
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
P.C. Vinh et al. (Eds.): ICTCC 2014, LNICST 144, pp. 83–97, 2015.
DOI: 10.1007/978-3-319-15392-6_9

Efficient k-Nearest Neighbor Search for Static Queries
over High Speed Time-Series Streams

Bui Cong Giao() and Duong Tuan Anh

Faculty of Computer Science and Engineering,
Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam

giao.bc@cb.sgu.edu.vn, dtanh@cse.hcmut.edu.vn

Abstract. In this paper, we propose a solution to the multi-step k-nearest neigh-
bor (k-NN) search. The method is the reduced tolerance-based k-NN search for
static queries in streaming time-series. A multi-scale filtering technique com-
bined with a multi-resolution index structure is used in the method. We com-
pare the proposed method to the traditional multi-step k-NN search in terms of
the CPU search time and the number of distance function calls in the post-
processing step. The results reveal that the reduced tolerance-based k-NN
search outperforms the traditional k-NN search. Besides, applying multi-
threading to the proposed method enables the system to have a fast response to
high speed time-series streams for the k-NN search of static queries.

Keywords: k-NN search · Streaming time-series · Multi-scale filtering · Multi-
resolution index structure · Static query

1 Introduction

At present, a significant number of real-world applications deal with time-series
streams: performance measurements in network monitoring and traffic management,
online stock analysis, earthquake prediction, etc. The major common characteristic of
these applications is that they are all time-critical. In such applications, similarity
search is often a core subroutine, yet the time taken for similarity search is almost an
obstacle since time-series streams might transfer huge amount of data at steady high-
speed rates. As a result, time-series streams are potentially unbounded in size within a
short period and the system runs out of memory soon. Due to this, if an element of
time-series stream has been processed, it is quickly discarded and cannot be retrieved
so that it yields to a new-coming one. To achieve real-time response, one-pass scan
and low time complexity are usually required for handling streaming time-series.
However, available methods used to manage static time-series are hardly to satisfy the
above requirements because they commonly need to scan time-series database many
times for processing time-series data and often have high time complexity. Therefore,
according to Yang and Wu [1], high-speed data streams and high dimensional data are
the second ranking challenge among ten top challenging problems in nowadays' data
mining. In addition, Fu [2] has recently conducted a review on time-series data
mining and reckoned that mining on streaming time-series is an attractive research

84 B.C. Giao and D.T. Anh

direction. In the scope of this paper, we only focus on pattern discovery by similarity
search in streaming context. That is similarity-based streaming time-series retrieval,
which is to find those streaming time-series similar to a time-series query.

Kontaki et al. [3] summarized that there are three similarity search types extensive-
ly experimented in the literature: range search, k-NN search and join search. Liu and
Ferhatosmanoglu [4] reckoned that applications of streaming time-series might in-
volve two query kinds: static queries that are predefined patterns as well as ad hoc and
streaming queries that are continuously changed. In our previous work [5], we pro-
posed a solution to range search for static queries in streaming time-series. In the
paper, we will address a problem of improving the performance of the multi-step k-
NN search for static queries in streaming time-series. Specifically, we deal with an
important scenario in streaming applications where incoming data are from concur-
rent time-series streams at high speed rates, and queries are a fixed set of time-series
patterns.

The existing multi-step k-NN search method [6] is to achieve a fixed tolerance and
use the tolerance in the whole range query process. As a result, a large number of
candidate sequences are retrieved by a range query with a large tolerance. Too many
candidates incur CPU overheads in the post-processing step and eventually degrade
the overall k-NN search performance. To reduce the number of candidates, we apply a
tolerance reduction-based approach, which improves the search performance by tight-
ening the tolerance of a query when its k-NN set is modified. The approach is similar
in spirit to one suggested by Lee et al. [7]. Our method also uses a multi-resolution
index structure is built on an array of R*-trees [8] that supports the multi-scale filter-
ing in similarity search. The index structure stores features of time-series subsequenc-
es of queries, extracted by any transform that satisfies the lower bounding condition
and has multi-resolution property.

The main contributions of the paper are

• Using a tolerance reduction-based approach in k-NN search for static queries over
high speed time-series streams;

• Adjusting range search in an R*-tree for many queries at a time.

The rest of paper is organized as follows. Section 2 presents supporting techniques
for our approach. Section 3 describes the proposed method. Section 4 discusses exper-
imental evaluation, and Section 5 gives conclusions and future work.

2 Supporting Techniques

The section briefly describes supporting techniques for the proposed method. Some of
the techniques were presented in detail in [5].

2.1 Multi-resolution Dimensionality Reduction Methods

A time-series X of length l might be considered as a point in l-dimensional space. It
would be costly if we perform similarity search directly on the time-series X. There-
fore, X is often transformed into a new space with lower dimensionality.

 Efficient k-Nearest Neighbor Search for Static Queries over High Speed Time-Series 85

We use three common dimensionality reduction transforms: Discrete Fourier
Transforms (DFT) [9], Harr Wavelet Transform (Haar DWT) [10], and PAA [11].
They all satisfy the lower bounding condition and have multi-resolution property.

2.2 Storing Coefficients at Resolutions

Each predefined query is segmented into non-overlapped segments. This makes sure
that segments of queries are filtered continuously and this is suitable for streaming
environment. These segments are normalized and transformed into coefficients by
Haar DWT, PAA, or DFT.

Let denote maxlevel as the maximum level of the multi-resolution structure and l as
the length of a query. We assume that the minimum length of queries is min. A query
is separated into segments: min, 2min, 4min… from backward direction, such that ∃n,
n is largest and min × (2n - 1) ≤ MIN (l, maxlevel × min). Therefore, n is the maxi-
mum level to which the query might be filtered. Fig. 1 depicts the segmentation from
the backward direction of a query.

 0 l-1 remainder
 4min 2min min

Fig. 1. The query segmentation [5]

The number of coefficients must be an integer power of two (2i) since we want to
compare the results of three transform methods: Haar DWT, PAA, and DFT. There is
a maximum value of the number of coefficients; in [5] we recommend the maximum
is 16. The number of coefficients at levels might be different. Assume that min = 8
and maxlevel = 5, we have the number of coefficients as shown in Table 1.

Table 1. Coefficient table

Level Length Number of Coefficients

1 8 2

2 16 4

3 32 8

4 64 16

5 128 16

2.3 Multi-resolution Index Structure

An array of R*-trees is used to store coefficients extracted from query segments. The
index of the array corresponds to the resolution level that filters out the data. For ex-
ample, the coefficients of the first segment (its length is min) of the query are stored

86 B.C. Giao and D.T. Anh

in the first R*-tree of the array (i.e. level 1). The coefficients of the second segment
(its length is 2min) of the query are stored in the second R*-tree (i.e. level 2), etc.
Notice that all static queries share the same array of R*-trees as their index.

2.4 Improved Range Search in R*-tree

R*-tree is an index structure organized as B-tree. It contains hierarchical nodes and
parent (upper) nodes link to their child (lower) nodes. Only leaf nodes refer to spatial
data object. Each node has its own minimum bounding rectangle (MBR). Because we
use R*-tree for point (coefficients of query segments) query, we can have the infor-
mation about whichever points lie in a MBR. The minimum distance hmin from a que-
ry point in a MBR to the margin of the MBR can be calculated after the R*-tree is
constructed.

During the stage of k-NN search, a time-series point is checked to determine
whether the time-series subsequence is a k-NN candidate of a query within its own
tolerance tl. The procedure is done as follows: Firstly, the distance dt from a time-
series point to the MBR is calculated. Next, we consider the query points in the MBR;
if dt < tl, the time-series subsequence might be a k-NN candidate of that query. To
reduce false alarms we additionally note that if dt + hmin< tl then the time-series sub-
sequence is a more probable candidate. Fig. 2 depicts the improved range search in 2-
dimensional space.

Fig. 2. The improved range search for a query point to a time-series point in the 2-dimensional
space

2.5 Data Structures

To simulate data streams, we use a round-robin buffer to contain data points from a
time-series stream. When the round-robin buffer is full, the new-coming element is
put into the position of the oldest one; whereas in case of a common buffer, all ele-
ments of the buffer are forcibly shifted forward to have an available position for the
new-coming one.

 Efficient k-Nearest Neighbor Search for Static Queries over High Speed Time-Series 87

Each query has its own k-NN candidate set. The k-NN candidates of a query have
their distance to the query less than a tolerance. We expect that the tolerance of a
query is the maximum distance in the k-NN candidate set. When a time-series subse-
quence has its distance to the query less than the tolerance, it is added into the k-NN
candidate set. Because time-series streams are potentially unbounded in size, so if the
tolerance is large, the number of candidates in the k-NN set is too numerous and this
incurs memory overflow in the execution of similarity search. For this reason, we
cannot use a common in-memory set to store all candidates that have their distances
less than the tolerance of a query. We propose using a priority queue organized as a
max-heap to keep k candidates of a query. Therefore, the top item in the priority
queue is the time-series subsequence that has the maximum distance to the corre-
sponding query. Another advantage of using priority queues as the k-NN sets of que-
ries is that the system can return the sorted k-NN items of a query at any time, while
in the traditional k-NN search it takes time to sort the final candidates before the k-NN
items are returned. However, using priority queues also costs some time for removing
the top item to yield to a new time-series subsequence whose distance is less.

3 Proposed Method

The k-NN search algorithm consists of three main phases as follows:
Phase 1: Preprocessing

At the beginning of the program, the k-NN sets of all queries are initialized with k
false items whose distances are a maximum value (∞). Let denote NotFullQueryList
as the global list of queries whose k-NN set has still false items; initially the list con-
tains all queries. Also, let kNNinfo be the global list of queries whose entire k-NN sets
contain true items; initially the list is empty.

Next, queries are segmented and normalized. Their coefficients are calculated and
stored in a multi-resolution index structure which is an array of R*-trees. Notice that
segments of predefined queries only need normalizing once in this phase, but seg-
ments of time-series stream have to be normalized at every new-coming data point.
Phase 2: k-NN search

When there is a new-coming data point of a time-series stream, segments on the
streaming time-series are incrementally normalized. Using the incremental data nor-
malization based on z-score [5] enables the method not to compute data normalization
from the scratch. After that, the coefficients of the normalized segments are calculat-
ed. These coefficients are matched with the coefficients of query segments already
stored in the nodes of R*-tree within each tolerance of the queries from the lowest to
upper levels. Fig. 3 illustrates the backward matching of each pair of the coefficients.
This matching step, which applies multi-step filtering, helps to prune unsatisfying
queries. Lastly, the query candidates are checked in the post-processing phase.
Phase 3: Post-processing

For each query candidate, the real distance between the query candidate and the
corresponding piece of streaming time-series is calculated to find a true k-NN item

88 B.C. Giao and D.T. Anh

(time-series subsequence). If a true k-NN item is found, the k-NN set is updated and
the tolerance might be reduced.

Table 2 shows some notations we will use in the following.

Table 2. Frequently used notations

Notation Meaning

q a query sequence

q.kNN the priority queue of q

q.normal the normalized sequence of q

m the number of queries

SortedByToleranceList data structure of lists sorted by descending tolerance

S = {… Tn-2 , Tn-1, Tn} a streaming time-series

si the ith time-series segment of S, i: 0..maxlevel-1
Tn new-coming data at time point n

Tn-1 new-coming data at time point n-1

Fig. 3. Query filter through resolution levels [5]

 Efficient k-Nearest Neighbor Search for Static Queries over High Speed Time-Series 89

The algorithm has two options. Firstly, when the k-NN set of a query is full (that
means all items in the set are real), the tolerance is the maximum distance in the set
and since then, it is not changed. Secondly, when the k-NN set of a query is full, the
tolerance is the maximum distance in the set and it might be changed whenever the set
is updated. We will evaluate the performance of the two options in section 4. The
following pseudo codes illustrate the k-NN search for static queries over a time-series
stream.

Algorithm k-NNSearch(Streaming time-series S)

variables

• SCandidates: a static local list contains candidate queries
whose k-NN sets are full. Its type is SortedByToleranceList.

• SNotFullQueryList: a static local list contains candidate

queries whose k-NN sets are not full.
• postCheckSet: a set of queries for post-processing
• tempList: a query list whose type is SortedByToleranceList
• res: a query candidate list
• dmax: the maximum distance of q.kNN
• s: a corresponding piece of S with a current query

begin

When there is a new-coming data of S: Tn // Phase 2
1. if SCandidates is different from kNNinfo then

2. Copy kNNinfo to SCandidates
3. if |SCandidates| < m then

4. Copy NotFullQueryList to SNotFullQueryList
5. if |SCandidates| > 0 then

6. postCheckSet = ∅
7. tempList = SCandidates
8. for i = 0 to maxlevel - 1
9. res = Searchk-NN(Coef(IncNormalize(si)),tempList,R

*-

tree[i])
10. foreach (Query q in res)
11. if i is the maximum resolution level of q then

12. postCheckSet = postCheckSet ∪ q
13. Remove q from res
14. end foreach

15. if res is empty then
16. break

17. tempList = Sort res by descending tolerances
18. end for

19. foreach (Query q in postCheckSet) // Phase 3

20. d = do(q.normal, Normalize(s))
21. Get dmax from q.kNN

90 B.C. Giao and D.T. Anh

22. if d < dmax then

23. q.kNN.Dequeue
24. q.kNN.Enqueue(s) with d
25. Get dmax from q.kNN
26. Update q and its dmax in kNNinfo
27. end foreach

28. foreach (Query q in SNotFullQueryList) //Phase filling k-NN

sets

29. d = do(q.normal, Normalize(s))
30. q.kNN.Dequeue
31. q.kNN.Enqueue(s) with d
32. Get dmax from q.kNN
33. if dmax < ∞ then
34. Add q and its dmax into kNNinfo
35. Remove q from NotFullQueryList
36. end foreach

end

There are some noticeable issues in the phases of Algorithm k-NNSearch:
- Phase 2: If SCandidates does not contain all queries then NotFullQueryList is

copied to SNotFullQueryList (lines 3-4). Copies (lines 2 and 4) ensure that the algo-
rithm manipulates local resources, not shared global ones. Next, the two static local
resources are SCandidates and SNotFullQueryList considered one by one. Line 9
implies that segments si is incrementally normalized and a coefficient vector is ex-
tracted from the normalized segment; then a k-NN search in the R*-tree of the ith filter
level is performed. Searchk-NN calls Algorithm Searchk-NN with node as the root
node of the R*-tree. The query results are checked (line 11) to create a candidate set
for phase 3. Going through filter levels might ends early if the candidate set for the
next traverse is empty (lines 15-16). Because the return results of the k-NN search in
the R*-tree is not to follows the type of SortedByToleranceList, the results need sort-
ing by descending tolerance for the next filter level (line 17).

- Phase 3: Line 20 implies that the real distance between the normalized query se-
quence, which is calculated beforehand, and the time-series subsequence, which is
normalized at the moment, is performed. As mentioned before, the algorithm has two
options: the reduced tolerance-based k-NN search and the traditional k-NN search.
Lines 25-26 exist for the first option while these codes are omitted for the second
option. It is obvious that when we compare the two options, the execution cost of
lines 2-4 is less in the second option.

- Phase filling k-NN sets: the phase illustrates filling k-NN queues of queries with
real items. If a k-NN queue is full, that means the condition of line 33 is true, the que-
ry information is added into kNNinfo (line 34) and the query is removed out of
NotFullQueryList (line 35).

To support the k-NN search in an R*-tree, the nodes in the index structure need to
include the information of points that lies in the MBR of the nodes. The information
is a list of items whose structure consists of pointID, entryID, and hmin. The list is in

 Efficient k-Nearest Neighbor Search for Static Queries over High Speed Time-Series 91

order of pointID. pointID is the queryID. entryID is ID of the entry that refers to the
child node containing the point. hmin is the minimum distance from the point to the
MBR margin of the node. For example, a node has entrieIDs: 10, 14, 21 and pointIDs:
2, 4, 9, 10, 15, 22, and 35. entryID 10 contains 9 and 22; entryID 14 contains 2, 15,
and 35; and entryID 21 contains 4 and 10. Let node.information be the information of
the points in the node. Fig. 4 illustrates an example of node.information.

pointID 2 4 9 10 15 22 35

entryID 14 21 10 21 14 10 14
hmin 0 1.2 2.3 0 1.5 4.6 2.8

Fig. 4. An illustration of node.information

We note that hmin is 0 if the point lies at the margin of the MBR of the node.
Algorithm Searchk-NN elaborates the function Searchk-NN used in line 9 of Algo-

rithm k-NNSearch. This important algorithm performs the k-NN search of a coeffi-
cient point against a query list, whose type is SortedByToleranceList, on a node of an
R*-tree.

Algorithm Searchk-NN(point, ql, node)

variables

• cl: an array of lists of query candidates in node, which
needs considering in the lower level of the R*-tree. The

indexes of the array are entry IDs of node.
• res: a query candidate list. Initially, res is empty.

begin

1. calculate distance dt between point and the MBR of node
2. if dt = 0 then
3. foreach (item in ql)

4. Get entryID of item from node.information
5. Add item into cl[entryID]
6. end foreach

7. else

8. foreach (item in ql)
9. if dt >= item.tolerance then
10. break

11. Get hmin of item from node.information
12. if dt + hmin < item.tolerance then

13. Get entryID of item from node.information
14. Add item into cl[entryID]
15. end foreach

16. if cl is empty then
17. return res
18. if node is leaf then

92 B.C. Giao and D.T. Anh

19. foreach (item in cl)

20. calculate distance dt between point and the point of
item
21. if dt < item.tolerance then

22. item.tolerance = item.tolerance - dt;
23. Add item into res
24. end foreach

25. else // internal node

26. foreach (SortedByToleranceList el in cl)

27. child is a child node of node, entryID of el refers to
child
28. Add results of Searchk-NN(point,el,child) to res
29. end foreach

30. return res
end

We have some notes about Algorithm Searchk-NN:
In the first stage, if the condition in line 2 is true, that means the point lies in the

MBR or at the margin of the MBR, an array of lists of query candidates is created
from items of ql (line 5). Otherwise, if distance dt is larger than the tolerance of an
item (query), the loop ends early because surely this item and the remaining items are
not candidates (lines 9-10). If not, an additional check is performed to make sure that
item is a candidate (see more in section 2.4). If the condition in line 12 is true, item is
added to the list that is identified by the entryID of item (lines 13-14). At the end of
the stage, if the array of lists of query candidates does not have any item, the algo-
rithm ends early (line 17).

In the second stage, if node is leaf, entries of node refer to point objects (coeffi-
cient vectors). If the condition in line 21 is true, item is a candidate of the k-NN set
(line 23). The tolerance of item is reduced by distance dt for the next filter level (line
22). If node is not a leaf, each list in array cl has an entryID as the index of the list and
the entry refers to a child node (line 27). The algorithm is called recursively again and
the results are added into res (line 28).

The process of the k-NN search must begin from the root node. So the function
Searchk-NN (Algorithm Searchk-NN) should be invoked at the first time by the fol-
lowing statement: Searchk-NN(point, ql, Index-tree.root).

To clarify the structure of ql and cl, we reconsider the example in Fig. 4. Fig. 5 is
an example of ql and Figure 6 is one of cl.

pointID 15 10 2 35 9 entryID 14 10

tolerance 16.5 12.2 8.7 0.4 0.1

 pointID tolerance pointID tolerance
 15 16.5 9 0.1
 2 8.7

Fig. 5. An illustration of ql

Fig. 6. An illustration of cl

 Efficient k-Nearest Neighbor Search for Static Queries over High Speed Time-Series 93

4 Experimental Evaluation

In this section, we present experiments on the proposed method and the traditional k-
NN search method, and evaluate the performance of the system. All experiments have
been conducted on an Intel Dual Core i3 M350 2.27 GHz, 4GB RAM PC.

To take advantage of the strength of today’s CPU and due to the characteristic of
the search method, we use multi-threaded programming. Each threading process han-
dles one time-series stream to implement Algorithm k-NNSearch. For simplicity, all
threading processes have the same priority. The programming language used in this
work is C# since the language is powerful for multi-threading. Because threading
processes can compete to update the same global resources (e.g. k-NN sets) at a time,
the system must lock the shared resources before updates can be done. However, this
technique degrades the performance of the system. To mitigate the problem, locks for
update must occur as quickly as possible by optimizing update operations.

We used ten text files containing the time-series datasets that are input for ten time-
series streams. The sources of the datasets are given in column 4 of Table 3. One
thousand text files created from ten above datasets play a role of static queries. The
number of queries created from a dataset is proportional to the number of points in
the text file that simulates the dataset. The size of the queries varies from 8 to 256.
The number of filter levels is 5 for these queries. Level 1 can filter queries whose
lengths are greater than or equal to 8. Level 2 can filter queries whose lengths are
greater than or equal to 24, and so on. The total number of data points in the queries is
133,771. Other parameter setting in the experiments is as follows. Buffer length of
each time-series stream is 1,024. R*-tree has the setting: m = 4 and M = 10.

Table 3. Text files used to simulate time-series streams

No Datasets Number of Points Source

1 carinae.txt 1,189 [12]

2 D1.txt 8,778 [13]

3 D2.txt 50,000 [13]

4 darwin.slp.txt 1,400 [12]

5 eeg7-6.txt 3,600 [12]

6 Hawea-91757.txt 7,487 [14]

7 infraredwave.txt 4,096 [13]

8 lightcurve.txt 27,204 [13]

9 Pukaki-877571.txt 7,487 [14]

10 wirewave.txt 4,096 [13]

 Total points 115,337

We have implemented experiments to compare the reduced tolerance-based k-NN
search to the traditional k-NN search. The criteria for comparing the two approaches

94 B.C. Giao and D.T. Anh

are the CPU search time and the number of distance function calls in post-processing
step of Haar DWT, PAA, and DFT. The parameter k is from 1 to 3.

Fig. 7. CPU search times of k-NN search for the two methods

Fig. 7 shows the first approach is better than the second one in the CPU search
time. For the first method, the CPU search time has increasing tendency when k in-
creases and the CPU search time of Haar DWT is largest and that of DFT is least. As
for the second method, the CPU search times of three dimensionality reduction trans-
forms are nearly the same.

Fig. 8. The number of distance function calls in the post- processing step for the two methods

Fig. 8 shows that in the post-processing step, the first approach has the number of
distance function calls less than the second does. For the first approach, the number
increases when k increases and DFT has the least number and Haar DWT has the
largest one. However, in the second approach, these numbers are almost the same
thought k increases.

 Efficient k-Nearest Neighbor Search for Static Queries over High Speed Time-Series 95

From Fig. 7 and Fig. 8 we can conclude that although the tradition k-NN search
does not change tolerances, (that means the locking time for the global resource
(kNNInfo) is less than our approach), tolerances in this approach are often large and
the number of distance function calls in the post-processing step is too much. This
degrades the overall performance.

We have already implemented the k-NN search method without multi-threading; in
the case, the system only has a process to scan time-series streams sequentially for
handling new-coming data points, whereas the proposed method has every threading
process for a time-series stream. Fig. 9 shows the average CPU times for processing a
new-coming data point over the ten time-series streams with k varying from 1 to 10 in
case of the system handling time-series streams sequentially. We note that when k in-
creases, in general, the average CPU times of the dimensionality reduction transforms
also increase. With each k-NN search, the average CPU time of DFT is least, while that
of Haar DWT is largest; the average CPU time of PAA is slightly larger than that of
DFT.

Fig. 9. The average CPU times for processing a new-coming data point when the system
handles time-series streams sequentially

Since the proposed method processes time-series streams simultaneously, the per-
formance of the system is improved significantly. The average CPU times for pro-
cessing a new-coming data point of the system are slightly small in case of the system
handling time-series streams simultaneously. For the 1-NN search, the average CPU
time of DFT in Fig. 9 is 18 milliseconds, while in Fig. 10 the value is only 3 millisec-
onds. For the 5-NN search, the average CPU time of PAA in Fig. 9 is 25 milliseconds,
while in Fig. 10 the value is about 6 milliseconds. For 10-NN search, the average
CPU time of Haar DWT in Fig. 9 is 38 milliseconds, while in Fig. 10 the value is
10 milliseconds. Therefore, multi-threaded programming as a whole offers dramatic
improvements in speed (up to roughly 4 times) over traditional programming. The
comparison demonstrates the usability of multi-threading to proposed method for
real-time applications that need perform k-NN search for static queries over time-
series streams at high-speed rates.

96 B.C. Giao and D.T. Anh

Fig. 10. The average CPU times for processing a new-coming data point when the system
handles time-series streams simultaneously

5 Conclusions and Future Work

We have introduced an efficient method to the multi-step k-NN search for static que-
ries over streaming time-series. In the method, the tolerance of each query is reduced
when the maximum distance from that query to the top item in its k-NN queue is re-
duced. Moreover, in order to make the approach meaningful, we carry out the incre-
mental data normalization before the k-NN search. A salient feature of the proposed
method is using multi-scale filtering technique combined with a multi-resolution in-
dex structure that are an array of R*-trees. In the range step of k-NN search, the meth-
od introduces improved range search by including the information of point objects in
nodes of R*-trees, and range search for many queries can be performed simultaneous-
ly. The experimental results show that for static queries in streaming time-series, the
reduced tolerance-based k-NN search outperforms the traditional k-NN search. Finally
yet importantly, with the proposed method, we have recorded the average CPU times
for processing a new-coming data point of in case of the system handling time-series
streams sequentially, and in case of the system handling time-series streams simulta-
neously. The results show multi-threading makes the approach increase approximate-
ly 4 times in speed. From the extensive experiments, the proposed method combined
with multi-threading presents a fast response to process high-speed time-series
streams for k-NN search of static queries.

As for future work, we plan to adjust the proposed method to handle k-NN search
for streaming queries in high-speed streaming time-series.

 Efficient k-Nearest Neighbor Search for Static Queries over High Speed Time-Series 97

References

1. Yang, Q., Wu, X.: 10 challenging problems in data mining research. International Journal
of Information Technology and Decision Making (2006)

2. Fu, T.-C.: A review on time series data mining. Journal of Engineering Applications of
Artificial Intelligence (24), 164–181 (2011)

3. Kontaki, M., Papadopoulos, A., Manolopoulos, Y.: Adaptive similarity search in streaming
time series with sliding windows. Data and Knowledge Engineering 16(6), 478–502
(2007)

4. Liu, X., Ferhatosmanoglu, H.: Efficient k-NN search on streaming data series. In:
Hadzilacos, T., Manolopoulos, Y., Roddick, J., Theodoridis, Y. (eds.) SSTD 2003. LNCS,
vol. 2750, pp. 83–101. Springer, Heidelberg (2003)

5. Giao, B., Anh, D.: Efficient similarity search for static queries in streaming time series. In:
Proceedings of the 2014 International Conference on Green and Human Information Tech-
nology, HoChiMinh City, pp. 259–265 (2014)

6. Korn, F., Sidirapoulos, N., Faloutsos, C., Siegel, E., Protopapas, Z.: Fast nearest neighbor
search in medical databases. In: Proceedings of the 22nd International Conference on Very
Large Data Bases, Bombay, India, pp. 215–226 (1996)

7. Lee, S., Kim, B.-S., Choi, M.-J., Moon, Y.-S.: An approximate multi-step k-NN search in
time-series databases. Advances in Computer Science and its Applications 279, 173–178
(2014)

8. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-tree: an efficient and
robust access method for points and rectangles. In: ACM SIGMOD International Confer-
ence on Management of Data, Atlantic City, New Jersey, USA, pp. 322–331 (1990)

9. Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence databases.
In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer, Heidelberg
(1993)

10. Chan, K.-P., Fu, A.: Efficient time series matching by wavelets. In: Proceedings of the
15th IEEE International Conference on Data Engineering, pp. 126–133 (1999)

11. Keogh, E., Chakrabarti, K., Mehrotra, S., Pazzani, M.: Locally adaptive dimensionality
reduction for indexing large time series databases. In: Proceedings of the 2001 ACM
SIGMOD International Conference on Management of Data, pp. 151–163 (2001)

12. West, M.: http://www.isds.duke.edu/~mw/data-sets/ts_data/ (accessed December 2013)
13. Weigend, A.: Time series prediction: Forecasting the future and understanding the past.

http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe.html (accessed December
2013)

14. Group, M.: Electricity Authority’s market data and reporting portal. ftp://ftp.emi.ea.govt.
nz/Datasets/ (accessed December 2013)

	Efficient k-Nearest Neighbor Search for Static Queries
over High Speed Time-Series Streams
	1 Introduction
	2 Supporting Techniques
	2.1 Multi-resolution Dimensionality Reduction Methods
	2.2 Storing Coefficients at Resolutions
	2.3 Multi-resolution Index Structure
	2.4 Improved Range Search in R*-tree
	2.5 Data Structures

	3 Proposed Method
	4 Experimental Evaluation
	5 Conclusions and Future Work
	References

