used to distinguish healthy and unhealthy data [21]. Indeed, DFA is a scaling analysis
method that provides a simple quantitative parameter to represent the autocorrelation
properties of a signal [19]. Thus, it could be a good feature to be utilized in the
classification techniques. Figure 1, briefly summarized the proposed procedures.
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3.1 DFA Algorithm

In the application of DFA to our extracted respiration signal, parameter B is the peak to
peak (P_P) interval of breathing signal. We applied a peak detector algorithm which
defined a customized threshold to decide whether each peak is significantly larger than
the local data and then the peak intervals are calculated. B is first integrated in Eq. (1) to
calculate the sum of the differences between the ith P_P interval BðiÞ and the mean P_P
interval Bave.

y kð Þ ¼
Xk

i¼1
B ið Þ � Bavej j ð1Þ

Next, as is shown in Fig. 2 for respiration signal, the integrated series y kð Þ is
divided into boxes of equal length n. Each box is subsequently detrended by sub-
tracting a least square linear fit, denoted as ynðkÞ.Then the Root Mean Square (RMS) of
this integrated and detrended time series is obtained by:

F nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

k¼1½y kð Þ � yn kð Þ�2
N

s

In the example in Fig. 2, n is equal to 3. The linear dependence indicates the
presence of self-fluctuations and the slope of the line determines the scaling exponent α
[17, 22]:

FðnÞ� na

The parameter α (scaling exponent, autocorrelation exponent, self-similarity
parameter) shows the autocorrelation properties of the signal [20, 23]:

1. α < 0.5 anti-correlated signal
2. α = 0.5 uncorrelated signal (white noise)
3. α > 0.5 positive autocorrelation in the signal

Fig. 1. Signal processing flowchart
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4. α = 1 Pink noise or 1/f noise
5. α = 1.5 Brownian noise or random walk.

Gifani et al. [14] claims that using scaling exponent α, one can completely describe the
significant autocorrelation properties of the bio-medical signals. In this study, we use
scaling exponent α of normal breathing as well as five different diseases.

4 Experimental Results

In our experiments, the acceleration signal was acquired with MEMS, KXTJ9, 3-axis
low-power accelerometer with 12-bit resolution and sampling rate 50 HZ (Fig. 3(a)).
The data is transmitted via CC2541 BLE, a new standard that allows Bluetooth
equipment to run for long time on a single coin cell battery. It is worth noting that our
node is fully radio type approved for US, Europe, Japan and Canada. The received
sensors data are stored in the cloud in order to real-time or further analysis.

4.1 Test Setup

The participants of this study were five males and six females aged 4 to 48 with
Mean ± SD, 26.54 ± 11.9026. They were instructed how to perform each breath
exercise before their recording sessions. The experimental trials lasted for about 50 min
per subject. We asked the subjects to perform Normal (N1), Bradapnea, Tachypnea,
and Cheyn-stokes patterns, each for 2 min (6000 samples) and the other two types for
1 min with a 3 min rest interval. For simulating apnea in Cheyn-stokes and Biot’s
breathing exercises, we requested the participants to pause breathing for at least 3 s.
Besides, for DFA analysis we asked our subjects to repeat normal breathing for another
1 min (N2). The sensor was mounted on the subject’s chest in the middle of sternum
region (Fig. 3(b)) and secured by a soft and elastic strap which is easy to attach and

Fig. 2. (a) Original signal, (b) Integrated signal with trends

Fig. 3. (a) Sensory node, (b) Hardware module being worn
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comfortable to wear. In the trial session, the subjects were in the lying position;
however, the rest positions or activities in which rib cage is stationary could be
considered.

4.2 Breathing Patterns

In our test, the subjects are asked to perform six breathing patterns i.e., Normal,
Bradapnea, Tachypnea, Cheyn-stokes, Kaussmal, and Biot’s. Bradapnea is regular in
rhythm but slower than normal in rate. Tachypnea is the condition of rapid breathing,
with respiration rate higher than 20 respirations per minute (rpm). Tachypnea may
occur due to physiological or pathological problems [24]. Cheyn-stokes breathing
pattern is determined by gradually increasing, then decreasing the lung volume with a
period of apnea. People suffering from central sleep apnea syndrome (CSAS) have the
same breathing pattern at sleep [25]. Kussmaul which is defined as a rapid, deep and
labored breathing type usually occurs in diabetics in diabetic ketoacidosis [26]. Biot’s
breathing is characterized by periods of rapid respirations followed by regular periods
of apnea. There are different reasons which causes Biot’s breathing, such as damage to
the medulla oblongata by stroke (CVA) or trauma, or pressure on the medulla due to
uncal or tentorial herniation and prolonged opioid abuse [26]. Figure 4 shows samples
of all normalized patterns extracted from accelerometer sensor.

4.3 DFA Analysis

In this section the respiration data are successfully analyzed using the DFA algorithm.
Short-term data of 1-min duration for periods of normal and abnormal breathings and
five scales 3, 4, 5, 6, and 7 are considered. The average fluctuations versus box-size are
plotted in Fig. 5.

Fig. 4. (a) Normal (b) Bradapnea, (c) Tachypnea, (d) Cheyn-stokes, (e) Kussmaul and (f) Biot’s
breathing patterns extracted from accelerometer sensor.
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The graphs in Fig. 5 are for one of our subjects. It was observed that, each subject
has its own signal characteristics based on the fluctuation analysis. It is worth noting
that for all subjects, there is a difference in the average scaling exponent α of normal
and abnormal respirations which helps us to use DFA as one of the effective features
for healthy and unhealthy classification. This difference is various for different types of
disorders and in some cases we can see the higher diverse which results in more reliable
distinction. As a sample in Fig. 5, the blue and red lines are two normal patterns which
obviously resulted in parallel lines (equal slope) while the black lines depict the specific
disorders with different slopes. Table 1 shows the obtained scaling exponent for the
whole population and patterns. Considering object 1, her normal respiration signal
based on α is an anti-correlated signal shown in Fig. 5(a).

According to the obtained results in Fig. 5, the Kaussmal and Biot’s respiration
signals are close to white noise while for Bradapnea and Cheyn-stokes breathing
models, the signals are included in positive autocorrelation category. Her Tachypnea
breathing is close to Pink noise in which the power spectral density is inversely
proportional to the frequency of the signal. The absolute differences of scaling expo-
nents of N2 and abnormal patterns with respect to N1 are presented in Fig. 6(a).

It can be also seen in Fig. 6(b) that for all subjects, the greater mean differences are
belong to the abnormal patterns while the differences of the second normal breathing
are very close to zero. If we consider all subjects and breath patterns, α differences of
abnormal breathings and N2 with regard to N1 are 0.51 ± 0.19 and 0.05 ± 0.04,
respectively. Therefore, we conclude that DFA on respiration signals is a good and
simple criterion to be used as an important feature in breath disorders detection.

Fig. 5. Scaling exponents for (a) two Normal breathing and Bradapnea, (b) Tachypnea,
(c) Kaussmaul, (d) Biot’s and (e) Cheyn-stokes breathing patterns
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5 Conclusion

In this paper, we presented a respiration monitoring system as well as applying the
detrended fluctuation analysis on the accelerometer driven respiration signal. The
results revealed the potential of remote diagnosis based on accelerometer sensor as a
simple, convenience and low-cost method. In this platform, the physicians are able to
share information together and precisely diagnosis the breathing diseases as well as
monitoring the patient’s progressing in performing the prescribed breathing exercises in
respiratory therapy wherever they are with devices such as an iPhone, iPad or the web
regardless of their proximity to the patients.

Therefore, early identification through this portable monitoring system and timely
treatment of exacerbations can decrease the hospital admissions and slow deterioration
while reducing early mortality and disease costs [27].
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