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Abstract. In this paper we develop and test a distributed algorithm
providing Energy Consumption Schedules (ECS) in smart grids for a res-
idential district. The goal is to achieve a given aggregate load profile.
The NP-hard constrained optimization problem reduces to a distributed
unconstrained formulation by means of Lagrangian Relaxation technique,
and a meta-heuristic algorithm based on a Quantum inspired Particle
Swarm with Lévy flights. A centralized iterative reputation-reward mech-
anism is proposed for end-users to cooperate to avoid power peaks and
reduce global overload, based on random distributions simulating human
behaviors and penalties on the effective ECS differing from the suggested
ECS. Numerical results show the protocols effectiveness.
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1 Introduction

The balance between demand and supply plays a leading role in smart grids
applications and modern technologies aim to develop energy optimization algo-
rithms able to provide efficient residential district dispatchment. A large lit-
erature has been devoted to decentralized versions of optimization algorithms
applied to power systems, see, e.g., [15], due to distributed energy generation
and demand, renewables such as photovoltaic resources, storage devices, with
changes in real time. Multi-agent planning, as in [11], is often formulated as a
combinatorial optimization problem: each agent has its own objectives, resources,
constraints, and at the same time it has to share and compete for global resources
and constraints. Moreover, new roles in the energy market are emerging, such
as energy aggregators as intermediate between energy utilities and home users,
managing uncertanties due to variable customer actions, metereology and elec-
tricity prices. Given the huge number of agents, the optimization problem is
often computationally intractable in a centralized fashion, and given the time-
varying cost and constraints in energy demand-response (DR) problems, a fast
single-agent planning algorithm is appealing. In this paper, as in [6], customers
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are incentivized to move their loads in off-peak hours despite their individual
needs through marginal costs, using reputation scores as feedback. In [6] a coop-
erative game reduces peak-to-average ratio of the aggregate load and the Nash
equilibria are reached using centralized information, whereas our approach is
completely distributed. Evolutionary Game theory and Reinforcement Learning
techniques have been applied to swarm intelligence problems, as in [1,5,12,14].

Our focus is on energy distribution to a residential district, according to
the European Project INTrEPID [9]. In this scenery, the district global load
is sensed by power meters, and using non-intrusive load-monitoring techniques
(NILM, as in [8]) or smart plugs, the disaggregated data are available, turning
the “blind”system to a decentralized smart grid [2]. A centralized unit senses
local loads, and communicates with agents through smart-phone app or similar
devices proposing day-ahead optimal Energy Consumption Schedules (ECS).
Agents may accept the suggested ECS or not, according to individual needs.

Our contribution is twofold. First, we provide a mathematical formalization of
the optimization problem, decoupling the global constraint through Lagrangian
relaxation as in [10], see Sect. 2. Second, in Sect. 3 we design optimal ECS in a
distributed fashion at two levels: at the agent level applying meta heuristic opti-
mization techniques as QPSOL (Quantum Particle Swarm with Levy’s Flights)
described in [3], in order to get feasible optimal suggested ECS; at the district
level a reputation-reward mechanism provides incentives for users leading to an
emerging cooperative behavior. Section 4 describes the numerical results, and we
draw the conclusions of our study in Sect. 5.

2 Model Description

Consider a district with N users, each i-th agent has ni appliances that are
schedulable, like washing machine (WM), dish washer (DW) and tumbler dryer
(TD). Refrigerator load is also included as background profile. The state of the
multi-agent system is given by x = (x1, . . . , xN ), i.e., a vector of schedules that
each user has to execute in a given time slot, and xi is defined by the start
times of all the ni appliances of user i and their type (WM, DW, TD) with
well-known load profiles. Due to energy and time constraints, the goal to find a
global optimum of the constrained optimization problem, called primal problem:

min
x=(x1,...,xN )

N∑

i=1

fi(xi) s.t.
N∑

i=1

gi(xi) = a, hi(xi) ≤ bi, i = 1, . . . , N (1)

where a, bi ∈ R and the cost function
∑

i fi is a sum of weighted norms of three
factors: overload, energy cost and tardiness of the current state x. The first
constraint is the only coupling object: gi denotes the peak profile of each user
and the global load of the district must attain a given curve a = a(t) depend-
ing on time. All the functions fi, gi, hi implicitly depend on time (they span
a day), discretized in minutes or hours. The inequalities involving hi are local
time and energy (usually 3 kW) constraints of each user. The Lagrange function
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is L(x, μ, λi) =
∑N

i=1 [fi(xi) + λi(bi − hi(xi))] + μ(gi(xi) − a) where λi ≥ 0, μ
are called Lagrange multipliers. Since λi can be computed locally, the Lagrange
multiplier of our interest is μ, associated to the only coupling constraint. From
now on, we neglect the local constraints as they can be included directly in
the cost functions fi. As detailed in [4], the corresponding relaxed dual problem
becomes unconstrained: maxµ minx=(x1,...,xN ) L(x, μ). The standard algorithm
is as follows: given an initial estimate of μ, each user computes its best ECS x∗

i

such that x∗ = arg minx L(x, μ). Then, x∗ is sent to the central unit, and a sub-
gradient of minx L(x, μ) as function of μ is available. The central unit computes
and sends to agents at iteration k: μ(k) = μ(k−1) +α(k−1) (

∑
i gi(x

∗
i ) − a), where

α(k−1) is the step length of the gradient descent algorithm. Since the Lagrange
multiplier μ can be interpreted as the energy price, in order to decentralize the
given dual problem., we split μ =

∑N
i=1 μi. A distributed algorithm that can

be applied acts as the previous one with the only difference: agent i solves the
optimization problem

min
xi

fi(xi) + μi (Ngi(xi) − a) , (2)

where Ngi(xi)−a approximates the global overload
∑

j gj(xj)−a. The only com-
putational effort of the central unit is the gradient descent step for μ. The latter
optimization problem is solved by means of the population-based metaheuris-
tic method QPSOL, see [3], that reduces a NP-hard combinatorial optimization
problem to an adaptive algorithm requiring limited computational power.

The underlying idea is to split the optimization algorithm on 2 time scales:
(1) the micro-scale concerns the improvement along the day of the day-ahead
proposed ECS; (2) the macro-scale involves the reputation-reward mechanisms
of the agents, described below, and their collective behavior.

3 Swarm Simulator Description

This simulation studies energy distribution to a city district managing its total
daily power consumption without power peaks and achieving a given aggregate
load curve. Users should follow utility suggestions and receive incentives accord-
ing to their flexibility. Every day users compute local best ECS in a distributed
way, according to their needs and utility constraints, as described in Sect. 2.
In this Section we focus on the reputation mechanism defining the emerging
learning process. Consider best ECS as daily input data. Agents actions define
local effective ECS. Two indices evaluate end-users behaviors: (1) reputation
depending on start times of effective ECS, (2) reward depending on the distance
between best and effective (both local and global) load.

Reputation Definition. Each agent may accept or decline ni suggestions, with
ni number of appliances. Denote by x∗

i the best (sub)-optimal ECS found for
Eq. 2 at the end of each day, and denote by x̂i the effective ECS decided by user
i. Formally, the reputation of user i along the day is ri = 1 − |x∗

i −x̂i|
ni

∈ [0, 1],
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where | · | denotes the distance between the best and effective i-th ECS in terms
of start times of appliances, i.e., reputation decreases as violation rate gets high.

Reward Definition. The reward is defined in terms of credits: each agent may
earn up to 24 credits each day, comparing hourly the best (b) and effective (e)
two quantities: global load and local load. Formally the credits of user i at hour
h is defined as cih = 1 − |glob loadb−glob loade|

glob loadb+glob loade
− |loc loadb−loc loade|

loc loadb+loc loade
. At the end of

each day, credits ci ∈ [0, 1] are re-normalized and create rank lists.

Behavior and Learning Process Modeling. Each agent acts based on his
own behavior profile, shaped according to (1) favorite start times to schedule
appliances; (2) relevance given to reward and reputation by means of the weight
parameter αi ∈ [0, 1], to define reaction to feedback; (3) natural predisposition
to follow advice, to set the violation probability, defined by standard deviation
σi of a Gaussian distribution. Best ECS for utility are denoted by the start times
vector x∗

i and actions are samples from Gaussian distributions x̂i ∼ N (x∗
i , σ

2
i )

with mean given by x∗
i and standard deviation σi representing flexibility. Pro-

files are modeled according to σi that is initially sampled uniformly in a given
interval [σ1, σ2]. For large σi agents tend to selfish behaviors and do not accept
suggested ECS. Another learning parameter is the weight αi ∈ [0, 1] each agent
gives to reward and reputation as feedback, i.e., after each observation period
user i evaluates the linear combination of its mean reputation r̄i and its mean
reward c̄i : qi = αir̄i+(1−αi)c̄i. Given the satisfaction threshold ε (in numerical
experiments ε = 0.6), if qi > ε, agent i is satisfied and there is a certain prob-
ability that relaxes decreasing its standard deviation σi, otherwise it increases
according to a fixed discrete random distribution. In conclusion, behavior of
agent i is defined by the Gaussian probability density function f = f(x∗

i , σi, αi).
At each feedback iteration the behavior parameter σi is updated. Houses with
best and worse reputations and rewards are listed as another daily feedback, and
emerging collective beahvior is described in Sect. 4.2.

4 Numerical Results

4.1 Micro-Scale Simulation

In this numerical experiments, using MATLAB software we run the simulator for
small residential neighborhoods, i.e., N = 5, N = 10 agents and through QPSOL
and Lagrangian relaxation described in Sect. 2, few iterations are sufficient to
get a significant reduction of the global overload, as shown in Fig. 1. The output
of such distributed algorithm are the daily suggested ECS, and the macro-scale
simulator deals with the learning process acting on human decisions for ECS.

4.2 Macro-Scale Simulation

Software used for the development of macro-scale simulation is GAMA-platform
[7], an agent-based, spatially explicit, modeling and simulation platform. Models



74 D. Borra et al.

Fig. 1. In the left and center plot, the peak (upper plot) and mean (lower plot) power
load (Watts) of a 5 agents neighborhood is displayed at the first and last iteration
(t = 10) of the distributed algorithm proposed in Sect. 2. All agents are flexible during
10 am-9 pm. The right panel displays the average overload (over 10 samples), i.e., the
distance between best and effective global load, as function of algorithm iterations.

are written in the GAML agent-oriented language, so that each house is consid-
ered to be an agent. We consider a district composed by N = 100 houses and a
scheduled annual load for each resident about 1200–1400 kWh.

Appliances are distributed according to the following percentages: 99% of
houses have a WM, 70% have a DW and 30% have a TD. There are also some
differences between user habits and families. These are modelled varying the
maximum number of possible daily cycles for each appliance. In particular 40%
of residents will use every appliance no more than once a day, 50% no more than
twice and 10% no more than three times a day. Some exceptions are considered.

The system evolution stabilizes in the presence of perturbative phenomena
on the input parameters, i.e., differences between effective and best ECS. Using
default value of parameters we can reach a mean percentage difference (over the
best load) between the best total load and the effective total load converges to
20% as in Fig. 2 (left).
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Fig. 2. The left plot shows the maximum (blue) and minimum (red) difference in per-
centage (converging to 20 %) between best and effective total load varying the number
of houses. The central plot refers to necessary time to the district to reach a stable
state (3–6 months) and a stable difference between the two loads, compared to the
number of houses. Finally, the right chart is an example of total effective load (red)
and total best load (green) when simulation starts (left) and at its stabilization (right)
(Color figure online).
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Varying the number of houses, the difference between effective and best load
profile stabilizes starting from 100 houses in the district, as shown in Fig. 2
(center). Convergence time varies between 3 and 6 months. Reported values are
the average over 10 simulations with the same number N of homes. Variance is
greater if we consider few houses, while stabilization time increases with N .

5 Conclusions

In this paper we provide a mathematical model and a simulator of an energy dis-
tribution system applied to a residential district. Once end-users compute local
optima in a distributed way, human decisions are modeled and a reputation-
reward mechanism is performed on large numbers. Numerical results prove the
efficiency of our algorithm: on the macroscale with few houses (150) the differ-
ence between best and effective ECS converges to 20%, and with an average
time of 3 months the district stabilizes. Future research may be devoted to
apply Lagrangian Relaxation methods also to the macro time-scale, updating
individual energy prices each day, as a function of the difference between best
and effective ECS. Another advance is to develop asynchronous versions of the
proposed algorithms adapting optimal ECS to asynchronous end-users decisions.

Acknowledgments. Authours would like to thank Ennio Grasso for the scientific
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