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Abstract. Databases (DB) based on fuzzy set (FST), possibility (PT) and ex-
tended possibility theory (EPT)…which have many problems that need to be 
discussed in capturing, representing, storing and manipulating with fuzzy data 
because these approaches have difficulty implementing. Fuzzy relational data-
bases based on hedge algebras (HA) have approach naturally. So, we will not 
worry about representing, storing and manipulating fuzzy data. In this paper we 
will investigate fuzzy relational database based on hedge algebras to clarify 
three primacies of which: easy to present, update and query data. 

1 Introduction 

About twenty years ago, prof. Nguyen Cat Ho discovered that linguistic variable do-
main have computing structure and after that built Hedge Algebras (HA) successfully 
(see [1]). HA is a new approach to implement more effective on some “hot” fields 
now such that fuzzy control, fuzzy reason, collect fuzzy knowledge and fuzzy  
databases… 

DB is a field that has been applied in fact widely and deeply and so scientists are 
very interested in it. Many cases in fact, human have to store and handle fuzzy infor-
mation. For this reason, fuzzy databases are user’s urgent requirement beside classical 
databases. As mentioned above, the scientists have developed many approaches to 
fuzzy databases because they desire to implement fuzzy application as soon as possi-
ble. In that approaches, EPT emerged as the best approach, however, it has not 
reached the desired results yet. Concretely, in EPT, data values of fuzzy attribute 
domain are possibility distributes and must associate with resemblance relations. This 
idea in theory seems to be optimal, but when we deploy this model that will encounter 
obstacles. Regardless  of aspect of the "rather hard" in capturing the semantics of 
fuzzy data, just focus on the fuzzy data representation, we’ll see, what will we do with 
a database consists of many attributes and (or) tuples? The answer is that we have to 
build the resemblance relation table that has a lot of columns and rows (up to hundred 
or thousand …). It is very bulky and not factual. 

Fuzzy databases based on hedge algebras having better capturing, presenting, stor-
ing and manipulating method than the others because hedge algebras capture fuzzy 
data naturally and it is flexible enough to represent the inherent natural meaning of 
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fuzzy data. Furthermore, HA is a rich math structure enough to build the tools for 
manipulating with fuzzy data effectively. 

The rest of this paper will be organized as follows: Section 2 will represent the ba-
sis concepts of HA, Section 3 will represents the fuzzy database model based on HA, 
Section 4, Section 5 and Section 6 respectively will present the advantages of the 
approach based on HA in three aspects, representing, querying and updating data, 
section 7 is the conclusion of the article. 

2 Some Definitions in HA 

Definition 2.1 [1] 

The Hedge Algebra is denoted by AX = (X, G, H, ≤), where X is a value domain of 
a linguistic variable. 

- G is the set of generators and constants, G = (0, c-, w, c+, 1), where 0, w, 1 are 
constants expressing the smallest element, the largest element and the neutral element 
in X; c- and c+ are the negative generator and positive generator. 

- H is the set of hedges that is considered as the unary operations acting on each 
term in X, H = H-∪ H+. H+ = {h1,..., hp} and H- = {h-1, ..., h-q}, p, q >1 are the set of 
positive hedges  and set of negative hedges respectively. They are ordered as follows 
h1<...< hpvà h-1< ...< h-q. 

(≤) relation is induced from semantic relations on X. We call each linguistic value 
x of X is a term in  the hedge algebra. If the set X and H is the linear ordering, then 
AX = (X, G, H, ≤) called linear hedge algebra. 

Example 2.1 

Let’s consider linguistic variable "speed", this linguistic variable can receive the lin-
guistic values that are terms such as fast, slow, very slow, rather fast, very fast, rather 
slow ... and they constitute values domain of speed variable. 

In here, with the order relation induced from the natural semantics as follows: very 
slow < rather slow < slow < rather fast < fast < very fast.  Thus, we have the HA: G= 
{0, c- = slow, w, c+ = fast, 1}; H = {h- = possible, h+ = very}. 

Fast, slow, very slow, rather fast, very fast, rather slow are terms in X. 

Definition 2.2 [2] 

AX = (X, G, C, H, ≤) is a HA. 
A mapping fm: X → [0, 1] is called a fuzziness measure (abbreviated fm) of the 

terms in X if: 

1. fm(c-) + fm(c+) = 1 and )()( ufmhufmHh = ∈ , with ∀ u ∈ X; in this case, 

fm  is called complete. 
2. With constants 0, W and 1 we have  fm(0) = fm(W) = fm(1) = 0; 
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3. With ∀ x, y ∈ X, ∀h ∈ H, 
)(

)(

)(

)(

yfm

hyfm

xfm

hxfm = , this ratio does not depend on 

fm (x), fm(y). It is fuzzy measure of h and denoted by μ(h). 

Clause 2.2 [2] 

Each fuzziness measure fm on X, the following assertions are true: 

1. fm(hx) = μ(h)fm(x), với ∀ x ∈ X; 
2. fm(c-) + fm(c+) = 1; 

3. )()(0, cfmchfm iipiq = ≠≤≤− , c∈{c-,c+}; 

4. )()(0, xfmxhfm iipiq = ≠≤≤− ; 

5. αμ = −≤≤− )(1 iiq h and βμ = −≤≤− )(1 iiq h ,α,β > 0 and α+β=1. 

Definition 2.3 [2] 

A Sign function: X → {-1, 0, 1} is a mapping defined recursively as follows: for h, h 
'∈ H and c ∈ {c-, c +}: 

1. Sign(c-) = -1, Sign(c+) = +1; 
2. Sign (hc) = - Sign (c), if h is negative for c, in contrast to Sign (hc) = + Sign (c); 
3. Sign (h'hx) = - Sign (hx), if h'hx ≠ hx and h' is negative for h;Sign (h'hx) = + 

Sign (hx), if h'hx ≠ hx and h' is positive for h; 
4. Sign (h'hx) = 0 if h'hx = hx. 

Definition 2.4 [2] 

AX = (X, G, C, He, Φ, ≤) is a HA( complete linear hedge algebra).  
A mapping υ: X → [0, 1] is called semantic quantitative mapping  (abbreviated 

SQM) of AX, the following assertions are true: 

1. υ is the 1 - 1 mapping from X on [0, 1] and maintain order on X. With ∀ x, y ∈ 
X, x <y υ(x) <υ (y) and υ (0) = 0, υ (1) = 1, with 0, 1 ∈ c; 

2. ∀ x ∈ X, υ (Φ x) = infimum υ (H (x)) and υ ( x) = supremum υ (H (x)). 

Definition 2.5 [2, 4, 5] 

With fm is a fuzziness measure on X,  A mapping υ: X  →  [0, 1] induced by fm on X 
that is defined as follows: 

1. υ(W) = θ = fm(c-), υ(c-) = θ - αfm(c-) = βfm(c-), υ(c+) = θ + αfm(c+); 
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2.υ(hjx) = υ(x) + Sign(hjx){ )()()()( xhfmxhxhfm jji
j

jSigni ω− = }; with j ∈ 

{j: -q ≤ j ≤ p and j ≠ 0}(*) and ω(hjx) = )])(()(1[
2

1 αβ −+ xhhSignxhSign jpj ∈ 

{α, β};1+Sgn(hjx) j−Sign( j)1−Sgn(hj x) j−Sign( j); 
3. υ(Φc-) = 0, υ(c-) = θ = υ(Φc+), υ(c+) = 1,  ∀ j like (*), 

υ(Φhjx) = υ(x) + Sign(hjx){ )()(2

)(1
)(

)( xfmhi

xhSgn
jSignj

jSigni

j

μ
+

−

= }  

υ(hjx) = υ(x) + Sign(hjx){ )()(2

)(1
)(

)( xfmhi

xhSgn
jSignj

jSigni

j

μ
−

−

= } 

3 Fuzzy Relational Databases Approach Based on Hedge 
Algebra 

Under this approach, a relational database schema with fuzzy data is a set DB = {U, 
R1, R2, ..., Rm, Const}, here, U = A1, ... An is the universe of properties; Ri is a rela-
tional schema; Const is a set of data constraints on the DB. 

Each Ri can include two attribute groups, the first group contains the common at-
tributes (classical attributes), the second group contain the fuzzy attributes. Each 
fuzzy attribute can be viewed as a linguistic variable and value domain of which con-
tains linguistic values (they constitute a hedge algebra) and real values. If Ai is the 
fuzzy attribute then the value domain of it is D(Ai) = FDom (Ai) ∪ DAi  in which 
FDom (Ai) is a set of linguistic values, DAi  is the set of normal real values. 

FDom (Ai) can receive fuzzy data in common types as follows: 

Type 1: fuzzy linguistic data (a very young age) 
Type 2: data of interval (the age of a man in (20, 30)) 
Type 3: undefined data (do not know a student that has a phone number or not?) 
Type 4: missing data (my boss will pay me salary but do not know exactly the 

figure of salary)  
Type 5: data is a limited set of certain values (ages is in{31, 33, 35}) 
Type 6: "do not know" (unknown) data (they have been married but do not know 

if they have children or not) 

To perform comparative operations among fuzzy terms, we have to establish a 
method of converting semantic representation of linguistic values to the correspond-
ing values over the field of real numbers. 

First, we will study the method of representing fuzzy data of type 1, this method 
will be the basis for representing other type of fuzzy data. 

Suppose that attribute A is associated with a ComLin-HA AX = (X, G, C, He, Φ, 
≤) and FDom(A) is a finite subset of X. Set d = k (A), is the maximum length of the 
terms in FDom (A).With fm is the fuzziness measure given of AX. So set of  
Jk, k = 1, ..., d, and SQM υ  induced from fm can be determined. 

Based on the structure of ComLin-HAS, all x ∈ linguistic data FDom (A) can be 
expressed through two semantic components: 
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(1) a semantic value from the domain of DA; 
(2) a finite set of neighbors based on fuzzy intervals. 

The first semantic component is determined easily since it is just the value υA(x). 
To determine the second semantic component more difficult, suppose that x is 

presented as follows: x = km-1 ... k1c, c ∈ G, which means that it has m length. Second 
semantic component of x is a semantic neighbor systems denoted Neigd

fm(x), here  d = 
k(A) ≥ m and fm is a  fuzziness measure that was given. For each k, 1 ≤ k ≤ d, neigh-
bor of x in Neigd

fm(x) will be determined based on the adjacent k-intervals and  is 
called the k-level neighbor.  

To define this concept, we need some concepts as follows: 
Denote H1 = {hi, h-j ∈ H: 1 ≤ i ≤ [p/2] & 1 ≤ j ≤ [q/2]} includes “weak” hedges 

and H2 = {hi, h-j ∈ H: [p/2]  < i ≤ p & [q/2] < j ≤ q} includes “strong” hedges and 
INTk(Hn) = {ℑk(hiy) ∈ Jk: y ∈ Xk-1, hi ∈ Hn}, n = 1, 2. Obviously, INTk(H1) ∩ 
INTk(H2) = ∅ và INTk(H1) ∪ INTk(H2) = Jk is the set of all k-intervals.  

Two intervals ℑk(x) and ℑk(y) in INTk(Hn) are called the connected  if there is a 
string of consecutive k-level fuzziness intervals belong INTk(Hn) to interconnect ℑk(x) 
and ℑk(y). 

 In this case, ℑk(x) is called connected in INTk(Hn) with every points  in ℑk(y). 
Denote k* is a positive integer number that refer to the maximum length of every 

values on  D(A); |x| ≤ k* is the maximum length of linguistic values of x, put j = |x|; 
ℑ(x) is a interval of level k contain x through υ mapping; Xk is the set of linguistic 
values of k-length; U is a universe of attributes in the databases. 

a. If k = j: Omin, k (x) = ℑk + 1 (h-1x) ∪ℑk + 1 (h1x); 
b. If 1 ≤ k <j: Omin, k (x) = ℑj(x); 
c. If j + 1 ≤ j ≤ k *: Omin, k (x) = ℑk + 1 (GCP) ∪ℑk + 1 (hl'x), with l, l '∈ {-q, p}. 
Put H1 is the set of "weak hedges" and H2 is the set of "strong hedges". Concrete-

ly, H1 = {hi, hj | 1 ≤ i ≤ [p / 2], 1 ≤ j ≤ [q/2]}, H2 = {{hi, hj |[p/2] ≤ i ≤ p,[q/2] ≤ j ≤ q}. 
Put Ik +1 (Hn) = {ℑk +1 (hiy) | y ∈ xk, hi∈ Hn}, with n = 1, 2.  
Every two intervals  ℑk +1(x) and ℑk +1(y) in Ik +1(Hn) are called connected to each 

other if existing the Ik+1(Hn) interrupted intervals from ℑk+1(x) to ℑk+1(y). This relation 
decompose Ik +1 (Hn) to connected components. 

Denote  C is cluster of k-level similar intervals with linguistic values x, C will be 
determined as follows: with Ik+1(H1) = {ℑk+1(hiy)| y∈Xk, hi∈ H1} put C = {ℑk+1(hiy) | 
hi∈ H1}. 

With Ik +1(H1)={J k +1 (hiy) | y∈Xk , hi∈H2}, assuming  Xk = {xs | s = 0, ..., m-1} 
consist of m elements be arranged in a sequence so that xi < xj if i < j 

H −
2 = H2 ∩ H-and H +

2  = H2∩ H+. The clusters are generated of the fuzzi-

ness intervals of Ik +1(H2) with the following three types: 

a. Clusters on the left x0: put C:= {ℑk+1(hix0) | hi∈ H +
2 }. 

b. Clusters of the right xm-1: put C:= {ℑk+1(hixm-1) | hi∈ H +
2 }. 

c. Clusters in between xs and xs+1 with s = 0, ..., m-2 dependent on SGN (hpxs) and 
the Sgn (hpxs +1): 
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C = {ℑk+1(hixs), ℑk+1(h’jxs+1) | hi∈ H +
2 , h’j∈ H −

2 }, if Sgn(hpxs) = +1 and  

Sign(hpxs+1) = +1; 

C = {ℑk+1(hixs), ℑk+1(h’jxs+1) | hi∈ H +
2 , h’j ∈ H +

2 }, if Sgn(hpxs) = +1 and 

Sign(hpxs+1) = +1; 

C = {ℑk+1(hixs), ℑk+1(h’jxs+1) | hi∈ H −
2 , h’j∈ H −

2 }, if Sgn(hpxs) = +1 and 

Sign(hpxs+1) = +1; 

C = {ℑk+1(hixs), ℑk+1(h’jxs+1) | hi∈ H −
2 , h’j ∈ H +

2 }, if Sgn(hpxs) = +1 and 

Sign(hpxs+1) = +1. 
Set of  All cluster C is denoted ©. 

Definition 3.1 

Each C ∈©, we determine the interval at k-level corresponding to C as follows: 
Put Sk(C) = ∪ {ℑk +1 | ℑk +1∈ C};  
The interval representation of other fuzzy data types will be represented as fol-

lows:  
Type 2: Each interval value [a, b] is represented by a set contain [a, b]. we have 

θmin,k(x) ([a, b]) = {[a, b]} because [a, b] is not fuzzy data, with ∀ k ≤ k* and 
Neigd

fm(x) = {[a, b]}. 

Type 3: Each value will represent by the ∅ set, so θi,k(inapplicable) = {∅}, with 
∀ k ≤ k* and Neigd

fm(inapplicable) = {∅}. 
Type 4: Each value of this data type can receive any value in attribute domain. For 

this view, θmin,k(missing) = {[a, b] | a ∈ DA}, with ∀ k ≤ k* and Neigd
fm(missing) = {[a, 

b] | a ∈ DA}. 
Type 5: Each value of this data type can receive any value in P ⊆ DA but do not 

know exactly. Similar to type 4, θi,k(P) = {[a, b] | a ∈ P}, ∀k ≤ k* and Neigd
fm(P) = 

{[a, b] | a ∈ P}. 
Type 6: Each value of this data type can be considered as combination of data 

type 4 and data type 5. So, Neigd
fm(unknown) = {∅, [a, b] | a ∈ DA}. 

Clause 3.1 [2] 

For AX is a linear complete hedge algebra of attribute A, H+ and H-  have at least two 
hedges, the fuzziness  quantitative parameters defined by definition 2.4. We have: 

a. For each k, {Sk(u) | u ∈ X ∪ C} is determined uniquely and is a partition of  
[0, 1]  

b. For all x, u ∈ X ∪ C, if ϕ(x) ∈ Sk(u) then Omin, k(x) ⊆ Sk(u). 

Definition 3.2 [2]  

For linear complete HA, AX and the fuzziness measure, fm. Suppose that ϕA is a 
quantitative semantic function on AX and for each k, where 1<k<k*, Sk is k-level 
similar relation on DA. Meanwhile, with two tuples t and s on U, the two values t[A] 
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and s[A] on the value domain are called  k-level equal that denoted by t[A] = fm, k s[A] 
or t[A] = k s[A], if existing a equivalence class Sk(u) of Sk so that Omin, k(t[A]) ⊆ Sk(u) 
and Omin, k(s[A]) ⊆ Sk(u). 

Definition 3.3 [2] 

With t and s are two tuples on U. We write t[Ai] = υ, ks[Ai] (k-level equal) if the fol-
lowing conditions are true: 

1. If  t[Ai], s[Ai] ∈ DA i
then  t[Ai] = s[Ai]; 

2. If only one of two t[Ai] or s[Ai] is linguistic data, assume that t[Ai], then s[Ai] ∈ 
Sk(t[Ai]). 

To be able to compare the two values in the domain of a linguistic attribute as well 
as comparing the value of the two tuples on a set of attributes we have the following 
two definitions: 

Definition 3.4 [2] 

With two tuples t, s as in definition 3.2: 

1. if  Sk(t[Ai]) < Sk(s[Ai]) then t[Ai] <υ, ks[Ai] ; 
2. If  Sk(t[Ai]) > Sk(s[Ai]) then t[Ai] >υ, ks[Ai] ; 
3. t[Ai] = υ, ks[Ai] or  Sk(t[Ai]) < Sk(s[Ai]) then t[Ai] £u, ks[Ai]; 
if t[Ai] = υ, ks[Ai] or  Sk(t[Ai]) > Sk(s[Ai]) then t[Ai]≥υ, ks[Ai]. 

Example 3.1 

Let’s consider the schema in a fuzzy database of  garment shop, R1= {Itemcode, 
Brand, Importprice, Status, Saleprice }. 

We have Brand, Importprice, Status, Saleprice are fuzzy attributes, itemcode was 
common attribute. 

Table 1. The instance of R1 

Itemcode   Importprice Status              Saleprice 
A001 5 Rather old            Rather High 
Q001 Very low            Old   17 
A002 9 New High 
A003 8 Possible New               13 

4 Primacy in Presenting Fuzzy Data 

It can be said that data representation is a key factor that determine the meaning, fea-
sibility and value of a database model because data representation will facilitate or 
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block the construction of data manipulation operations and manipulation operations 
decide queries issue as well as update database. 

In [11] summarize five common approaches to represent fuzzy data as follows: 

Table 2. Summarize five common approaches to representing fuzzy data 

Approach 
Grade of 

membership 
Values of  
attributes 

Elements of 
domain 

Fuzzy relation *   

Similarity relation  *  

Possibility  * *  

Extended Possibility  * * * * * * 

Aggregation * * * *  

 
Note, the more * appearing, the more database model spreading. Thus, the data-

base model based on extended possibility emerges as a best model. 
The basic idea of the fuzzy relational database model based on extended possibil-

ity as follows: relation r on the relational schema Ri is a subset of the Π(D1) x Π(D2) 
x…Π(Dn), Π(Di) is the possibility distributions on the value domain Di of the attribute 

Ai. So every n tuple will have the form (πA 1
, πA 2

… πAn) with πAi∈Π(Di). Besides, 

each Ri is combined with a resemblance  
If a relation consist a lot of tuples (hundreds of, thousands or even tens of thou-

sands of tuples .... ), it's  clear which showed weaknesses of data representation prob-
lem under  this model because all  fuzzy values of  each attribute,  therefore it will be  
"wordy" and "downright frustrating" when to express a fuzzy value . For example, to 
express the age of the person belongs interval "from 30 to 40 years old" people can 
apply part of possibilities is {0.8/30, 0.7/31... 0.1/40}, Conspicuously,  if fuzzy value 
interval  is greater than the  its express chain will be longer and more complex. Addi-
tionally, with each relational schema included m attribute will have m tables of two-
dimensional (otherwise known as the two-dimensional matrix), each table used to 
represent close relationship between elements under range of values of a properties. 

  Such a data representation in scalability theoretical approaches (more general 
fuzzy set theory) complex which will lead to the complexity of data manipulation 
operations. 

Two matching basic operations with fuzzy data included semantics inclusion op-
erations and semantically equivalent operations that proposal [6] and some other doc-
uments shall be determined as follows: 

SIDα(πA, πB) =  
=

n

ji 1,

min (πB(ui), πA(uj)) / 
=

n

i 1

πB(ui) (#)  

and  
SEDα(πA, πB) = min(SIDα(πA, πB), SIDα(πB, πA)) (# #) 

ui, uj∈ U và ResU(ui, uj) ≥ α
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In that, SIDα(πA, πB), SEDα(πA, πB)respectively semantics inclusion measure and 
semantic equivalent measure of between the two  possibility distribute πA, πB; Res 
denote closely relationship 

Obviously, data representation in efficient leads to complex of operations for data 
matching. 

The representation of fuzzy data in fuzzy databases by hedge algebra approach 
very natural and simple but very true to the inherent nature of the fuzzy data exist in 
the real world. Fuzzy data representation in this way is called "correct name" and 
understand the "true nature" because it was "obtained directly" from spec database 
when the user's observation and quantification of fuzzy data, so it may says, has not 
where which fuzzy data representation yet more simple and more brief. 

 For example, when surveying the material world consideration in any context, the 
observed object are evaluated as "small" or "very small"...That assessment is essen-
tially fuzzy quantification is represented by fuzzy terms - the  fuzzy data  representa-
tion by  hedge algebra approach -  in the fuzzy database. 

Such  back to the above example to represents one's age ranged from 30 to 40, just 
use term " rather young" in that "rather"  be a hedge and "young" be a generate ele-
ment belong to a hedge algebra which is defined before.  

Like that represents fuzzy data of simple and it's also simple when manipulating 
fuzzy data. By semantics quantitative mapping v(x), terms x from its fuzzy represen-
tations will be moved into fuzzy interval - semantics neighboring of x,  it's as a topo-
logical included v(x) - semantics value x via mapped v(.) still ensures that the inherent 
semantics order. This allows us to build similar relationships level k between fuzzy 

terms, from which building operations “=k”, “≤k”, “≥k”, “≠k” to manipulate with 
fuzzy data easily available form and content like operations in relational database 
environment classics. 

5 Primacy in Data Queries 

The design goal of these databases is intended to serve for data query. Query data on 
the fuzzy relational database was difficult and almost  cannot be done for the queries 
not is built according the hedge algebra approach because  The design goal of these 
databases are intended to serve for data query. Query data on the fuzzy relational 
database was difficult and almost  cannot be done for the queries not is built accord-
ing the hedge algebra approach because it's very complex for manipulation of  match-
ing operations. 

We review follow scalability theoretical approach on the example 3.1. Relation R 
above will be transformed into the following table: 

 

Itemcode Importprice Status Saleprice 

A {0.3/2;0.7/3;0.5/4} {0.8/2;0.7/3;0.6/4} {1.0/5} 
Q {1.0/9} {0.3/5;0.7/6;0.8/7} {0.3/6;0.6/7;0.7/6} 
A {1.0/58} {0.4/5;0.7/6;0.5/7} {1.0/71} 
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Suppose now we need to make the query "find items priced high" (Query number 
2). 

To perform this query, we  performances  a fuzzy term "priced high"  as a possi-
bility distribution,  then indicates a threshold α which to the tuples satisfy the query 
conditions.  

Next we have to browse through the tuples in the relations and to compute the 
SED follow the Formula (#, #......) 

And in the computing process we have to reference the threshold at each table cor-
responds closely related......too so complex and not friendly! 

  At another query "Find items priced lower high" (Ex.1) with this query was al-
most impossible to accomplish because the comparison operations "less than" or 
"greater than" between two distribution capabilities are difficult to define.  

    On the contrary, for queries on the fuzzy relational database which follow the 
hedge algebra approach, things become much easier can confirm it meets most of 
fuzzy queries. Indeed, by the matching operations is constructed based on the "k level 
of close relations", a query in a fuzzy relational database follow the hedge algebra 
approach can be transformed into classic query (Theorem 3.2, 3.3 and 3.4). 

Now we consider the database given by following table: 

Example 5.1. The database as in Example 3.1 on Hedge algebra approach 
 

Itemcode Importprice          Status             Saleprice 

A Very low Old 5 
Q 9 New High 
A 58 Possible New 71 

 
The Importprice and Saleprice properties are linguistic variables with Dom 

(Importprice), Dom (Saleprice) defined on the same interval [1, 100] (from $ 1 to $ 
100). 

The Hedge Algebra corresponding is defined with the following parameters 
Elements generated: {low high | low <high}, negative hedges H-= {possible, rather 

| possible < Rather}, positive hedges H + = {more, very | more< very} 
 Put  fm(low) = 0.4, fm(High) = 0.6; μ(possible) = 0.15, μ(Rather) = 0.25, μ(more) 

= 0.2, μ(very) = 0.4. 
The status property is a linguistic variable with Dom (status) is defined of over in-

terval [0, 10]  
The Hedge Algebra corresponding is defined with the following parameters 
Elements generated: {Old, New | Old < New},  
Negative hedges H-= {Possible, Rather | possible < Rather}, positive hedges H + = 

{more, very | more< very} 
Put  fm(Old) = 0.4, fm(New) = 0.6; m(possible) = 0.15, m(Rather) = 0.25, 

m(more) = 0.2, m(very) = 0.4. 
With query (Ex.1), we will do the following: 
Suppose the query is done with the same rate k = 2; 
υsaleprice, r (high) = fm (low) + fm (high) * α = (0.4 + 0.6 * 0.4) * (100-1) = 63.36; 
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θ2,Importprice, r (high) = ℑr(Possible high) ∪ℑr(rather high) = ((fm (high) - μ (possi-
ble) fm (high)), (fm (high) + μ (more) fm (high)] = (0.6 - 0:15 * 0.6, 0.6 + 0.2 * 0.6] * 
(100-1) = (50.49, 71.28] 

see, t3 [Saleprice] = 71 ∈θ2, Saleprice, r (high)  and  thus the tuple second  t2, and tu-
ple 3rd, t3 satisfy the query conditions. 

With query (Ex. 2) was easily accomplished thanks to the results of the query 
above and theorems. The first tuple, t1, with t1 [Saleprice] = 5, θ2, Importprice, r (5) = [5, 
5] <θ2,Importprce , r (high) first tuple is inferred as a result of query 

Through this example, we see that the queries on the fuzzy relational database 
which is done base on hedge algebra approach with simple manipulation but with 
high efficiency. 

6 Primacy in Updating Data 

Fuzzy database model, only really practical applications when we solve radically the 
problem updated. It's "depending on the way the fuzzy data semantic is represented in 
databases and on which concepts of the comparison between the data of different 
types, including fuzzy data, can be defined" [18]. Fuzzy database model approach 
based on hedge algebra enables unified data type in fuzzy attributes by taking into 
concept of level k similar relationships. It's has made the data manipulation becomes 
simpler very much by the alternative approaches. The unified fuzzy data on each 
property makes for fuzzy data manipulation similar to the traditional data manipula-
tion. This advantage is the basis for we can build update operations. 

In order to show the advantages of the approach based on hedge algebra for the 
updating fuzzy database we again compare it with fuzzy database update problems 
follows scalability theoretical approach.  

In general, the update solutions approached based on scalability theory which the 
authors the article made, in our opinion, have not been resolved even on issue theoret-
ically. The following shows its weakness 

First, let’s insert  only  be  done  with prerequisite condition the key must to be 
certain  (the key include only certain properties), zoning  such  conditions, clearly  it's  
diminish  the  meaning  of  fuzzy  database. 

Second,  if to transfer the scheme becomes which has its normal  form  higher 
2NF then "insertion strategy"  will  "There's no meaning" because it has become  
insert operate  in the classic relational schema.  

Third, the delete  operations  done based on the query, but as analyzed above, que-
ries are made in this model  unfavorable, as  thus infer the delete operation not be 
smooth implementation . 

Fourth, repair operation done through two of operations insertion and deletion so 
it will not has been well implementation. 

The following examples show the superiority of the update data operations in the 
fuzzy database relational model which the approach based on hedge algebra. 
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Example 6.1 

Reconsider example 3.1. 
Itemcode Importprice Status Saleprice 

A Very low Old 5 
Q 9 New High 
A 58 Possible  new 71 

 
Pack all the tuples in the relations r [R1], respectively t1, t2 and t3. In the relation-

al schema exists  
FFDs R1: f = { Importprice, Status } →κSaleprice 
 
With the updated requirements: 
 
-To Add (insert)  tuple  of p = <A, 3.5, old, 7> in relations (CN1). 
-To Remove (deletion)  the tuples has saleprice  smaller  "rather high"  out of rela-

tionship (CN2). 
-To repair the value of saleprice  of  the tuples has  value at  importprice  from 

"very low"  to  "low" (CN3) 
 
With the request: CN1 
 
I need to check to see p satisfied f ? 
Since p [Importprice] = 3 ≠ (t2 [Importprice] and t3 [Importprice]), so we check if 

p [Importprice] =κt1 [very low]?.  
 We have υImporprice, r (low) = β * fm (low) = 0.6 * 0.4 * 10 = 2.4; θ2, r (low) = 

ℑr(Rather low) ∪ℑr(Possible low) = (υImportprice , r (low) - fm (Rather low), υImportprice, r 
(low) + fm (Possible low)] = ((2.4 - 0.2 * 0.4, 2.4 * 0.4 + 0:15]) * 10 = (1.6, 3]. 3.5 ∉ 
(1.6, 3]  

 So  p [Importprice ≠2 t1 [very low],  infer  p {Importprice, Status other level 2 
with t1} {Importprice , Status}, {Importprice  t2, and t3} Status {Importprice, Status} 

 
Conclusion: p satisfied FFDs f,   thus p is inserted into the above system. 
Result after inserted: 
 

Itemcode Importprice Status Saleprice 
A Very low Old 5 
Q 9 New High 
A 58 Possible  new 71 
A 3.5 Old 7 

With the request CN2 
 
The tuples are deleted, which will been satisfied with (Ex.2), that is, the first tuple 

in relation R will be deleted.  
Result after Deletion: 
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Itemcode Importprice Status Saleprice 
Q 9 New High 
A 58 Possible new 71 

 
With the request CN3 
 
The tuple satisfy the repair condition was the first tuple, t1 = <Very old, old, 5>, 

we have 2 q, r (low) = (1.6, 3].  t1 [Importprice] = 5, so it is changed becomes the 
value belong to (1.6, 3], and the value is proposed u GIANHAP, r (low) = 2.4. 

 
Result after Deletion: 

 
Itemcode Importprice Status Saleprice 

A Very low Old 2.4 
Q 9 New High 
A 58 Possible  new 71 

7 Conclusion 

It’s been several years, fuzzy databases with different approaches have tried to resolve 
the problems in capturing, representing and manipulating fuzzy detain order to ap-
proach practical applications, but results is seem to be hard to reach because theories 
is not tune to practice. 

HA was built to open new approach to fuzzy databases effectively. By natural way 
to capture the meaning of fuzzy data – linguistic term, we can say that HA is flexible 
and strong enough to represent fully fuzzy data meaning. 

Order to process linguistic terms, a linguistic value x can present by two semantic 
elements, first, semantic value of x through a sematic quantitative mapping υ, second, 
family of neighbors based on fuzzy intervals of x. From this base can build similar 
relation level k on the domain which was embedded in HA of fuzzy attribute This 
relation determine update operators which allow us to manipulate on fuzzy values 
effectively. This determines primacy of fuzzy databases based on HA considering 
aspects following as representing, querying, updating fuzzy data. This paper analyzed 
and evaluated to provide outlook onto primacy of fuzzy databases based on HA. 
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