
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
P.C. Vinh et al. (Eds.): ICTCC 2014, LNICST 144, pp. 33–41, 2015.
DOI: 10.1007/978-3-319-15392-6_4

Autonomic Computing Software
for Autonomous Space Vehicles

Carlos C. Insaurralde1 and Emil Vassev2()

1 Institute of Sensors, Signals and Systems, Heriot-Watt University, Edinburgh
EH14 4AS, UK

c.c.insaurralde@hw.ac.uk
2 Lero–the Irish Software Engineering Research Centre, University of Limerick,

Limerick, Ireland
emil.vassev@lero.ie

Abstract. Current space missions increasingly demand more autonomy in con-
trol architectures for Unmanned Space Vehicles (USVs), so unmanned long-
term missions can be afforded. Continuous assurance of effective adaptation to
unpredictable internal and external changes, along with efficient management
of resources is essential for such requirements. One of the attractive solutions is
that inspired by the physiology of living systems, where self-regulation helps to
achieve continuous adaptation to the environment by changing internal condi-
tions. The physiological functions are performed by nervous system reflexes
that are the foundations for self-regulatory mechanisms such as homeostasis.
Building artificial self-regulation similar to biological ones into USVs makes
them highly-viable and ultra-stable in order to support very long missions. This
paper presents aspects of how to endow USVs with Artificial Nervous Reflexes
(ANRs) by means of applying physiological principles of self-regulation to the
USV's control architecture, so resilience and persistence can be supported. A
case study of a composite orbiter is presented. The studied ANRs are needed to
guarantee the self-regulation of response time (latency), operation temperature
(thermoregulation), and power consumption (energy balance). Results from a
cross-checked analysis of the above self-regulation mechanisms are also pre-
sented.

1 Introduction

The technological evolution of Unmanned Space Vehicles (USVs) is making them
progressively more sophisticated by increasing the complexity of their structural con-
trol architecture (e.g., integration of multiple capabilities for robotic exploration of
very large and hostile areas in planet surveys), and the degree of behavioral autonomy
(e.g., non-stop operation supporting in-service adaptation to expected and unexpected
situations). The main challenge in dealing with the above systems involves the con-
tinuous assurance of effective adaptation to unpredictable internal and external
changes, and efficient management of resources. One of the attractive inspirations for
tackling these issues is that provided by the physiology of living systems, in particu-
lar, auto-configuration, auto-reproduction, and auto-regulation abilities. These self-

34 C.C. Insaurralde and E. Vassev

adapting capabilities endow organisms with resilience having the vital goal of surviv-
ing. The self-adaptation is inspired by the physiological functions performed by sin-
gle/multi-operational combination of nervous system reflexes. It is able to support
autonomic management and persistent sustainment (including self-maintenance and
self-suitability) in order to make systems more viable and stable. Resilient operation
is a qualitative aspect supported by highly-viable and ultra-stable control engineering
systems. Applying this system quality to USVs means that they can know how to
regulate themselves internally to cope with different external operational conditions.
The implementation of this self-management in USVs is rather a very complex devel-
opment task that requires concurrent control architecture.

The motivation of this research work is to propose a physiologically-inspired con-
trol approach for USVs by endowing them with well-defined self-regulatory capabili-
ties to persist (even in adverse conditions), i.e., reflex-driven homeostasis properties
as in living systems. By means of homeostasis, a system regulates its internal envi-
ronment and tends to maintain a stable and constant condition regarding the external
environment.

This paper presents aspects of how to endow USVs with Artificial Nervous Re-
flexes (ANRs) by means of applying physiological principles of self-regulation to the
USV Control Architecture, so resilience and persistence can be supported. The archi-
tectural approach is realized on the basis that autonomy requirements for USVs are
satisfied. A case study based on orbiters for the BepiColombo Mission to Mercury [1]
is presented. The ANRs, studied in this paper for those orbiters, are needed to guaran-
tee the self-regulation of response time (latency), operation temperature (thermoregu-
lation), and power consumption (energy balance).

The rest of the paper is structured as follows. Section 2 presents a review of fun-
damental biology concepts and related work. Section 3 presents the Autonomic Sys-
tem Specification Language (ASSL) used in this project to specify the ANRs. Section
4 presents a case study based on the BepiColombo Mission where an algorithm of
ANRs for the mission's orbiters is proposed. Section 5 presents our experiments and
results. Finally, the last section presents concluding remarks and directions for future
work.

2 Related Work

The nervous system has neural pathways named reflex arcs that control reflex actions
in order to implement regulatory functions. Reflex arcs are divided into two types:
somatic reflex arcs and autonomic reflex arcs. The former are reflexes from SNS
classified as withdrawal, stretch, and extra-pyramidal reflexes. The latter are from the
ANS classified as autonomic reflexes. Same examples of reflexes are [2]:

• Withdrawal Reflexes, e.g., pain impulses initiated by touching a very hot sur-
face with the finger.

• Stretch Reflexes, e.g., the knee jerk; the sensory nerve endings in the tendon
and the thigh muscles are stretched by tapping the tendon just below the knee
when it is bent.

Autonomic Computing Software for Autonomous Space Vehicles 35

• Extra-pyramidal (Upper-Motor) Reflexes, e.g., maintenance of upright neck
and head where many muscles are contracting in a coordinated manner.

• Autonomic Reflexes, e.g., the self-regulation of the cardiovascular functions
such an increase of the heart rate to increasing blood pressure.

Homeostasis is the property of a system to maintain stable its condition regarding the
external environment by regulating its internal environment.

Major pioneering research is focused on mobile robots as an excellent test-bed for
research on Autonomic Computing (AC) [3] and Organic Computing (OC) [5]. It
recognizes self-management power by exploring the use of AC techniques in the do-
main of ground-based mobile robots [4]. The main focus is on robustness and fault-
tolerance. This research work only presents the ideas to apply AC to mobile robots
but not any implementation.

Active adaptation of systems requires non-stop monitoring and control. Thus, the
two main OC components are an observer and a controller dealing with the system
under observation and regulation. Since its emergence, OC has brought the attention
of researchers from different domains. Once the methodology has been proposed, the
question is how to design and implement OC systems. Some approaches coin the
combination of model-driven engineering with OC [6].

The viability provided by the Viable System Model (VSM) [7] is based on the ul-
tra-stability concept. A system is said to be ultra-stable when it can survive arbitrary
and un-forecast interference. This high stability is also applied to systems that are able
to deal with various principles for states. If a system can cope with its environment by
successfully absorbing the variety from it (attenuating the incoming variety, and am-
plifying its own variety when needed), it achieves an ultra-stabile state. If a system is
capable of working in such a manner, then it can maintain homeostasis. This means it
can maintain itself in a state of equilibrium. Maintaining a balance of variety is essen-
tial for self-organizing systems. An approach based on VSM principles was used to
build resilience into enterprise systems [8]. It demonstrated how a combination of
systems thinking and a physiology inspiration based on homeostatic mechanisms of
the human body can provide a blueprint for resilience.

The idea of building a self-adaptable man-made system capable of taking into ac-
count environment changes was proposed by mid-20th century. The “homeostat”, as
its inventor W. Ross Ashby called it, was developed to support habituation, rein-
forcement and learning through its ability to maintain homeostasis in a changing envi-
ronment [9]. The homeostat caught the attention of the control community that saw it
as an interesting implementation for adaptive control based on cybernetics and gen-
eral systems theory [10].

3 Autonomic System Specification Language

The Autonomic System Specification Language (ASSL) [11, 12] is defined through
formalization tiers. Over these tiers, ASSL provides a multi-tier specification model
that is designed to be scalable and exposes a judicious selection and configuration of
infrastructure elements and mechanisms needed by an AS. ASSL defines the latter

36 C.C. Insaurralde and E. Vassev

with interaction protocols and autonomic elements (AEs), where the ASSL tiers and
their sub-tiers describe different aspects of the AS under consideration, such as poli-
cies, communication interfaces, execution semantics, actions, etc. There are three
main tiers in the ASSL specification model:

• The AS Tier specifies an AS in terms of service level objectives (AS SLO),
self-management policies, architecture topology, actions, events, and metrics.
The AS SLO is a high-level form of behavioral specification that establishes
system objectives such as performance. The self-management policies could
be the four self-management policies (also called self- CHOP) of an AS: self-
configuring, self-healing, self-optimizing, and self-protecting, or they could
be others. The metrics constitute a set of parameters and observables control-
lable by the AEs.

• At the AS Interaction Protocol tier, the ASSL framework specifies an AS-
level interaction protocol (ASIP). ASIP is a public communication interface,
expressed with channels, communication functions and messages.

• At the AE Tier, the ASSL formal model considers AEs to be analogous to
software agents able to manage their own behavior and their relationships
with other AEs. In this tier, ASSL describes the individual AEs of the AS.

We used ASSL in this project to specify the orbiters' ANRs.

4 Autonomic ANRs for BepiColombo Mission

The BepiColombo Mission is to be performed by two orbiters: a Mercury Planetary
Orbiter (MPO) and a Mercury Magnetospheric Orbiter (MMO) [1]. The physiologi-
cally-inspired adaptation for the orbiters is defined through three self-regulatory func-
tions based on autonomic ANRs by parameterizing the autonomicity and quality at-
tributes of BepiColombo [13].

There are three parameters in the studied USVs (MPO and MMO) that are under
self-regulation: (1) the end-to-end latency regulation; (2) the system-context tempera-
ture regulation; and (3) the power consumption regulation. These self-regulated pa-
rameters have the following requirements as to operation ranges.

The states generated by the USV latency (L):

SL(L) ≡ {s(L)} ∀L ∈ 50 µs < L < 200 µs

The states generated by the USV temperature (T):

ST(T) ≡ {s(T)} ∀T ∈ -65 ℃ < T < 175 ℃

The states generated by the USV power (P):

SP(P) ≡ {s(P)} ∀P ∈ 10 W < P < 30 W

Autonomic Computing Software for Autonomous Space Vehicles 37

The states of homeostatic balance in the AES (Shb) are derived as the intersection of
the above states:

Shb = S(L) ∩ S(T) ∩ S(P)

The states of homeostatic imbalance in the AES (SHI) are the exclusion of states giv-
en by:

Shi = S(L) / S(T) / S(P)

The self-regulation of the above three operational parameters (L, T, and P) is working
as follows:

End-to-end Latency Regulation (L). This requirement is basically to optimize by
guaranteeing the USV performance in terms of time response, including processing
and communication times. The USV under study is required to work within a certain
end-to-end latency range (50 µs < L < 200 µs), no matter the processes and tasks it
has to execute, and in order to get its right time response. Thus, any system state gen-
erated by L between 50 µs and 200 µs makes the USV to be in homeostatic end-to-
end latency balance. Otherwise, the USV is in homeostatic end-to-end latency imbal-
ance.

System-Context Temperature Regulation (T). This requirement is basically to op-
timize by guaranteeing the USV performance in terms of temperature of operation.
The USV temperature can be affected by the heat generated by the electronic devices
and other heat sources inside the system as well as outside it (environment). The USV
under study is required to work within a certain temperature range (-65 °C < T < 175
°C), no matter the environmental temperature the USV has to deal with, and in order
to maintain operational performance. Thus, any USV state generated by T between -
65 °C and 175 °C makes the USV to be in homeostatic temperature balance. Other-
wise, the system is in homeostatic temperature imbalance.

Power Consumption Regulation (P). This requirement is basically to optimize by
guaranteeing the USV performance in terms of power consumption. The USV under
study is required to work within a certain power range (10 W < P < 30 W), no matter
the USV operation, and in order to make a good use of the energy. Thus, any USV
state generated by p between 10 W and 30 W makes the USV to be in homeostatic
power consumption balance. Otherwise, the USV is in homeostatic power consump-
tion imbalance.

The artificial homeostatic balance state (collective; three-parameters) can be for-
mally specified as follows.

Shb = SL ∩ ST ∩ SP, ∀50 µs ≤ L ≤ 200 µs ∧ ∀-65 °C ≤ T ≤ 175 °C ∧ ∀10 W ≤ P ≤ 30 W

Any other state outside Shb makes the system to be in homeostatic imbalance. The
homeostatic balance states can be formally defined as follows:

Shi = SL / ST / SP ∀50 µs ≤ L ≤ 200 µs ∧ ∀-65 °C ≤ T ≤ 175 °C ∧ ∀10 W ≤ P ≤ 30 W

38 C.C. Insaurralde and E. Vassev

5 Experiments

The self-regulation behavior based on the three operational parameters (L, T, and P)
was specified with the ASSL framework and consecutively, Java code was generated.
For more information on the self-regulation specification model, please, refer to [13].
Note that all Java applications generated with ASSL can generate run-time log rec-
ords that show important state-transition operations ongoing in the system at runtime
and the behavior of the generated system can be easily followed by the generated log
records. Hence, the log records produced by the generated Java application for the
ASSL self-regulation specification model for USVs allowed us to trace the simulated
USV behavior and so, to perform a variety of experiments outlined in this section.

The USV deals with the following two drivers that impact on the self-regulatory
functions (applied to the parameters under auto-regulation, i.e. end-to-end latency,
system-context temperature, and power consumption) based on autonomic ANRs:

• Data Processing Rate (DPR). The USV under study is able to process data and
dispatch tasks with a sampling time, an execution time, a deadline, a delivery
time, and within a range defined by them from 825 Mips to 3300 Mips. The
USV data processing is defined by delays generated by software/hardware con-
trollers. A typical application case is that a USV is a real-time system. Thus, da-
ta processing time constraints must be guaranteed all the time.

• Data Transfer Rate (DTR). The USV under study is able to transfer data up to
2000 Mbits/sec. However, it is required to work at least at 500 Mbits/sec in or-
der to keep a desired operational performance. The USV optimizes its perfor-
mance by increasing the transfer rate when the data volume is bigger, and de-
crease it when the data volume is smaller. USV DTR can also be changed when
a priority list for messages is applied; transmission rules for different communi-
cation channels are set or network availability policies are required.

Increments in the DPR increase the temperature and power consumption of the USV
but decrease its end-to-end latency. On the contrary, decrements in the DPR decrease
the temperature and power consumption of the USV but increase its end-to-end laten-
cy. It is the same situation for the DTR. In addition, a higher USV clock speed means
an increase of the DPR and DTR, and a lower one means a decrease of them. There
are other drivers that influence on the USV parameters under regulation such as the
environment temperature, and cooling mechanics of the USV. A higher environment
temperature increases the USV temperature, and lower one decreases the USV tem-
perature. An activated cooling mechanism lowers the USV temperature but increases
the power consumption and the environment temperature.

The cross-checked tests of the self-regulatory functions and their drivers is carried
out by running a software application which code was automatically generated by the
ASSL framework.

Different tests were carried out. They go from reduced-load system operations with
slight load changes up to full-load system operations with strong load changes. Re-
duction in loads entails the USV in a state defined as follows: power-up and commu-
nication and computation load (randomly variable but up to 20 % of the maximum).

Autonomic Computing Software for Autonomous Space Vehicles 39

Full loads entail the USV in an operational state where transferring and processing
loads were simulated in order to evaluate the USV self-regulatory capabilities under
load (randomly variable, and up to 100 % of the maximum).

The following figures show results from the tests of the self-regulatory mecha-
nisms studied on a USV. They show the cross-regulation impact during 140 minutes,
and with a randomly-variable load on the data processing and transferring rates. Fig-
ure 1 shows the evolution of the self-regulation for the system-context temperature
(one of the three parameters under self-regulation) when the loads can vary from 0%
to 100 % of the maximum value (with slight load changes from 0 min to ~65 min, and
strong ones from ~65 min to 140 min).

Fig. 1. Thermoregulation performance (variable load) for a USV

Just after the USV is started up, its temperature quickly reaches 60 ºC, and from there
it starts increasing and decreasing based on the system demands. The power consump-
tion evolution is according to the system process, and somehow it is proportional to
the variation of the temperature which makes sense. The end-to-end latency got an
increase at the beginning (no transferring or processing demands).

Figure 2 shows a snapshot of the trace when the application is executed. When the
system temperature (ST) reaches 60 ºC, the cooling mechanism is activated. This
makes ST to drop for a while and then ST varies according to the workload of the
USV (transfer and processing loads) as shown in Figure 1. Figures 1 and 2 show re-
sults of the performance of the self-regulation mechanism implemented in the USV
when transferring and processing loads are applied by means of slight and strong load
changes. The USV starts in idle state, and then some variable loads are applied at ~4
min and ends at ~65 min. Then, some stronger variable loads are applied again at ~65
min and end at ~135 min. Then, an abruptly-decreased load is applied. In any case,
the USV jumps accordingly from one state to the other, and comes back to the previ-
ous state adequately.

There is a slight increment in the power consumption when the cooling mecha-
nism is activated but no changes are seen on the end-to-end latency due to this incre-
ment since the power consumption remains below the limit configured (30 W). This
energy rise does not make any change in the system clock that can indirectly modify
the end-to-end latency (through data processing and transfer rates). The cooling
mechanism prevents the system temperature going beyond 140 ºC (upper temperature

40 C.C. Insaurralde and E. Vassev

threshold for performance optimization), and helps dissipate more temperature in the
system even though the USV could support temperatures up to 175 ºC. The above
figures do not show the evolution of the drivers, i.e., environment temperature, DPR,
and DTR.

Fig. 2. Generated Java Packages for USVs

All three parameters are simultaneously and successfully regulated along the USV
operation with and without workload. No one of them goes beyond the boundaries set
by the artificial homeostasis principles to optimize the USV performance.

6 Conclusions

An approach to implementing operational resilience and persistence based on ANRs
for USVs has been presented in this paper. Three reference technologies inspired by
human physiology as well as biological foundations have been reviewed. A case study
on orbiters (USVs) for the BepiColombo Mission to Mercury and outcomes of exper-
imental tests have been presented. Initial results show the feasibility of the approach
proposed. Three self-regulatory functions based on autonomic ANRs for Mercury
orbiters (USVs) have been identified to show how physiological principles of self-
regulation can be applied to the USV control architecture. This approach is able to
comply with the USV autonomy requirements and extends the USV autonomicity
through other self-managing capabilities that are suitable for either manned or un-
manned spacecraft.

Autonomic Computing Software for Autonomous Space Vehicles 41

Future work will be mainly concerned with further development of the approach
presented in this paper, including adding more self-regulated parameters and an im-
provement of the current code generation. It will also integrate KnowLang [14] – a
formal framework that can be particularly used for formal specification of ANRs.

Acknowledgments. This work was supported by ESTEC ESA (contract No. 4000106016), by
the European Union FP7 Integrated Project Autonomic Service-Component Ensembles
(ASCENS), and by Science Foundation Ireland grant 03/CE2/I303_1 to Lero–the Irish Soft-
ware Engineering Research Centre.

References

1. Benkhoff, J.: BepiColombo: Overview and Latest Updates, European Planetary Science
Congress, p. 7. EPSC Abstracts (2012)

2. Waugh, A., Grant, A.: Anatomy and Physiology in Health and Illness. Ross and Wilson
(2004)

3. Horn, P.: Autonomic Computing: IBM’s perspective on the state of information technolo-
gy. IBM Research Report (2001)

4. Melchior, N.A., Smart, W.D.: Autonomic systems for mobile robots. In: Proceedings of
the 2004 International Conference on AC, New York, USA (2004)

5. Schmeck, H.: Organic computing – a new vision for distributed embedded systems. In:
Proceedings of the 8th IEEE International Symposium on Object-Oriented Real-Time Dis-
tributed Computing. IEEE Computer Society (2005)

6. Kishi, T.: Model driven design and organic computing: from the viewpoint of application
production. In: Proceedings of the IEEE International Symposium on ISORC 2009, pp.
97–98. IEEE Computer Society (2009)

7. Beer, S.: Brain of the Firm. 2nd ed. Wiley (1994)
8. Hilton, J., Wirght, C., Kiparoglou, V.: Building resilience into systems. In: Proceedings of

the International Systems Conference, Vancouver, Canada (2012)
9. Ashby, W.R.: The William Ross Ashby Digital Archive (2014). http://www.rossashby.

info/index.html
10. Cariani, P.A.: The Homeostat as Embodiment of Adaptive Control. International Journal

of General Systems 38(2) (2008)
11. Vassev, E.: ASSL: Autonomic System Specification Language - A Framework for Specifi-

cation and Code Generation of Autonomic Systems. LAP Lambert Academic Publishing,
Germany (2009)

12. Vassev, E.: Towards a Framework for Specification and Code Generation of Autonomic
Systems. Ph.D. Thesis, Department of Computer Science and Software Engineering, Con-
cordia University, Montreal, Canada (2008)

13. Insaurralde, C.C., Vassev, E.: Software specification and automatic code generation to re-
alize homeostatic adaptation in unmanned spacecraft. In: Proceedings of the International
C* Conference on Computer Science and Software Engineering (C3S2E 2014), pp. 35–44.
ACM (2014)

14. Vassev, E., Hinchey, M., Montanari, U., Bicocchi, N., Zambonelli, F., Wirsing, M.: D3.2:
Second Report on WP3: The KnowLang Framework for Knowledge Modeling for SCE
Systems. ASCENS Project Deliverable (2012)

	Autonomic Computing Softwarefor Autonomous Space Vehicles
	1 Introduction
	2 Related Work
	3 Autonomic System Specification Language
	4 Autonomic ANRs for BepiColombo Mission
	5 Experiments
	6 Conclusions
	References

