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Abstract. In modeling multi-agent systems, the structure of their com-
munication is typically one of the most important aspects, especially for
systems that strive toward self-organization or collaborative adaptation.
Traditionally, such structures have often been described using logic-based
approaches as they provide a formal foundation formany verificationmeth-
ods. However, these formalisms are typically not well suited to reflect the
stochastic nature of communication in a cyber-physical setting. In partic-
ular, their level of abstraction is either too high to provide sufficient accu-
racy or too low to be practicable in more complex models. Therefore, we
propose an extension of the logic-based modeling language SALMA, which
we have introduced recently, that provides adequate high-level constructs
for communication and data propagation, explicitly taking into account
stochastic delays and errors. In combination with SALMA’s tool support
for simulation and statistical model checking, this creates a pragmatic app-
roach for verification and validation of cyber-physical multi-agent systems.

Keywords: Statistical model checking · Cyber-physical systems · Situ-
ation calculus · Discrete event simulation

1 Introduction

With SALMA (Simulation and Analysis of Logic-Based Multi-Agent Systems)
[2], we have recently introduced an approach for modeling and analysis of multi-
agent systems that is aimed to provide a lightweight solution for approximated
verification through statistical model checking [4] with the system model still
being grounded on a rigorous formal foundation. SALMA’s modeling language
is based on the well-established situation calculus [7], a first-order logic language
for describing dynamical systems.

In this paper, we provide an extension of SALMA (and the situation calcu-
lus in general) to explicitly address one aspect that is particularly important
for cyber-physical multi-agent systems, namely the distributed gathering and
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transfer of information. Agents not only have to continuously sense their envi-
ronment, but also share these readings with other agents, acquire information of
others, and participate in coordination activities. In the cyber-physical context,
these information transfer processes are subject to stochastic effects, e.g. due to
sensor errors or unreliable communication channels. Furthermore, accuracy and
timing of information transfer processes can strongly influence the behavior of
the whole system. In particular, the efficacy of mechanisms for self-adaptation
or optimization typically degrades when certain time-constraints are violated or
the accuracy of sensors is insufficient.

Using pure logical formalisms like the basic situation calculus for describ-
ing such scenarios results in rather verbose and low-level representations that
are not practicable in more complex cases. What is needed instead are high-
level constructs that establish a bridge between the underlying logical semantics
and the typical requirements for modeling information transfer in multi-agent
CPS. Although higher-level extensions on top of the situation calculus have been
designed for related aspects like sensing and knowledge (e.g. [9]), there has, to
our knowledge, not been a detailed reflection of information propagation in CPS
in the context of the situation calculus.

We have therefore developed a generic model of information transfer that is
based on a stochastic timed version of the situation calculus and allows capturing
a wide range of effects that may be imposed on information transfer processes.
Additionally, we have defined a set of macro-like abstractions for common infor-
mation transfer scenarios within CPS, such as message passing or sensor data
propagation. This creates a concise interface for the modeler that hides the
stochastic details of information propagation but makes them fully accessible in
simulation and verification. The following sections introduce both the generic
model and the high-level language and demonstrate their use by means of an
example.

2 Example: Optimized Parking Lot Assignment

As a running example to illustrate our approach, we employ the e-mobility case-
study of the ASCENS EU project1 that has been described before, e.g., in [1].
The case study focuses on a scenario in which electric vehicles compete for park-
ing lots with integrated charging stations (PLCS) in an urban area. The goal is
to find an optimal assignment of PLCS to vehicles. Technically, the assignment is
performed by an agent called super-autonomic manager (SAM) that coordinates
a number of PLCS. The basic idea is that vehicles send assignment requests to
the SAM, including a start time, a duration, and a list of preferred PLCS that
is compiled by the vehicle’s on-board computer. The SAM tries to find optimal
suggestions for parking lot assignments, based on the knowledge about driver’s
intentions, and on occupancy information that is sent repeatedly by the PLCS.
1 www.ascens-ist.eu

www.ascens-ist.eu
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True to the distributed CPS principle, all the agents (vehicles, PLCS, SAM)
are autonomous and communicate via some wireless data transmission infras-
tructure like a VANET or 3G/4G network. This implies that neither transmission
delays nor the possibility of errors can be neglected. However, timing clearly plays
an important role in the scenario described above. First of all, the reservation
service would simply not be accepted if the delay between reservation requests
and reservation responses was too high. Also, the communication timing affects
the convergence of the optimization, thus directly it influences the functionality
of the distributed CPS.

3 Background: Situation Calculus

The situation calculus [7] is a first-order logic language for modeling dynamic
systems. Its foundation is based on the notion of situations, which can be seen as
histories of the world resulting from performing action sequences. The state of the
world in a given situation is defined by the set of all fluents, which are situation-
dependent predicates or functions. Since the models discussed here are meant to
be used in discrete event simulation, time itself is simply modeled as an integer
fluent named time that is increased with each simulation step. How other fluents
are affected by actions and events is defined by successor state axioms (SSAs).
Additionally, a situation calculus model also contains precondition axioms that
define whether or not an action or event is possible in a given situation. Actions
can either be deliberately executed by agents or exogenous, i.e. external events
caused by the environment. In general, both the effects of actions and events, and
also the occurrence of exogenous actions, are of stochastic nature. Consequently,
simulation involves sampling from a set of probability distributions that the
modeler can define as part of the simulation’s configuration (cf. section 6).

One of the most prominent applications of the situation calculus is GOLOG
[5], a language that combines elements from procedural with logic programming.
It has been used for modeling and implementation in various domains, ranging
from robotics to the semantic web. In particular, GOLOG’s core principles have
strongly inspired the SALMA approach, which is introduced in the next section.

4 The SALMA Approach

In [2], we introduced SALMA (Simulation and Analysis of Logic-Based Multi-
Agent Systems), an approach that adapts the concepts of the situation calculus
and GOLOG for discrete event simulation and statistical model checking. The
approach is outlined in Figure 1. The domain model, i.e. the general mecha-
nisms of the simulated world, is described by means of situation calculus axioms
that are encoded in Prolog. Based on this axiomatization, the modeler defines
the behavior of the agents in the system with a Python-based procedural lan-
guage that provides access to the situation calculus model. Finally, a concrete
simulation model instance is created by defining initial values and probability
distributions for stochastic actions and events.
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Fig. 1. Overview of the SALMA Approach

In addition to the system model, a set of invariants and goals can be specified
with a language that is mainly a first-order version of linear temporal logics
(LTL) with time-bounds for the temporal modalities. Since the simulated system
model is also described by means of first-order logics, the property specification
language is able to provide a very detailed and direct access to the system’s state
(i.e. fluents), actions, and events.

Given the system model together with invariants and goals, the SALMA
interpreter performs discrete event simulations. For each simulation run, the
engine eventually decides whether it satisfies the given properties or not. The
set of resulting verdicts yields a Bernoulli sample that is used to test the statis-
tical hypothesis H0 : p ≥ P0 which asserts that the probability of a success (a
run fulfills the property) is at least as high as a given lower bound. By using the
sequential probability ratio test (SPRT) by A. Wald [10], the number of required
simulation runs for given statistical error bounds can be determined dynamically.
This way of approximative assertion of properties defined by temporal logics is
generally called statistical model checking [4] and provides a pragmatic alter-
native to exact model checking techniques that does not suffer from the same
scalability problems since only individual simulation runs are inspected instead
of the complete state space.

5 A Generic Model for Information Transfer

In order to use SALMA for analyzing scenarios like the one described in Section 2,
concepts like sensing and communication have to be mapped to SALMA’s mod-
eling language framework. As a first step, we propose a generic model for infor-
mation transfer in the situation calculus. This model is able to describe both
sensing and inter-agent communication in a unified way and allows capturing
stochastic effects with a variable level of detail.

In general, our approach is based on the notion that information is trans-
ferred from a source fluent to a destination fluent that is directly accessible by
the receiving agent. The source fluent can either represent a feature of the phys-
ical world or data created by some artificial process, e.g. a message queue. A
connector defines modalities of an information transfer process, including the
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Fig. 2. General Information Transfer Model

fluent endpoints and the types and roles of participating agents. The messages
that are transmitted over connectors are treated as first-level model citizens by
representing them as entities of the dedicated sort Message. Both the content
and the state of each message are stored separately by a set of fluents and evolve
independently as result to several types of events. This representation provides
great flexibility for the realization of arbitrary propagation structures. However,
it requires that message entities can be created and removed dynamically as
effect to actions and events. Unlike traditional realizations of the situation cal-
culus, SALMA supports this by using a special (meta-)fluent domain(sort) to
store the sets of entities that manifest the current domains of all sorts in the
model. Creation and destruction of entities can therefore be controlled through
regular successor state axioms.

Based on the foundational concepts described above, we distinguish two
phases of information transfer that are sketched in Figure 2:

a) The preparation phase starts when an agent (a1 in Figure 2) executes a
transfer request action, specifying a connector (c) and a parameter vector ( #»x )
that fully qualifies the information source and, in case of a point-to-point trans-
mission, contains the identity of the receiving agent. In response to this action,
a new message (m) is created and initialized with the transfer metadata but
without content yet. Depending on the concrete scenario, there can be various
reasons for the actual transfer being delayed, e.g. initialization of sensors or
communication devices. This means that there may be an arbitrary sequence
of time steps (tick events) interleaved with actions and events (denoted as τ in
Figure 2) that may change the information source (f) but are not recognized
by the agent. After that sequence, the actual value that is eventually used as
message content can deviate from the information source value present at the
time when the transfer was initiated.
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b) The transfer phase follows the preparation phase and begins when a
transferStarts event occurs. At that point, the current value of the source
fluent f is fixated as the content of the message that is now actually trans-
ferred to its destination over the connector c whose stochastic characteristics
are specified within the simulation model. Like above, this phase may take an
arbitrary amount of time during which unrecognized or unrelated actions and
events occur. Eventually, a transferEnds event finishes the transfer process.
Thereupon, the destination fluent instance g(a2,

#»x ) is updated and the message
entity is removed. This moment, as well as the starting points of both phases,
are memorized in timestamp fluents that can, for instance, be used to reason
about the age of a measurement.

The diagram in Figure 2 omits the fact that, due to malfunctions and dis-
turbances in the environment, the transfer could fail at any time, which would
be represented by an additional event transferFails. Additionally, the transfer
process may be affected by stochastic errors that eventually cause the received
value to deviate from the original input, which is reflected by the error terms ε1
and ε2 in the events transferStarts and transferEnds.

In general, both stochastic errors and delays are governed by a set of prob-
ability distributions that are used during simulation to decide when the events
mentioned above occur and which errors they introduce. By adjusting these
parameters, a wide variety of different scenarios can be modeled, ranging from
nearly perfect local sensing to wireless low-energy communication with interfer-
ences. The simulation engine supports probabilistic sampling both in an antic-
ipatory and in a momentary way. In the first case, a random value is sampled
in advance to set the time for which the corresponding event will be scheduled.
By contrast, in momentary sampling mode, the effective delay is generated by
stochastically choosing in each time step, whether the event should occur or not.
While the second approach obviously increases computational effort, it is typi-
cally better suited for capturing highly dynamic effects, e.g. when the position
of a moving agent has significant impact on communication quality.

6 A High-Level Modeling Language for Information
Transfer Processes

To turn the generic information transfer model to a practical solution for mod-
eling real-size systems, we provide high-level constructs that reflect the way a
modeler normally thinks about information transfer processes in a CPS. These
constructs can be seen as macros that are internally mapped to situation cal-
culus axioms, agent process fragments, and probability distributions. How the
variation points of the generic model are resolved depends largely on the type of
information transfer that is modeled. In particular, we distinguish the following
two core concepts:

Channel-Based Communication: an agent actively sends data to one or sev-
eral other agents. The well-known channel paradigm fits well to the asynchronous
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communication style predominant in CPS and to the relational way of identifying
information in the situation calculus.
Gerneralized Sensing: an agent acquires information about a feature of the
world that can be assessed through sensing. In the case of direct (local) sensing,
the querying agent can produce the desired result on its own, although the
sensing process may take a considerable amount of time and can be disturbed
by internal or external factors. Remote sensing, on the other hand, makes
it possible to observe features that are not directly reachable by local sensors
but have to be gathered from one or several other agents. The remote sensing
abstraction reflects the delays and disturbances of the involved communication
processes but abstracts away their technical details.

6.1 Usage of High-Level Constructs

SALMA’s high-level language support for communication and generalized sens-
ing spans across several sections of the model. First, all connector types for
sensors and channels are declared in the domain model. As an example, the
parking lot assignment model contains the following lines:

channel(assignments, v:vehicle, sam:sam).
sensor(freeSlotsL, plcs, freeSlots).
remoteSensor(freeSlotsR, sam, freeSlotsL, plcs).

Here, assignments is defined to be a type of channel over which agents of
the sort vehicle can communicate directly with agents of the sort sam in order
to request and receive a PLCS assignment. Each channel declaration actually
specifies two roles, whose names are given on the left of the colons, that agents
can play within the communication. The sensors of type freeSlotsL allow PLCS
agents to count the current number of free slots at their station, i.e. access the
fluent freeSlots. This information is propagated to the SAM via remote sensors
of type freeSlotsR that effectively install unidirectional channels and periodic
background processes at each SAM and PLCS agent which transmit and receive
the content of freeSlotsL, respectively.

With the necessary declarations in place, the communication and sensing
infrastructure can be used in agent processes by means of several special state-
ments of the SALMA process definition language. As an example, the following
lines appear in the definition of the main SAM process that handles incoming
requests from vehicles, calculates optimal assignments, and sends them back to
the vehicles:

Receive("assignments", "sam", SELF, vehicle,
req), Assign(resp, optimizeAssignments, [req]),
Iterate(resp, (v, p), Send("assignments", "sam",
v, "v", ("aresp", p)))

First, all available assignment requests are retrieved from the agent’s incom-
ing message queue with a call to Receive which stores a message list in the
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variable req. The actual assignment optimization logic is integrated by means of
an external Python function optimizeAssignments that is not shown here due
to space limitations. Through the Assign statement, the function is called with
the received request list as a parameter and the function’s result is stored in the
variable resp. One of the most important inputs for this optimization is cer-
tainly the number of free slots at each PLCS. This information is made available
by the remote sensor freeSlotsR from above that transparently gathers occu-
pancy information from all PLCS. The result of optimizeAssignments, stored
in resp, is a list of tuples that assign each requesting vehicle to a PLCS. The
agent process iterates over this list and sends the PLCS id to each corresponding
vehicle.

6.2 Predicate-Based Addressing

An important concern that arises in modeling multi-agent information propaga-
tion is how the set of receiving agents is determined. In many cases, it is either
impossible or impracticable to do this statically. A particularly elegant alterna-
tive, supported by SALMA, is predicate-based addressing [3]. In this approach,
the set of recipients for each information transfer is determined by a characteris-
tic ensemble predicate that is evaluated for each (properly typed) agent pair. An
ensemble predicate may describe intentional selection criteria as well as intrin-
sic constraints imposed by agent attributes or the environment. For instance,
the channel declaration from Section 6.1 could be accompanied by the follow-
ing predicate that declares that assignment requests issued by vehicles are only
received by SAM agents within a given maximal communication range:

ensemble(assignment, Vehicle, SAM, S) :-
distance(Vehicle, SAM, D, S), D <max_comm_dist.

7 Statistical Model Checking for Information Transfer

Once a system model has been created and configured in the way described
above, SALMA’s statistical model checker can be used to approximately assert
system properties based on simulation results (cf. Section 4). SALMA’s property
specification language provides deep access to all elements of the communication
and sensing processes. This allows direct reasoning about various aspects that
are particularly important in CPS. For instance, the following invariant requires
that when any vehicle agent sends an assignment request to the SAM, it will not
take longer than 55 time units until a target PLCS has been set:

forall(v:vehicle,
implies(messageSent(assignments, v, ?, ?, ?, ?),

eventually(55, currentTargetPLCS(v) \= none)))

Here, messageSent is a predicate that is true when the message has been sent
in the current time step and eventually is the time bounded version of the well-
known temporal operator. The question marks serve as wildcard arguments for
pattern matching, applied here to the recipient and arguments of the message.
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As another example, the next invariants define for all entries of the remote
sensor freeSlotsR a maximum value age of 10 time units and a maximum
deviation of 1 from the original sensor freeSlotsL:

forall([s:sam, p:plcs], age(freeSlotsR, [s, p]) =<10)
forall([s:sam, p:plcs], abs(freeSlotsR(s, p) - freeSlotsL(p)) =<1)

8 Experiments and Preliminary Evaluation

In order to test the presented approach and its integration in the SALMA toolkit,
we implemented a reduced version of the scenario introduced in Section 2. It con-
tains only a simple mock-up version of the optimization mechanism but realizes
the full communication structure according to the approach presented in this
paper. Both the SALMA toolkit and the model are available at the SALMA
website2. By varying parameters and replacing the Python optimization func-
tion, different optimization schemes can be tested and the impact of factors like
delays or transmission errors can be analyzed. A detailed evaluation of the model
is still ongoing and beyond the scope of this paper. However, first experiences
show that our information transfer model is well applicable also for complex
communication scenarios. In particular, our proposed declarative high-level lan-
guage has proven to be able to significantly improve clarity and conciseness of
the model. For instance, the declarative part related to communication and sens-
ing in the model mentioned above requires only about 30 lines in the style of the
examples in Section 6.1. In contrast, the corresponding part of a functionally
equivalent model that employs a direct axiomatization instead of the high-level
abstractions, contains 15 fluents and 21 actions and events together with their
associated axioms, which requires more than 200 lines of Prolog code.

9 Related Work

Information in the situation calculus has traditionally been viewed from an epis-
temic perspective, i.e. as knowledge that agents gain through (communication)
actions. In [6], the epistemic model has been extended to model inter-agent
communication by means of channels in a similar way as in our model described
above. However, neither time nor stochastic effects are covered. In contrast to
that, the approach presented in [8] combines the epistemic model with time
and concurrency and allows reasoning about time-related aspects like the age
of measurements. Unlike the approaches mentioned above, our model does not
consider knowledge in the epistemic sense but leaves the interpretation of trans-
ferred information to the agent processes. While we think that this perspective
is better suited in the particular context of cyber-physical systems, it would be
possible to combine both views in a straight-forward way.

In [3], the authors introduce a stochastically timed process calculus that
is centered around predicate-based communication. Like our model, the most
2 www.salmatoolkit.org

www.salmatoolkit.org
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detailed semantical variant they describe distinguishes between a preparation
and a transmission phase and allows assigning separate probability distributions
for delays and errors to each of them. However, since the semantics is based
on continuous time markov chains (CMTC), only exponential distributions can
be used and delays or errors are effectively determined at the start of each
phase. This can be too coarse-grained in very dynamic situations, e.g. when the
movement of agents has significant effect.

10 Conclusion

We have presented a new logic-based approach for modeling channel-based com-
munication, sensing, and other kinds of information transfer within cyber-physical
multi-agent systems. The proposed high-level language provides means to embrace
the stochastic nature of these systems, like transmission delays and errors. At the
same time it has a precise formal semantics based on the first-order logic situa-
tion calculus. Therefore, it can be integrated in existing logic-based approaches
for verification and validation, in particular SALMA, a framework for simulation
and statistical model checking we have introduced earlier in [2]. A major advantage
of this combination is that SALMA’s property specification language, based on a
first-order temporal logic, allows fine-grained reasoning about the inner details of
information transfer processes.

First experiences show that our approach offers great flexibility with respect
to the level of detail and accuracy with which both the system model and cor-
responding requirements are formulated. Altogether, we hope that, in the long
run, SALMA will contribute to making verification and validation practicable
for self-adaptive cyber-physical multi-agent systems.
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