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Abstract. Urban environments are increasingly invaded by devices that
acquire sensor information and pave the way for innovative forms of
context awareness. Collecting knowledge from loosely-structured data
streams and reasoning about changes are two key elements of the pro-
cess. This paper illustrates a possible way to combine these two elements
in a coordinated way. We make use of a recently-developed framework
for classifying data streams with service-oriented, reconfigurable compo-
nents. Furthermore, we embed the KnowLang Reasoner, allowing logical
and statistical reasoning on the acquired knowledge aiming to achieve
self-adaptation.

1 Introduction

The widespread adoption of sensor networks, actuators and computational
resources capable of interacting with people is transforming urban environments
as well as domestic spaces [1,3,6]. However, the design of such systems presents
challenges for current approaches. Designing with a top-down approach means
that all the requirements of a software architecture have to be taken into account
a priori. Systems engineered in this way have a predictable and measurable
behaviour but are not well suited to cope with dynamic execution contexts. On
the other hand, bottom-up design delivers robust systems that can eventually be
used in pervasive environments. However, modelling system behaviour of such
pervasive systems is not a trivial task and potential urban scenarios call for a
balanced trade-off between the two approaches.

Situational awareness appears to be one of the key drivers that guide this
trade-off. In fact, it can be used to provide systems with adaptation capabilities
— essential in dynamic, interconnected, and yet, heterogeneous environments —
without compromising predictable behaviours. For example, it would be possible
to envision a system capable of continuously inferring its operating context and
executing actions accordingly. Increasing both the number of inferred contexts
and possible actions leads to seemingly-adaptive systems [2].

This paper illustrates how situational awareness and reasoning can be put to
work together in order to implement adaptive behaviours. For awareness collec-
tion, we have made use of a recently-developed framework [4], centered around
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the concept of dynamic service reconfiguration, which is able to gather data
from a number of different sources, and classify them using general-purpose
algorithms. For reasoning, instead, we used the KnowLang framework [10]. The
combination of these tools allows systems to collect data on situational aware-
ness, reason about it, and select the most proper chain of actions accordingly
in a closed loop fashion (see Figure 1). As an example, we discuss a case study
describing the implementation of a self-driving, self-adapting drone. Situational
awareness data is collected via various sensors, classified and provided to the
KnowLang Reasoner to select the appropriate actions.

The rest of this paper is organised as follows. Section 2 presents our approach
to data collection and classification. Section 3 provides a brief introduction to
KnowLang along with a short discussion on how it can cope with the collected
data. Then, in Section 4 we present a small proof-of-concept case study. Finally,
Section 5 provides concluding remarks and a summary of our future goals.

2 Knowledge Collection and Understanding

In this section the framework for knowledge collection is described. It is based on
reconfigurable components and its goal is to provide a starting point for many
diverse applications. Developers are only required to select the required modules,
and define their topology and reconfiguration strategies as depicted in Figure 1.
It has been conceived around the following requirements [12] [7].

e Adaptation. The framework should be the key source of the applications’
adaptive capabilities. It has to provide the mechanisms and tools neces-
sary for knowledge processing. Applications relying on the framework must
receive compact and structured information about the environment and use
this as triggers for adaptation.

o Self-Adaptation. Given a specific classification task and a situation, the
framework should select the most appropriate components. For example, it is
possible to roughly recognise the vehicle used by a user with either GPS or an
accelerometer or microphone. An energy constrained system could constantly
monitor its residual energy and select the most appropriate trade-off between
consumption and classification accuracy. Service-oriented and dynamically
reconfigurable components have been recently proposed. They allow us to
select among different components (i.e., sensors, classifiers) depending on the
situation. Furthermore, reconfigurable components can transparently modify
their internal parameters. For example, classifiers can analyse temporal win-
dows of different sizes considering the availability of computational resources
or energy boundaries.

e FExtensibility. The framework should be extensible in several ways, without
the need to restart it. First, it should be possible to deploy, modify, and
remove context services. Second, the infrastructure should support the evo-
lution of supported types of contexts by dynamic load context definitions,
functionality, and acquisition mechanisms.
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o Modelling abstractions. The type of situational information that is relevant
for modelling and handling varies across application settings. For example,
in a hospital, items like beds, pill-containers, and medicines are important
information for the work of clinicians, but this is specific to hospitals. Hence
the application programmer should be able to model and handle context
data specific to various settings.

e Software Engineering. Organising the framework around the idea of reconfig-
urable components (i.e., sensors, classifiers) leads to modularity and compos-
ability of the software ecosystem. Developers are allowed to deploy
components that are either: (i) already included in the framework or (ii)
developed by third parties.

e Fuvent-based. The core quality of situation-aware applications is their ability
to react to changes in their environment. Hence, applications should be able
to subscribe to relevant events and be notified when such events occur.
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Fig. 1. The framework architecture is structured around three layers, namely sensor,
classifier and awareness layers

The architecture is structured around three layers, namely the sensor, clas-
sifier and awareness layers. Each layer can host multiple modules connected
to each other via application-definable topologies. The data flow from sensors
through the whole architecture is by means of in-memory queues enabling mod-
ules decoupling and many-to-many asynchronous communications. Each layer
can host multiple modules.

The sensor layer hosts modules that are responsible for retrieving raw data
from physical sensors and pre-processing them. An example could be a module
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acquiring images from a camera and cropping and resizing them. At the time of
writing, we have already implemented modules for reading data from Android
devices.

The classification layer hosts modules that consume data coming from the sen-
sor layer and classify them (i.e., generate semantically richer information). An
example could be a module able to classify the activity performed by a user by
processing accelerometer data. At the time of writing, we have implemented mod-
ules for classifying user activity, location, speed, and vehicle used on the basis of
common smartphone sensors. It is worth noting that our goal is to build a general-
purpose awareness framework that can be used as a common basis for both research
and application development, not to solve every possible classification problem.
Specific applications will need their own modules to be developed.

The awareness layer hosts modules consuming labels produced in the clas-
sification layer and feeding external applications with situational information.
These modules might have different goals depending on the application. How-
ever, they can be divided into two main classes. The former comprises modules
delegated to sensor fusion processes. These modules receive labels, eventually
conflicting, coming from multiple classification modules and apply algorithms to
achieve higher semantic levels. For example, common-sense knowledge has been
recently proposed [5] and could be integrated at this level. The latter, instead, is
related with the capability of the framework of monitoring and controlling itself.
In a sense, the awareness layer could be the key to building a self-aware aware-
ness module. For example, it would be possible within this level to integrate
modules observing the internal status of the framework and activating different
classifiers and sensors depending on operating conditions. This capability could
be used to achieve both improved classification accuracies and reduced power
consumption levels by continuously selecting the most suitable classifiers and
sensors. In this work, we embedded the KnowLang reasoner within this layer. It
receives labels from the classification layer and selects the arriving actions.

From an engineering viewpoint, the architecture is implemented on top of
industrial-level Java technologies. Each module is actually an OSGi component
able to meet the requirements mentioned above. On top of OSGi, we have an
iPOJO layer. iPOJO is a container-based framework handling the lifecycle of
Plain Old Java Objects (POJOs) and supporting management facilities such as
dynamic dependency handling, component reconfiguration, component factory,
and introspection. Moreover, the iPOJO container is easily extensible and allows
pluggable handlers, typically for the management of non-functional aspects. On
top of the iPOJO framework we build the support for the staged and layered
architecture by making use of Apache Camel. This framework provides compo-
nents with the capability of asynchronously processing data streams and com-
municating through in-memory queues. These queues allow modules belonging
to different layers to continuously communicate with each other with minimum
hardware requirements. Considering that pattern recognition has a central role in
situation awareness, we wrapped well-known data manipulation libraries within
the framework such as Weka, OpenCV, and jMIR.



Reasoning on Data Streams: An Approach to Adaptation 27

3 KnowLang

KnowLang [10] is a formal language dedicated to knowledge representation for self-
adaptive systems. The language implies a multi-tier specification model allowing
for integration of ontologies together with rules and Bayesian networks [8]. The
language aims at efficient and comprehensive knowledge structuring and aware-
ness based on logical and statistical reasoning coping with the non-deterministic
behaviour of self-adaptive systems by handling uncertain knowledge via additive
probabilities used to represent degrees of belief. With KnowLang, we build a knowl-
edge base (KB) with a variety of knowledge structures such as ontologies, facts,
rules and constraints. The KnowLang ontologies are composed of hierarchically
organised concepts and objects. Moreover, concepts and objects may be addition-
ally related via relations. Relations are binary, i.e., connect two concepts, two
objects, or an object with a concept, and may have probability-distribution
attributes (e.g., over time, over situations, etc.). The relations can be expressed
graphically as concept maps (see Figure 2). Probability distribution is provided
to support probabilistic reasoning and by specifying relations with probability dis-
tributions, we actually specify Bayesian networks connecting the concepts and
objects of an ontology.

Figure 2 shows a KnowLang specification sample demonstrating both the
language syntax [9] and its visual counterpart — a concept map based on
interrelations with no probability distributions.

CONCEPTRobot{
CHILDREN{...}
PARENTS {}
STATES{
STATEmoving {}
STATEstopped {}
STATEcperational {
}
PROPS {
PROP gripper_p{
TYPE {SC.Thing..Gripper}
CARDINALITY {1}
PROP locomotion_system_p {
TYPE {SC.Thing..Locomotion_System}

operational

CARDINALITY {1}
}

g
}...

Locomotion_system

Fig. 2. KnowLang Specification Sample

For reasoning purposes, every concept specified with KnowLang, has an
intrinsic STATES attribute (see Figure 2) that may be associated with a set of
possible states that a concept’s instances may be in. In general, a concept may
occupy a new state when concept properties have been changed or some events
or actions have occurred in the system or environment. KnowLang employs spe-
cial knowledge structures and a reasoning mechanism for modelling self-adaptive
behaviour [11]. Such a behaviour can be expressed via special policies, events,
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actions, situations, and relations between policies and situations. Policies (II)
are at the core of self-adaptive behavior. A policy 7 has a goal (g), policy situa-
tions (Siy), policy-situation relations (Ry), and policy conditions (N,) mapped
to policy actions (Ar) where the evaluation of N, may eventually (with some
degree of probability) imply the evaluation of actions (formally denoted with

N, 2] Ar). A condition is a Boolean expression over the ontology, e.g., the
occurrence of a certain event. A goal ¢ is a desirable transition to a state, or
from a specific state, to another state (formally denoted with s = s’). A state
s is a Boolean expression over ontology (be(O)). Ideally, KnowLang policies are
specified to handle specific situations, which may trigger the application of poli-
cies. A policy exhibits a behaviour via actions generated in the environment or in
the system itself. Specific conditions determine which specific actions (among the
actions associated with that policy) will be executed. When a policy is applied,
it checks what particular conditions are met and performs the mapped actions.
An optional probability distribution may additionally restrict the action exe-
cution. Although initially specified, the probability distribution is recomputed
after the execution of any involved action. The re-computation is based on the
consequences of the action execution, which allows for reinforcement learning.

4 Case Study

To demonstrate our approach, we describe an example of a self-aware surveil-
lance drone designed for detecting people within specific areas of interest (see
Figure 3). The system has the goal to collect sensor data, classify the data, and
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Fig. 3. A self-aware surveillance drone designed for detecting people within specific
areas of interest
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define the situation the data are immersed in. However, instead of using a single
complex classifier, we provide developers a means of using a number of simpler
and more specific classifiers. These modules can be enabled, disabled, wired and
rewired in a dynamic way by making use of their output to navigate the state
automata. Each status has a name and is associated with a set of classifiers —
and associated sensors — that have to be active and a set of possible transitions.
Each time the output of an active classifier changes, a reconfiguration is applied.
Needed modules are deployed and inactive ones are automatically removed to
reach the new status. In this way, the overall problem of situation recognition
is modularised in a way similar to the way we believe our brain works. Each
node embeds the knowledge acquired by the former and activates more specific
classifiers to collect further details.

Figure 3, drives the reconfiguration of a surveillance drone. State A is acti-
vated as soon as the drone takes off and tries to detect areas of interests. As
soon as an area of interest is spotted, state B is activated and eventual people
are detected. State C, activated only when people are detected in an area of
interest analyses audio signals to detect dialogs. Finally, state D, refines state C
by inferring the general topic of the conversation using common sense knowledge
and speech recognition techniques.

It is worth noting that this example shows the internal logic of the awareness
module of two different applications. However, despite the fact that the logic used
to collect situational awareness has to be linked with the application logic, these
automata are agnostic about how the situational knowledge is actually collected.
In fact one could completely change sensors and classifiers used in each and every
state without altering the application logic. We think this feature could both:
(i) sensibly speed up the prototyping of pervasive applications and (i) help in
the development of pattern recognition modules. If fact, one could quickly assess
different algorithms, libraries, and approaches without altering anything within
the actual application. For the purpose of this case study, we used KnowLang
to support the behaviour outlined above. The first step was to specify a simple
knowledge base (KB) representing the domain outlined in the case study, e.g.,
the drone itself and the drone’s operational environment with entities such as
areas of interest, people, drone base, etc. Recall that this domain is described
via a domain ontology expressed through domain-relevant concepts and objects
(concept instances) related through relations (see Section 3). To handle explicit
concepts such as situations, goals, and policies, we gave some of the domain
concepts explicit state expressions. The following is a partial specification of the
Drone concept. As shown, the Drone has properties, functionalities, and states
(Boolean expressions validating states).
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CONCEPT Drone {
PARENTS {srvllnceDrone.drones.CONCEPT_TREES.System}
CHILDREN { }
PROPS {

PROP dFlyCapacity {TYPE{srvllnceDrone.drones.CONCEPT_TREES.FlyingCapacity} CARDINALITY{1}}

PROP dPlanner {TYPE{srvllnceDrone.drones.CONCEPT_TREES.Planner} CARDINALITY{1}}

PROP dCommunicationSys {TYPE{srvllnceDrone.drones.CONCEPT_TREES.CommunicationSys} CARDINALITY{1}}

}
FUNCS {

FUNC plan {TYPE {srvllnceDrone.drones.CONCEPT_TREES.Plan}}

FUNC lineExplore {TYPE {srvllnceDrone.drones.CONCEPT_TREES.LineExplore}}

FUNC spiralExplore {TYPE {srvllnceDrone.drones.CONCEPT_TREES.SpiralExplore}}

FUNC takeoff {TYPE {srvllnceDrone.drones.CONCEPT_TREES.TakeOff}}

FUNC flyTowardsBase {TYPE {srvllnceDrone.drones.CONCEPT_TREES.FlyTowardsBase}}

FUNC lookForPeople {TYPE {srvllnceDrone.drones.CONCEPT_TREES.LookForPeople}}

¥
STATES {

STATE IsUp { PERFORMED{srvllnceDrone.drones.CONCEPT_TREES.Drone.FUNCS.takeoff} }

STATE IsPlaning { IS_PERFORMING{srvllnceDrone.drones.CONCEPT_TREES.Drone.FUNCS.plan} }

STATE IsExploring { IS_PERFORMING{srvllnceDrone.drones.CONCEPT_TREES.Drone.FUNCS.lineExplore} OR
IS_PERFORMING{srvllnceDrone.drones.CONCEPT_TREES.Drone.FUNCS.spiralExplore} }

STATE InLowFlayCapacity {
srvllnceDrone.drones.CONCEPT_TREES.Drone.PROPS.dFlyCapacity.STATES.smallFlyingTime}

STATE FoundAreaOfInterest { srvllnceDrone.drones.CONCEPT_TREES.Drone.STATES.IsExploring AND
srvllnceDrone.drones.CONCEPT_TREES.SpottedAreasOf Interest >= 1 }

STATE FlayingOverAreaOfInterest { }

STATE IsExploringAreaOflInterest { srvllnceDrone.drones.CONCEPT_TREES.Drone.STATES.IsExploring AND
srvllnceDrone.drones.CONCEPT_TREES.Drone.STATES.FlayingOverAreaOf Interest }

STATE FoundPeopleOfInterest {
srvllnceDrone.drones.CONCEPT_TREES.Drone.STATES.IsExploringAreaOf Interest AND
srvllnceDrone.drones.CONCEPT_TREES.SpottedPeople >= 1 }

F)

To specify the drone’s behaviour with KnowLang, we used goals, policies, and sit-
uations (see Section 3). The following is a specification sample showing a drone’s
policy called GoFindAreaO fInterest. As shown, the policy is specified to
handle the goal FindAreaO fInterest and is triggered by the situation
DronelsOnAndAreaN ot Found. Further, the policy triggers viaits MAPPING
sections conditionally (e.g., there is a CONDITON S directive that requires the
drone’s flying capacity be higher than the estimated time needed to get back to the
base) the execution of a sequence of actions. When the conditions were the same,
we specified a probability distribution among the M APPING sections involving
same conditions (e.g., PROBABILITY 0.6), which represents our initial belief in
action choice.

CONCEPT_POLICY GoFindAreaOfInterest {
CHILDREN {}
PARENTS { srvllnceDrone.drones.CONCEPT_TREES.Policy}
SPEC {
POLICY_GOAL { srvllnceDrone.drones.CONCEPT_TREES.FindAreaOfInterest }
POLICY_SITUATIONS { srvllnceDrone.drones.CONCEPT_TREES.DroneIsOnAndAreaNotFound }

POLICY_MAPPINGS {
MAPPING {
CONDITIONS { srvllnceDrone.drones.CONCEPT_TREES.TimeToDroneBase <
srvllnceDrone.drones.CONCEPT_TREES.drone.PROPS.dFlyCapacity }
DO_ACTIONS { srvllnceDrone.drones.CONCEPT_TREES.drone.FUNCS.lineExplore }
PROBABILITY {0.6}
}
MAPPING {
CONDITIONS { srvllnceDrone.drones.CONCEPT_TREES.TimeToDroneBase <
srvllnceDrone.drones.CONCEPT_TREES.drone.PROPS.dFlyCapacity }
DO_ACTIONS { srvllnceDrone.drones.CONCEPT_TREES.drone.FUNCS.spiralExplore }
PROBABILITY {0.4}
¥

s e

As specified, the probability distribution gives the designer’s initial preference
about what actions should be executed if the system ends up running the
GoFindAreaOf Interest policy. Note that at runtime, the KnowLang Reasoner
maintains a record of all the action executions and re-computes the probabil-
ity rates every time when a policy has been applied, and subsequently when
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actions have been executed. Thus, although initially the system will execute the
function lineExplore (it has the higher probability rate of 0.6), if that policy
cannot achieve its goal with this action, then the probability distribution will be
shifted in favour of the function spiral Explore, which might be executed next
time when the system will try to apply the same policy. Therefore, probabilities
are recomputed after every action execution, and thus, the behaviour changes
accordingly.

As mentioned above, policies are triggered by situations. Therefore, while
specifying policies handling the drone’s objectives (e.g., FindAreaO fInterest),
we need to think of important situations that may trigger those policies. Note
that these situations will eventually be outlined by scenarios providing alterna-
tive behaviours or execution paths out of that situation. The following code rep-
resents the specification of the situation DronelsOnAndAreaNotFound, used
for the specification of the GoFindAreaO fInterest policy.

CONCEPT_SITUATION DroneIsOnAndAreaNotFound {
SPEC {
SITUATION_STATES {srvllnceDrone.drones.CONCEPT_TREES.drone.STATES.IsUp,
srvllnceDrone.drones.CONCEPT_TREES.drone.STATES.IsExploring}
SITUATION_ACTIONS {srvllnceDrone.drones.CONCEPT_TREES.LineExplore,
srvllnceDrone.drones.CONCEPT_TREES.FlyTowardsBase}
b2

As shown, the situation is specified with SITATION_STATES (e.g., the
drone’s states IsUp and IsExzploring) and SITUATION_ACTIONS (e.g.,
LineExplore, SpiralExplore, and FlyTowardsBase). To consider a situa-
tion effective (i.e., the system is currently in that situation), the situa-
tion states must be respectively effective (evaluated as true). For example,
the DronelsOnAndAreaNotFound situation is effective if the Drone’s state
IsExploring is effective (is on hold). The possible actions define what actions
can be undertaken once the system fails in a particular situation.

Note that the specification presented is a part of the KB that is operated
by the KnowLang Reasoner. The reasoner encapsulates that KB and acts as a
module in the awareness layer of the framework for knowledge collection (see
Figure 1). The reasoner is “fed” with classified sensory data (labels), produced
by the classification layer, and returns situational information and proposed
behaviour upon request. The consumed labels help the reasoner update the KB,
which results in re-evaluation of the specified concept states (recall that states
are specified as a Boolean expression over the ontology, i.e., a state expression
may include any element in the KB). Subsequently, the evaluation of the spec-
ified states helps the reasoner determine at runtime whether the system is in a
particular situation or if a particular goal has been achieved. Moreover, it can
deduce an appropriate policy that may help the drone “go out” of a particular
situation.

5 Conclusion and Future Work

In this paper we proposed a combination of two innovative frameworks for context-
awareness and reasoning aimed at self-aware systems. The former has been designed
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around the concept of reconfiguration and built using well-established Java tech-
nologies. It is able to collect data from a number of different sources and classify
them using general-purpose algorithms. The latter has been designed for reason-
ing and action selection using both logical and statistical techniques. To test their
mutual synergies, a case study describing a self-aware surveillance drone has been
described in greater detail.

We are planning to challenge this approach in more complex scenarios to bet-
ter understand how the framework self-* structure could simplify the engineering
of pervasive applications, particularly on mobile platforms.
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