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Abstract. Use of Electroencephalography (EEG) to detect cognitive load is a
well-practiced technique. Cognitive load reflects the mental load imparted on a
person providing a crucial parameter for applications like personalized educa-
tion and usability testing. There are several approaches to process the EEG
signals and thus choosing an optimal signal processing chain is not a straight
forward job. The scenario becomes even more interesting while using com-
mercial low-cost, low resolution EEG devices connected to cloud through
Internet of Things (IoT) platform. This paper proposes an optimized signal
processing chain offering maximum classification accuracy and minimum
computational complexity for measuring the cognitive load using low resolution
EEG devices.
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1 Introduction

Mental workload imposed on a person is an important component for human behavior
modeling as it gives a direct representation of mental state of the person [1]. Cognitive
load (CL) is the total amount of mental activity imposed on our working memory while
doing any cognitive process. High CL can significantly influence the performance,
leading to poor outcome, stress, or anxiety [1]. This CL information if made available
on IoT platform in real-time [2, 3], can be utilized for different applications like per-
sonalized education [4], usability testing [5] etc. as depicted in Fig. 1.
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Fig. 1. Mental workload estimation and modeling through IoT
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Thus measuring CL while doing any task has been of increasing interest. Subjective
measures of CL, including self-reporting like NASA-TLX [6], measurement of error
rates etc., are mostly self-biased compared to object-indirect (e.g. physiological,
behavioral measurements) and objective-direct (e.g. brain activity measurement, dual
task performance analysis) measurement methods. Physiological measures like brain
signals, Galvanic Skin Response, functional Magnetic Resonance Imaging etc. can be
used to access CL [7]. We have used electroencephalogram (EEG) technique as it is
relatively in-expensive, non-invasive and have excellent temporal resolution. The
frontal and central brain are mostly indicative of CL for tasks like problem solving,
decision making, and language skills etc. [8, 9]. Different preprocessing steps, features
and classifiers can be used for EEG signal analysis. Time-domain [10], frequency-
domain [11], and statistical parameters have been used to access the CL. Here we
tried detecting CL with commercially available low cost and low resolution Emotiv1

EEG device. Hence, appropriate signal processing, machine learning steps are needed
to get desired information.

The main contribution of this paper lies in proposing an optimal signal processing
chain via comparative study among various existing algorithmic approaches using low-
resolution devices like Emotiv. EEG signals are very susceptible to artifacts like eye-
blinks, facial muscle movements etc., hence we used Hilbert-Huang Transform (HHT)
[13] for required correction. The accuracy of classification can be increased by using a
spatial filter [14]. We have used advanced Tikhonov-Regularized Common Spatial
Pattern (TRCSP) [15]. Results show that it is possible to get good classification
accuracy with Emotiv if processing steps are chosen properly.

The paper is organized as follows: Sect. 2 details the experiments and the data
collection methods, followed by signal processing steps in Sect. 3. Section 4 presents
the results with discussions. Finally, the paper is concluded in Sect. 5.

2 Experiments and Data Collection

For the present study we designed two types of reading tasks similar to [12] with slight
modifications, pertaining low and high CL. For low load condition, subjects were asked to
mentally count the number of two letter words (except ‘of’) while reading an English
passage and report the number at the end. For high load condition, subjects were instructed
to count two-letter words as well as three-letter words separately (except ‘of’ and ‘the’).

A group of 10 participants (aged between 25–30 years) were selected. All of them
were right-handed male and had English as second language. These ensures minimum
variance in the level of expertise and brain lateralization across all the subjects.

The stimulus were presented on a 9.7-in. iPad. Participant were given two sets of
stimulus to work with (i.e. 2 high-load tasks and 2 low-load tasks). The EEG data
corresponding to first set of stimulus were used as the training data and the second set
were used as the test data and vice versa. An average of these two observations were
used as the final result.

1 www.emotiv.com.
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3 EEG Signal Processing

Different algorithmic approaches tried are shown in Fig. 2 and the details are given in
Table 1. The numbers provided in the construction of various paths in Table 1 are
referred to signal processing blocks shown in Fig. 2. We used a feature vector com-
prising of variance, Hjorth parameters [10], alpha (d), beta (b), theta (h), delta (d),

gamma (c) band powers and ratios of band powers b=h and a=d.

Fig. 2. Different approaches adopted for analyzing EEG signals

Table 1. Details of different Algorithm chains adopted
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3.1 Comparison of Algorithms

Algorithms were compared based on: (i) the cognitive score (CS) obtained while
classifying the EEG signals following a particular signal processing path, and (ii) the
computational complexity (CC) of that particular algorithm.

CS is defined in (1). Features (reduced feature/output of TRCSP) extracted from
training data were used to train SVM. Same features were calculated from test data also
and fed to SVM. The analysis was done in a non-overlapping window (5 s) basis.
Finally, the over-all cognitive score for a particular trial is given by

CS ¼
P

mi � wi

n
ð1Þ

where, mi is the number of windows reported as class i, n is the total number of
windows in a test trial and wi is a weight-factor. For high load class wi ¼ 100 and for
low load class wi ¼ 0. Hence for low load trial CS � 0 and for high trial CS � 100.

The computational complexity (CC) of an algorithm is the number of processing
steps required for a particular input. In our work we have defined CC as

CC ¼ nc � ðLþ CHHTÞ þ nc � ðmf � FÞ þ ðnc � mf Þ � CCSP ð2Þ

where, nc is the number of channels selected, L is the computational complexity for a
single channels, CHHT is the computational complexity of HHT filter, mf is the number
of features selected, F is the complexity for extracting a particular feature, CCSP is the
computational complexity of using TRCSP filter. Thus (1) and (2) gives a measure of
cognitive score and computational complexity for a particular algorithm.

4 Results and Discussions

Table 2 shows the cognitive score of low (L) and high (H) cognitive tasks following
Path1 through Path6. Maximum separation between H and L have been marked in
‘blue’. The entries for CSHigh \CSLow, have been marked in red. We observed this
reverse trend for 3 subjects while following Path4 and for 1 subject while following
Path1. Both Path1 and Path4 used TRCSP algorithm. Further investigation is needed
to conclude whether TRCSP leads to this effect for low resolution EEG device.
Figure 3a gives one-way ANOVA analysis of the results given in Table 2. Plot shows
Path6 gives highest difference between mean CSHigh and CSLow while having minimal
intra-class variance. Path1 gives maximum separation between CSHigh and CSLow for 6
subjects compared to Path6 which gives maximum separation between for 1 subject.
However, the ANOVA results indicate that the Path6 is the preferred path as opposed
to Path1, as the variance for CSHigh is maximum for the same, which is undesirable.

Thus, we see Path6 as the best possible approach in terms of classification accuracy
while using Emotiv. Path6 is also the path of least complexity as it: (i) uses only 4
channels instead of 14 channels, (ii) uses reduced feature set – using only these two
features saves computational time for feature extraction and (iii) bypasses TRCSP.
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Next we investigated usefulness of HHT filters. Figure 3b shows the CS for both
tasks with or without HHT. The separation between average CS for H and L is greater
and variance for H and L is lowest for artifact removed signals using HHT.

5 Conclusion

In this paper, we proposed the optimal signal processing chain specifically suitable for
low-resolution EEG devices like Emotiv. We have introduced a performance score for
evaluating different algorithms to choose the optimal signal processing chain for similar
low cost devices. The results show that, using Emotiv or similar low-cost low reso-
lution devices, it is possible to measure the CL by probing left frontal brain lobe for a
combined text reading and counting memory task. It also shows that the alpha and theta
band powers, directly fed to SVM, are sufficient to capture the imparted CL. The
proposed optimum signal processing chain also requires least computational resources
thereby making it suitable for cognitive load related IoT applications.

Table 2. Comparison of different algorithms in terms of cognitive score

Sub Path 1 Path 2 Path 3 Path 4 Path 5 Path 6

CS
(H)

CS
(L)

CS
(H)

CS
(L)

CS
(H)

CS
(L)

CS
(H)

CS
(L)

CS
(H)

CS
(L)

CS
(H)

CS
(L)

1 79.8 8.7 100 75 58.3 54.2 29 43 56 50 100 4

2 97.4 15.2 89.7 20.4 82.1 23.5 74.3 10.2 85.2 15.2 84.6 18.9

3 12 8.8 34.2 17.6 82.2 76.1 79 73 58 44 61 50

4 84 21 96.3 71.4 81.1 80.2 64.2 50 89 83 89 71

5 100 44 98 51.7 74.5 51.4 65 78 86 55 74 51

6 71.4 29 89.8 70.3 81.6 66.6 83 62 97 48 89 40

7 33.3 52 77.7 23.5 50 29.4 80.5 76.4 86 58 75 58

8 100 23.3 98.4 25.3 80.4 13.6 84 25.2 86 26.5 96 30.2

9 28.5 20.1 54.2 50.1 57.5 42.3 17.5 41.1 35.2 32.1 40.2 26.8

10 67.3 24.6 82.3 45s 71.9 48.5 64.1 50.9 75.4 45.7 78.5 38.8

(a) (b) 

Fig. 3. (a) Boxplot of different algorithms: Path6 is the chosen path as it offers maximum
F-value and minimum p-value, (b) Effect of artifacts removal: maximum F-value is obtained
while using HHT filters
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