
PacMap: Transferring PacMan
to the Physical Realm

Thomas Chatzidimitris(&), Damianos Gavalas, and Vlasios Kasapakis

Department of Cultural Technology and Communication,
University of the Aegean, Mytilene, Greece

{tchatz,dgavalas,v.kasapakis}@aegean.gr

Abstract. This paper discusses the implementation of the pervasive game
PacMap. Openness and portability have been the main design objectives for
PacMap. We elaborate on programming techniques which may be applicable to
a broad range of location-based games that involve the movement of virtual
characters over map interfaces. In particular, we present techniques to execute
shortest path algorithms on spatial environments bypassing the restrictions
imposed by commercial mapping services. Last, we present ways to improve the
movement and enhance the intelligence of virtual characters taking into con-
sideration the actions and position of players in location-based games.

Keywords: Pacmap � Pacman � Pervasive games � Location-based games �
Shortest path � Dijkstra

1 Introduction

Pervasive gaming is an emerging gaming genre that transfers gameplay from the virtual
world to the real environment, leading to the spatial, temporal and social expansion of
the magic circle [1]. The key element in these games is the awareness and incorporation
of user context: depending on the location, environmental or social context the game’s
scenario and the gameplay are adjusted accordingly.

When this genre of games appeared, the use of wearable devices (like sensors and
GPS) was deemed necessary to capture user and environmental context, although the
use of such equipment has been reported to affect the user’s immersion during the
gameplay. The advent of smartphones with their advanced processing, networking and
sensory capabilities overturned the abovementioned restrictions of wearable equipment
and provided pervasive games developers the means for implementing computationally
intensive, context-aware applications commonly incorporating augmented reality.

This paper introduces PacMap, a pervasive variant of the classical game PacMan.
PacMap has been largely inspired by Human PacMan [2], a milestone pervasive game
project released in 2004. From the technology perspective, PacMap makes use of
infrastructure and resources still unavailable at the time that Human PacMan was
protoyped: it uses widely available equipment (like smartphones), 3G or WiFi net-
works, GPS and sensors. Furthermore, our prototype incorporates programming
techniques and principles applicable to a wide range of location-based hunting/chase
games. In particular, the implementation of PacMap aims at creating appealing and

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
R. Giaffreda et al. (Eds.): IoT360 2014, Part I, LNICST 150, pp. 139–144, 2015.
DOI: 10.1007/978-3-319-19656-5_20



engaging game spaces, allowing anytime/anywhere gameplay, without any need for
orchestration. The game stage is set around the actual location of the user and considers
the actual surrounding road segments as game action ‘corridors’. Moreover, we pro-
pose an implementation that utilizes the high level information granularity inherent in
open map platforms and breaks the dependency on commercial map providers who set
daily/monthly limits on the number of web service invocations. Finally, this paper
suggests techniques for the smooth movement of virtual characters on map-based
interfaces, which should adapt real-time on the actual player movement within the
game space.

2 Related Work

Location-based games claim a major share in pervasive games market. Many research
prototypes [2–6] as well as some commercial games, like Ingress1 and Zombies Run,2

use location-aware services to support their scenario, having the user’s location as point
of reference.

Human Pacman has been a milestone pervasive game (notably, one of the first to
transfer the experience of an arcade game out to the physical world), which largely
inspired the design of PacMap. Using a slightly modified game plot of the traditional
Pacman, players are enrolled as pacmen, helpers and ghosts. The interaction, as well as
the movement of players within the game space, requires the use of devices, like
sensors and wireless LAN Cards, which are stored in a backpack. The players also
carry head-mounted displays, whereon information about the plot of the game and
augmented reality content are projected. The use of equipment, the need for orches-
tration (helpers) and the difficulty to set the game space at any location, seriously limits
the portability and openness of the game.

The evolution of mobile computing (most notably, the emergence of mobile
devices like smartphones, tablets, smart watches, etc.), has radically changed the design
and development of pervasive games. The incorporation of technologies, like GPS,
sensors (accelerometer, gyroscope, proximity, compass, barometer, gesture, heart rate,
etc.) and built-in cameras provided game designers and developers the looked-for
machinery to build location-based games with complex and appealing scenarios, and
limited the requirement for specialized supplementary equipment. Notably, latest
research prototypes commonly consume mapping services [5], like Google Maps, as
well as relevant web services (e.g. directions for walking and transit transfers, points of
interest, elevation, traffic and geocoding), which are provided by the service providers
via specialized Application Programming Interfaces (APIs).

The use of several among the above mentioned services (e.g. the directions service)
is subject to commercial usage. In practice, this limits the number of monthly invo-
cations under a certain development license. This restriction raises a major challenge
in the design of location-based games which involve heavy use of mapping services

1 https://play.google.com/store/apps/details?id=com.nianticproject.ingress.
2 https://play.goggle.com/store/apps/details?id=com.sixtostart.zombiesrun.

140 T. Chatzidimitris et al.

https://play.google.com/store/apps/details?id=com.nianticproject.ingress.
https://play.goggle.com/store/apps/details?id=com.sixtostart.zombiesrun.


(e.g. chase/hunt games), especially those enrolling intelligent virtual characters and
require execution of path finding algorithms for virtual hunters.

3 Game Scenario

The game scenario of PacMap adheres as much as possible to that of the classic arcade
game Pacman. It is a location-based game, which requires Internet connection and
enabled GPS receiver in the device. The game space is determined at startup, con-
sidering the actual road segments around the user’s position as possible walking cor-
ridors for the pacman player. The user is supposed to collect all the cookies positioned
across the streets. Unlike the pacman which us acted by a human player, the enemies
(i.e. the ghosts) are virtual characters handled by the game engine. Similarly to the
original arcade game, the ghosts are supposed to catch pacman, each following a
different mobility pattern moving on the map, around the user’s area. The purple,
orange and blue ghosts execute random movements in the game space. The red ghost
follows the user as the latter moves within the gamespace. Figure 1 illustrates a
snapshot of the PacMap’s gameplay.

4 Game Engine Architecture

PacMap’s system’s architecture adopts a typical client-server model. The server side
part undertakes the fabrication of the game space, whereas the client side visualizes the
game space and enables the interaction among the player and the game engine.

As illustrated in Fig. 2, the client sends out his location information to the game
server in order to create the appropriate game space. The latter is confined by a circle
around the user’s location, with a radius of 200 m. The game server uses the geolo-
cation information to contact a map server and retrieve the nodes and POIs lying within
this imaginary circle (the communication is handled by the OpenStreetMap API3).

Fig. 1. PacMap gameplay screenshots.

3 OpenStreetMap is an open-source mapping service, providing developers with useful crowdsourced
topographical information. Data contributors may register geospatial elements such as nodes and
POIs along the street network. Among others, the OpenStreetMap web services allow exporting the
vertices of rectilinear parts, comprising a road network.

PacMap: Transferring PacMan to the Physical Realm 141



The arrangement of game components within the game space (e.g. the placement of
cookies) is carried out through utilizing the area nodes information. To ensure even
distribution of cookies, the game engine firstly measures the distance between two
nodes applying the Vincenty’s formulae [7]. The latter is based upon two iterative
methods, which are used in the field of Geodesy to measure the distance among two
points on a spherical surface. Subsequently, the road sections are segmented, so that the
cookies can be placed in equal distances.

In addition to nodes, POI information is also utilized in PacMap scenario, as the
user can earn life credits, by reaching some of these POIs (like pharmacies and hos-
pitals), or get “trapped” (e.g. in bar/nightlife areas) wherein the map visibility is
reduced on the device’s screen.

5 PacMap Implementation

The arcade game Pacman involves ghosts which chase the pacman, with their move-
ment promptly adapting to that of pacman. In order to transfer such functionality to a
map-based interface each ghost needs to receive a series of road segments to be
traversed. Provided a start and an end location (e.g. the current location of the ghost and
the player, respectively) a reasonable action for the ghost following the user is to
invoke a ‘direction’ web service typically offered by commercial map data providers
(e.g. the Directions service of the Google Maps API) and then faithfully follow the
shortest path walking directions recommended by the service. However, if the user
location changes too often, direction service invocations (passing the updated ghost/
player location parameters) will increase accordingly and soon exceed the invocations
limit set by commercial providers.

Enemies (i.e. ghosts) movement patterns fall into two types. Orange, blue and
purple ghosts repeatedly execute a random movement around the map. To implement
these movements, we derive two random pairs of coordinates over the arc of the
imaginary circle centered at the user’s current position. These two pairs of coordinates

PacMap 
server

Map server

Nodes/POIs
Cookies placement

Game 
engine

GPS fix

Network 
graph

Movement directions
User device

Shortest path 
calculation component

Fig. 2. PacMap system architecture.

142 T. Chatzidimitris et al.



(representing the start/end nodes of each successive ghost movement) are submitted to
the Directions API service of the map server, thus generating the actual path to be
followed by each ghost. From the games research viewpoint, the movement of the red
ghost is more challenging as it presumably applicable to many alike map/location-
based chase games, since (according to the PacMap scenario) it is supposed to follow
the user as s/he moves within the game space.

Ghosts movement respects the game space topography, namely the nodes exported
from the game server during the game space generation phase (see Fig. 3a). Consid-
ering a graph transformation of the game space (connecting adjacent nodes which are
connected through a road segment on the actual setting and calculating the distances
among them), it is then straightforward to execute a shortest path algorithm to compute
the path to be followed by the user (see Fig. 3b). PacMap’s directions service imple-
ments the Dijkstra’s algorithm,4 wherein edge costs equal the physical distance among
their connected end nodes. For example, the red ghost considers the node nearest to the
ghost’s current location as start node and the node the user currently heads to as end
node (e.g. node B in Fig. 3a).

Shortest paths are derived whenever the user reaches a new edge or turns to another
direction. To ensure prompt adaptation of ghost’s movement to the player’s movement,
the device determines the nodes among which the user is currently located whenever
his location (i.e. GPS fix) is updated.

The sole goal of the ghost is to “catch” pacman, i.e. to reach its currently assigned
end node, having gone through the edge currently traversed by the user. In case that the
ghost arrives at its end node without passing via the player’s edge, the algorithm is
re-executed, with the other end point of that edge set as the new end point for the
requested directions.

Fig. 3. (a) An example game space illustrating the extracted topology nodes; (b) shortest path
derived by a directions service executing Dijkstra’s algorithm upon a graph transformation of the
game space (Color figure online).

4 Dijkstra's algorithm is a graph search algorithm that solves the single-source shortest path problem
for a graph with non-negative edge path costs, producing a shortest path tree.

PacMap: Transferring PacMan to the Physical Realm 143



It is noted that the shortest path algorithm is executed on the client side to eliminate
the effect of network latency inherent in client-server interactions. On an average game
space considering 420 nodes, the algorithm takes 95 ms to yield the shortest path when
executed on a Samsung Galaxy S4 device (processor: ARMv7 – 1.8 GHz × 4 cores/
ram:1.8 GB).

6 Conclusion

We introduced the prototype pervasive game PacMap, one of the few attempts to
migrate a classical arcade game onto the physical realm. We have proposed pro-
gramming techniques largely applicable to nearly any map-based chase game scenario,
the main objective being to ensure openness and portability. We have also discussed
implementation techniques for path-finding on real urban settings which bypass the
restrictions imposed by commercial Direction APIs. The use of those techniques
enables programmers and designers to develop location/map-based games, with flex-
ible scenarios that involve intelligent virtual characters dynamically adapting on
players movement behavior during the game.

References

1. Montola, M.: Exploring the edge of the magic circle: defining pervasive games. In: Pro-
ceedings of DAC, p. 103 (2005)

2. Cheok, A.D., Goh, K.H., Liu, W., Farbiz, F., Fong, S.W., Teo, S.L., Li, Y., Yang, X.: Human
Pacman: a mobile, wide-area entertainment system based on physical, social, and ubiquitous
computing. Pers. Ubiquit. Comput. 8(2), 71–81 (2004)

3. Jantke, K.P., Arnold, O., Spundflasch, S.: Aliens on the bus: a family of pervasive games. In:
Proceedings of 2nd Global Conference on Consumer Electronics (GCCE), pp. 387–391
(2013)

4. Chen, L., Chen, G., Benford, S.: Your way your missions: a location-aware pervasive game
exploiting the routes of players. Int. J. Hum. Comput. Interact. 29(2), 110–128 (2013)

5. Kasapakis, V., Gavalas, D., Bubaris, N.: Addressing openness and portability in outdoor
pervasive role-playing games. In: Proceedings of the 3rd International Conference on Com-
munications and Information Technology (ICCIT 2013), pp. 93–97 (2013)

6. de Souza e silva, A.: Alien revolt (2005–2007): a case study of the first location-based mobile
game in Brazil. IEEE Technol. Soc. Mag. 27(1), 18–28 (2008)

7. Vincenty, T.: Direct and inverse solutions of geodesics on the ellipsoid with application of
nested equations. Surv. Rev. 23(176), 88–93 (1975)

144 T. Chatzidimitris et al.


	PacMap: Transferring PacMan to the Physical Realm
	Abstract
	1 Introduction
	2 Related Work
	3 Game Scenario
	4 Game Engine Architecture
	5 PacMap Implementation
	6 Conclusion
	References


