
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
P.C. Vinh et al. (Eds.): ICTCC 2014, LNICST 144, pp. 274–291, 2015.
DOI: 10.1007/978-3-319-15392-6_27

Updating Relational Databases
with Linguistic Data Based on Hedge Algebras

Le Ngoc Hung1, Vu Minh Loc2(), and Hoang Tung3

1 Sai Gon University, Ho Chi Minh City, Vietnam
lengochungsg291958@gmail.com

2 Gia Dinh University of Information Technology, Ho Chi Minh City, Vietnam
vuminhloc@gmail.com

3 Dong Nai University, Bien Hoa, Vietnam
tungaptechbd@gmail.com

Abstract. Relational Databases (DB) with linguistic data based on hedge
algebras (HA) were introduced, following this approach, data manipulation
(include linguistic data) is simpler and more efficient, practical than the other
one. On this basis, in this paper, we will present the update operations on
relational databases with linguistic data based on HA. Update operations are
built by mean of semantically quantifying mapping (SQM) and similarity
relation of depth k, where k is the length of a linguistic value that belongs to the
values domain of an attribute.

Keywords: Hedge algebras · Relational databases with linguistic data ·
Semantically quantifying mapping · Similarity relation of depth k · Clear key ·
Mixture key · Fuzzy key

1 Introduction

Updating and querying are major issues in databases. Continuing success in building
theory database models following approaches such as: fuzzy set theory, possibility
theory, extended possibility theory ... data updating problem has been studied.
However, the results of these studies have not been reached practical requirements. In
the fuzzy relational database model with linguistic attributes based on HA, universe U
of its attributes is a set that includes two type of subsets, the first subset type contains
classical attributes and the second subset contains attributes that are considered as
linguistic variables. Linguistic and real values are adopted by linguistic variables.

In HA we have notions: semantically quantifying mapping, smallest neighboring
of depth k and similarity interval of depth k. By these notions, we can unify data type
of real and linguistic value to manipulate with fuzzy data becoming easy. This is
facility that enables us to build update operations on relation databases with linguistic
data.

The paper is organized as follows: in section 2, some basic concepts about HA
will be introduced. Section 3 deals with relation databases with linguistic data based
on HA. In section 4 update operations, the major problem in this paper, will be
studied. Some conclusions will be given in Section 5.

 Updating Relational Databases with Linguistic Data Based on Hedge Algebras 275

2 Some Basic Concepts

Definition 2.1 [1]

Let AX = (X, G, C, H, ≤) be a linear complete hedge algebras (ComLin-HA), a
mapping fm: X → [0, 1] is called a fuzziness measure (abbreviated fm) of terms
belong to X if:

1. fm(c-) + fm(c+) = 1 and)()(ufmhufmHh = ∈ , with ∀ u ∈ X, in this case

fm called complete.
2. With the constants 0, W and 1: fm (0) = fm (W) = fm (1) = 0;

3. With ∀ x, y ∈ X, ∀ h ∈ H,
)(

)(

)(

)(

yfm

hyfm

xfm

hxfm = , this ratio does not depend

any fm(x), fm(y). and it is the fuzziness measure of hedge h, denoted by μ(h).

Clause 2.1 [1]

For each fuzziness measure on X fm, the following statements are true:

1. fm(hx) = μ(h)fm(x), with ∀ x ∈ X;
2. fm(c-) + fm(c+) = 1;

3.)()(0, cfmchfm iipiq = ≠≤≤− , c ∈ {c-, c+};

4.)()(0, xfmxhfm iipiq = ≠≤≤− ;

5. αμ = −≤≤−)(1 iiq h và βμ = −≤≤−)(1 iiq h , α, β>0 and α + β = 1.

Definition 2.2 [1]

A sign function: X → {-1, 0, 1} is a mapping which is defined recursively as
follows: with h, h’ ∈ H and c ∈ {c-, c+} then

1. Sign(c-) = -1, Sign(c+) = +1,
2. Sign(hc) = - Sign(c) if h is negative w.r.t c, where as Sign(hc) = + Sign(c);
3. Sign(h’hx) = - Sign(hx), if h’hx ≠ hx and h’ is negative w.r.t h; Sign(h’hx) = +

Sign(hx) if if h’hx ≠ hx and h’ is positive w.r.t h
Sign (h'hx) = + Sign (hx), if h'hx ≠ hx and h' is negative w.r.t h;
4. Sign (h'hx) = 0 if h'hx = hx.

Definition 2.3 [1]

Let AX = (X, G, C, He, , Φ, ≤) be a ComLin-HA

276 L.N. Hung et al.

A mapping ϕ: X → [0, 1] is called semantically quantifying mapping
(abbreviated as SQM) of AX, the following affirms are true:

1. ϕ is mapped 1-1 from X on [0, 1] and maintain order on the X. With ∀ x, y ∈
X, x < y  ϕ(x) < ϕ(y) and ϕ(0) = 0, ϕ(1) = 1, với 0, 1 ∈ c;

2. ∀ x ∈ X, ϕ(Φx) = infimum ϕ(H(x)) and ϕ(x) = supremum ϕ(H(x)).

Definition 2.4 [1, 3- 4]

fm is the fuzziness measure on X. a mapping ϕ: X → [0, 1], induced by fm on X,
is defined as follows:

1. ϕ(W) = θ = fm(c-), ϕ(c-) = θ - αfm(c-) = βfm(c-), ϕ(c+) = θ + αfm(c+);

2. ϕ(hjx) = ϕ(x) + Sign(hjx){)()()()(xhfmxhxhfm jji
j

jSigni ω− = }; with j ∈

{j: -q ≤ j ≤ p và j ≠ 0} (*) and ω(hjx) =)])(()(1[
2

1 αβ −+ xhhSignxhSign jpj ∈

{α, β};
3. ϕ(Φc-) = 0, ϕ(c-) = θ = ϕ(Φc+), ϕ(c+) = 1, with every j like (*), ϕ(Φhjx) =

ϕ(x) + Sign(hjx){)()(2

)(1
)(

)(xfmhi

xhSgn
jSignj

jSigni

j

μ
+

−

= }

ϕ(hjx) = ϕ(x) + Sign(hjx){)()(2

)(1
)(

)(xfmhi

xhSgn
jSignj

jSigni

j

μ
−

−

= }

3 Relational Database with Linguistic Data Based on Hedge
Algebra

3.1 The Basic Ideas for Building the Databases with Linguistic Data Based on
Hedge Algebras

Authors in [1, 3-4] have built a relational database model with language data based on
HA as follows:

Relational database schema with linguistic data DB = {U, R1, R2, ..., Rm, Const},
U = {A1, ... An} is attribute universe; Ri are relational schemas; Const is a set of data
constraint on DB. Each Ri may contain two attribute groups, first group is normal
attributes (classical attributes), the remaining groups is linguistic attributes.

Each linguistic attribute can be viewed as a linguistic variable that its value
domain are linguistic values constitutes an HA mixed with set of real values. If Ai is
a linguistic attribute then its value domain is D(Ai) = LDom (Ai) ∪ DAi, in which,
LDom (Ai) is a set of linguistic values and the DAi is a set of real values.

In addition, according to [4] the value domain of linguistic attribute can also
receive value types such as interval values, undefined values, missing values,
uncertain values, unknown values. These values can be transformed to unify with
linguistic data in one data type. In this paper, we do not deal with these data types
mentioned above.

 Updating Relational Databases with Linguistic Data Based on Hedge Algebras 277

Linguistic and real data type can be unified by mean of semantically quantifying
mapping and similar relation of depth k. Based on this, a linguistic value x belong to
linguistic values domain of a linguistic attribute, can be expressed through two
semantic components:

- The first one is a semantic value which belong to the real domain DA, it is just
the value of υ(x) (υ is a semantically quantifying mapping).

- The second one is a finite set of fuzziness-intervals-based neighborhoods.

Along with the concept of similar interval of depth k, Sk, we can build equal and
matching operation of depth k to compare not only between two linguistic values also
between linguistic value and real value.

Similar relation of depth k based on equivalence classes, Sk, composed from D(A)
permitting us to build matching operation on the databases. With x, y in D(A), we call
“x similar to y at depth k or x =ky” if smallest neighborhoods of them located into
same equivalence class of depth k.

We can construct equivalence classes, Sk, as follows:

Denote: k* is a positive integer that is maximum length of each value in
D(A).

|x| ≤ k* is the length of linguistic values x, put j = | x |, Tk(x) is fuzziness interval
of depth k that contain x by mean of mapping ϕ.

Xk is the set of linguistic values of length k, U is the universe of attributes
belong to the database.

a. If k = j: Omin, k(x) = Tk + 1(h-1x) ∪ Tk + 1(h1x);
b. If 1≤ k < j: Omin, k(x) = Tj(x);
c. if j + 1 ≤ k ≤ k*: Omin, k(x) = Tk + 1(hlx) ∪ Tk + 1(hl’x), with l, l’ ∈ {-q, p}.
Put H1 is subset of strong hedges , H2 is subset of weak hedges, H1 = {hi, h-j | 1≤

i ≤ [p/2], 1 ≤ j ≤ [q/2]}, H2 = {hi, h-j | [p/2] ≤ i ≤ p, [q/2] ≤ j ≤ q}.
Put Ik+1(Hn) = {Tk+1(hiy) | y ∈ Xk, hi ∈ Hn}, with n = 1, 2. Two intervals Tk+1(x)

and Tk+1(y) in Ik+1(Hn) are called interconnected exist intervals belong to Ik+1(Hn)
consecutive ranging from Tk+1(x) to Tk+1(y). This relationship will compose Ik+1(Hn)
into interconnected components.

Denote C be the set of similarity intervals of depth k of linguistic value x, C is
defined as follows:

With Ik+1(H1) = {Tk+1(hiy)| y ∈ Xk, hi∈ H1}, C = {Tk+1(hiy) | hi ∈ H1}
With Ik+1(H1) = {Tk+1(hiy)| y ∈ Xk, hi∈ H2}, Suppose that Xk = {xs | s = 0, …, m-

1} of m elements are arranged in the sequence so that xi ≤ xj if and only if i ≤ j.

Denote H −
2 = H2 ∩ H- and H +

2 = H2 ∩ H+. Clusters generated from fuzziness

intervals Ik+1(H2) has the following three categories:

a. Cluster on the left x0: {Tk+1(hix0) | hi ∈ H +
2 }.

b. Cluster on the right xm-1: {Tk+1(hixm-1) | hi ∈ H +
2 }.

c. Clusters in between xs and xs+1 with s = 0, ..., m-2.; depends on Sgn(hpxs)
and Sgn(hpxs+1):

278 L.N. Hung et al.

C = {Tk+1(hixs), Tk+1(h’jxs+1) | hi ∈ H +
2 , h’j ∈ H −

2 }, if Sgn(hpxs) = +1 and

Sign(hpxs+1) = +1;

C = {Tk+1(hixs), Tk+1(h’jxs+1) | hi ∈ H +
2 , h’j ∈ H +

2 }, if Sgn(hpxs) = +1 and

Sign(hpxs+1) = +1;

C = {Tk+1(hixs), Tk+1(h’jxs+1) | hi ∈ H −
2 , h’j ∈ H −

2 }, if Sgn(hpxs) = +1 and

Sign(hpxs+1) = +1;

C = {Tk+1(hixs), Tk+1(h’jxs+1) | hi ∈ H −
2 , h’j ∈ H +

2 }, if Sgn(hpxs) = +1 and

Sign(hpxs+1) = +1.
Set the all clusters C is denoted ©.

Definition 3.1 [5]

Each C ∈ ©, similarity interval of depth k that correspond to C is:

Sk(C) = ∪ {Tk+1 | Tk+1 ∈ C}

Clause 3.1 [5]

Let AX be a ComLin-HA of the attribute A, H+ and H- have at least two element, the
fuzziness quantifying parameters are determined following the definition 2.4. We
have:

a. For each k, {Sk(u) | u ∈ X ∪ C} are uniquely identified and it's a partition of
interval [0, 1]

b. For each x, u ∈ X ∪ C, if ϕ(x) ∈ Sk(u) then Omin, k(x) ⊆ Sk(u)

Definition 3.2 [1]

Let AX be a ComLin-HA and fm is the fuzziness measurer. Suppose that ϕA is SQM on
AX with each k that 1 ≤ k ≤ k*, Sk is similarity relationship of depth k on DA. Then, with
two arbitrary tuples t, s on U, t[A] and s[A] on the value domain has been called the
equal level k, denoted by t[A] = fm, k s[A] or t[A] = k s[A], if there exists a equivalence
class Sk (u) of Sk so that Omin, k(t[A]) ⊆ Sk(u) and Omin, k(s[A]) ⊆ Sk(u).

To be able to compare two values in the value domain of linguistic attribute as
well as compare the value of two tuples on a set of attributes we have the following
two definitions:

Definition 3.3 [1]

Suppose that t and s are two tuples in the U. We write t[Ai] = ϕ, ks[Ai] and they are
called equal in depth k, if the following conditions are true:

1. If t[Ai], s[Ai] ∈ DA i
then t[Ai] = s[Ai];

2. If only one of the two tuples t[Ai] or s [Ai] is the linguistic data, assume that t
[Ai] then s[Ai] ∈ Sk(t[Ai]);

 Updating Relational Databases with Linguistic Data Based on Hedge Algebras 279

Definition 3.4 [1]

Assume t, s the same as in definition 3.2, then

1. We write t[Ai] < ϕ, ks[Ai], if Sk(t[Ai]) < Sk(s[Ai]);
2. We write t[Ai] > ϕ, ks[Ai], if Sk(t[Ai]) > Sk(s[Ai]) ;
3. We write t[Ai] ≤ϕ, ks[Ai], if t[Ai] = ϕ, ks[Ai] or Sk(t[Ai]) < Sk(s[Ai]) and t[Ai]≥ϕ,

ks[Ai], if t[Ai] = ϕ, ks[Ai] or Sk(t[Ai]) > Sk(s[Ai]).

Thus, a relational database with linguistic data, will be built with above ideas ,
they allow us to deploy this type of databases by following reasons:

- The way to build models of a relational database with linguistic data based on
hedge algebras very simple, but the ability to capture, as well as the performed
actions with linguistic information is effective;

- Data in the linguistic attributes of the database has been unified into one data
type that should be very favorable for manipulation;

- Linguistic data in real applications usually only the maximum length is 3 and the
number of these linguistic values are commonly used is not greater, therefore it's
not too complex to build a series of elements of a Linguistic attribute;

- It is not difficult to construct a sequence of similarity intervals of depth k (Sk) to
the linguistic values, based on a sequence of this intervals that manipulation with data
become simple.

3.2 Fuzzy Functional Dependencies (FFD)

Authors in [3] presented general issues and complete information about FFD, we
recall some of the concepts, definitions important about FFD:

Let A is a linguistic attribute of the relational database with linguistic data, it will
be combined with a set of similarity relationships kA, this relationship is to define a
concept of the fuzziness uncertain equal in level kA and the denoted =k(A), 0 ≤ kA ≤ kA,
kA is the maximum length of terms over A.

K : U → N (N is the set of positive integers) is a function of parts, it is defined on
the set X ⊆ U and assigned to each linguistic attribute A is a positive integer K(A)
satisfies conditions kA ≥ K(A) = kA > 0.

As so K = {kA : A ∈ X}; if exists K = {kA: A ∈ X} and exists K’ = {k’A: A ∈ X
and write KX ≥ K’X if KA ≥ K’A for all A ∈ X.

With X ⊆ U, we say that two tuples of t, s on U are equal with the similarity level
K, and write t[X] = Ks[X], if we have t[A] = K(A)s[A], for all A ∈ X.

Definition 3.3 [3]

With DB is a relational database with linguistic data and R(U) is a relational schema
of DB. With any expression f = X →KY format called a level K fuzziness
dependencies K (K-FFD), X, Y ⊆ R and K is a similarity level to the previous
definition XY = X ∪ Y, and its semantics are interpreted as follows:

280 L.N. Hung et al.

a relation any r(R), f is called satisfies r if
(∀ t, s ∈ r) (t[X] =Ks[X])  t[Y] =Ks[Y])
In this case we also say that the relationship r satisfied X →KY or X →KY be true

on r.
Offers by [3] we have axiomatic system for case fuzziness function depends as

following:

K1(Reflexivity): if Y ⊆ X then X →KY
K2(Subsumption): if X →KY then X →K*Y, with every K* on XY so that K*X

≥ KX and K*Y ≤ KY.
K3(Augmentation): if X →KY then XZ →K V K*(Z) YZ, with all Z ⊆ U and with

all K*on Z so that K*Y ∩ Z ≤ KY ∩ Z, where XZ = X ∪ Z. and YZ = Y ∪ Z.
K4 (TransitivIty): if X →KY, Y →K*Z then X →K V K* Z, with K*Y ≤ KY with X

⊆ U and t, s are two tuples in U, we write t[X] ≤K s[X], if with any ∀A ∈ X we

always have t[A] ≤K A
 s[A].

Definition 3.4 [10]

Let R(U) be a relational shema, relation r on R. X, Y ⊆ U are two set of attributes. We
can say r satisfy monotonically increasing fuzzy function dependencies X determine
Y at depth k, abbreviated X+ →KY in r, if we have: ∀ t, s ∈ r, t[X]≤K s[X]  t[Y] ≤K
s[X].

Definition 3.5 [10]

Let R(U) be a relational shema, relation r on R. X, Y ⊆ U are two set of attributes. We
can say r satisfy monotonically decreasing fuzzy function dependencies X determine
Y at depth k, abbreviated X+ →KY in r, if we have: ∀ t, s ∈ r, t[X] ≤K s[X]  t[Y] ≥K
s[X].

Definition 3.6

Let R(U) is a relational schema, F be FFD on U, K are called key of R(U) if and only
if the two following conditions are simultaneously satisfied:

1. K →KU
2. Do not exists K’ ⊂ K so that K’ →KU.

4 Update Operations

If we resolve the problem of updating on fuzzy databases successfully, we can build
significant factual applications. Fuzzy databases with other approaches such as similar
relation, possibility theory, extended possibility theory, … show many limits in
capturing, presenting and storing fuzzy data (see [5], [7]). So, the ability to deploy
applications of these model are low because of this reason. With HA, we have concept
of semantically quantifying mapping, smallest neighboring of depth k and similarity

 Updating Relational Databases with Linguistic Data Based on Hedge Algebras 281

interval of depth k. We can use these concepts to build matching operation, based on
this operation, we will build updating operations on databases with linguistic.

As stated above, a relational databases with linguistic data includes two attribute
groups, the first group are the classical attributes, the second group are linguistic
attributes as linguistic variables.

In fact, the value of linguistic data in linguistic attributes do not usually have
greater than 3 of length, for instance, we consider a linguistic attribute to store
information describing the new or old status of a product. The values of this attribute
can be “very new”, “very very new “ ... or “old”, “very old”, “very very old”. The
values like “very very very very new” … that is not factual. Thus, we suppose that
linguistic attribute values that has the length is always less than or equal to 3.

We distinguish three types of relational schema with linguistic data, including:
relational schema with linguistic data has clear key (the key includes only classical
attributes), mixture key (the key includes classical attributes and linguistic attributes)
and fuzzy key (the key only includes linguistic attributes).

As we known, the update operations that include insert, modify and delete
operations. Now, we’ll study these operations on databases with linguistic data.

Let R (U, F) is a relational schema, in which, U is the universe of attributes, F = F
= F1 ∪ F2. With F1 is the set of FFD by definition 3.3, F2 is the set of monotonically
increasing (decreasing) fuzzy function dependencies by the definitions 3.4 and 3.5.
Let U = A1… An, U = U1 ∪ U2, U1 = A1… Am are classical attributes and U2 = Am+1…
An are the linguistic attributes.

4.1 Insert Operation

Insert operation is understood as executed by adding tuple t into a relation r(R).
Tuple t will be inserted into r, if t satisfies the data constraint on r, concretely, t
must satisfy the FFD in F. These FFD in F are divided into two groups, first group,
F1 and second group, F2, as mentioned above.

Tuple t will be inserted into r(R) if t can be passed two checks: check t if
satisfies F1 and check if t satisfies F2 ? and another problem of insert operation to
consider: tuple t as mentioned above, before it is inserted into r(R), first, we needs to
check t satisfies F1? For each s ∈ r(R), this check is actually check to see t and s have
the same key at depth k or not. Thus, when we check to see whether there's the same
key between t and s, if we do not specify clearly which of k that is matching, we will
have to make even a lot of operations to insert t in the database. This case will
become very complicated when r(R) has the large of tuples. So, it's necessary to
specify what is the depth of k clearly. With the things that we discussed above, insert
operation can be done as follows:

Insertion can be divided into three cases corresponding to three types of relational
schema:

- In the first case: insertion in the relation scheme that has the clear key
- In the second case: insertion in the relation scheme has the mixture key
- In the third case: insertion in the relation scheme has The fuzzy key

282 L.N. Hung et al.

4.1.1 Insert Operation in the Relational Schema that Has the Clear Key

Check Data Constraint with F1

This check is tested to verify that tuple t be duplicated the key with any tuple in r or
not. It is done the same as in the classical relational schema. If the tuple t satisfied key
constraint then it will continue to be tested with data dependencies F2 with depth k,
otherwise tuple t will not be inserted into r (R).

Check Data Constraint with F2

If F2 exist, we will use them to check if the tuple t satisfy the condition in definition
3.4 or 3.5, if tuple t satisfy these conditions then t will be inserted into r.

4.1.2 Insert Operation in the Relational Schema that Has the Mixed Key
The examination of data constraint in this case more complicated than the first case.
The key of relational schema in this case = group of classical attributes (X) ∪ group
of fuzzy attributes (Y).

Check Data Constraint with F1

For each s ∈ r if s(key) = t(key) ⇔ s(X) = t(X) (1) and s(Y) =K t(Y) (2).
The examination (1) is simple because of the comparison between two real values.

Suppose (1) is correct, the remaining problem is to check (2).
To be able to check (2) we must perform the following steps:

- Build similarity intervals of depth kAi of the values ∈ Dom (Ai) with Ai ∈ Y;

- If with ∀Ai ∈ Y that t[Ai] ∈ Sk Ai
(s[Ai]) then testing (2) is correct, that mean

tuple t will do not be inserted onto r (R) (because the same key), in contrast, tuple t
will be checked with the group of F2 (if available).

Check Data Constraint with F2

This check is done the same as the first case.
To facilitate tracking of data values in a relation with mixtures key or fuzzy key,

each relation need to be supplemented attribute of depth k that contains the set of

values of matching of depth kAi . Each value corresponds to a tuple in relation
database to indicate the participating of this tuple in relation databases following the
certain matching of depth k.

For example, we have the following relation:

K A B
3, 2 a1 b2
2, 2 a2 b2

In the above relation, we can see the first tuple, t1<a1, b2> is inserted into relation

by matching of depth k = {3, 2}.

 Updating Relational Databases with Linguistic Data Based on Hedge Algebras 283

4.1.3 Insert Operation in the Relational Schema that Has the Fuzzy Key

Check Data Constraint with F1

Verifying duplicate key in this case is the same as case 2, because the relational
schema’s key do not include classical attributes.

Check with F2 Data Constraint with F2

 It's implemented as two above cases.

4.2 The Delete Operation

Executing this operation is accompanied by the delete condition to identify the tuples
should be deleted, keep in mind if this condition is not accompanied by any
conditions then all of the tuples in the relation will be deleted. Delete condition is
actually a classical query, fuzzy query or both of all; With a fuzzy query, based on
HA, we can convert to a classical query of depth k. We can distinguish three case of
delete conditions:

Case 1:
The delete condition do not include linguistic attributes (classical query). We can
handle this case same as in classical databases.

Case 2:
The delete condition that has includes linguistic attributes (include both fuzzy query
and classical query)

This case, the delete condition has the form: ∀ t ∈ r, t (delete condition) = true ⇔

(t[X1] ∂ value1) θ (t[X2] ∂ value2) … θ (t[Xu] ∂ valueu) θ t[Y1] ∂k 1
fvalue1) θ (t[Y2] ∂k

2
fvalue2)…θ(t[Yv] ∂k v

fvaluev) is true; in which Xi ∈ U1 (i=1…u), Yj ∈ U2 (j = 1 …

v); θ is the AND or OR operations; ∂ is one equation =, ≤, ≥, ≠, > and <.
The tuple t satisfies two condition groups simultaneously, the first ones, tuple t

must be satisfied on set of Xi ∈ U1 (i=1…u), the second ones, tuple t must be
satisfied on set of Yj ∈U2 (j = 1 … v).

The first condition group was processed same as the classical databases,
second condition group we will use methods (*) below to process.

 (1). Build list Vi of level kYi similarity intervals, SkYi in Dom (Yi) with Yi
∈ U2

 (2). For each t ∈ r:

- Calculate similarity intervals Sk
iY
(t[Yi]);

- Calculate Omin, k i
(fvaluei), fvaluei is a linguistic values;

- Verify whether value of logical expression t[Y1] ∂k 1
fvalue1) θ (t[Y2] ∂k 2

fvalue2)…θ(t[Yv] ∂k v
fvaluev) is true or not?

284 L.N. Hung et al.

4.3 The Modify Operation

Modify operation to be made through the processing of the two conditions, first
condition is used to determine tuples which be modified with matching of depth k in
r (denoted X, X ⊆ r, assume X has m elements), the second condition is the condition

that ∀ t ∈ X after modified data be satisfied.
So, the modify operation in nature is to delete tuples that it satisfies the condition

1 (in X) and insert new tuples that it satisfies the condition 2 into r. We will study two
methods for handling this condition.

Processing Conditions 1

Condition 1 of modify operation is the same as delete condition, so we can apply
again the way of condition processing of the delete operation above.

Processing Conditions 2

The result after condition 1 processed is understood as extracting X from r, further work
can be described as follows: extract tuple ti (i = 1, …, m) form X and edit the values
on some attributes of the ti so that it satisfies conditions 2 and finally insert ti into r.

The problem is that how do we modify the value of some attributes of ti? we
would classify the attributes of ti that its values be modified into two groups:

The first group: comprises the classical attributes group
 The modifying the value of this group is the same as in the classic.
The second group: consists of linguistic attributes
Modifying the value of this group is not simple, it's usually classified into the

following cases:

Case 1
A real value will be modified to another real value equal to a linguistic value of depth k.

For example: in a employee salary management database, we have the request:
"Look for employees with relatively rather young age and their contributions at same
level to raise their salary up to quite high ".

Suppose that with matching operation of depth k = 2, an employee’s salary level
at 2.0 belong to rather low level, now, we need to modify this salary level become to
linguistic value at rather high. This modify operation is called modifying a real
value become to another real value other that it is similarity of depth k with a
linguistic value.

In general, we will process this case as follows:
real c value is converted to real b value, that it is similarity of depth k with x

linguistic values.
if a’ = ϕ(x) , b is similarity to with x of depth k (∀ k ≤ k*). Thus, in this case

the c value will be changed to a’ = ϕ(x).

Case 2
A linguistic value will be replaced by a purely linguistic values, such as "rather good"
replaced by "good"

 Updating Relational Databases with Linguistic Data Based on Hedge Algebras 285

To proceed this case, a linguistic value x will be modified to become a linguistic
value y, easily, we replace string represented x by string represented y.

Case 3
Linguistic values x will be modified to a linguistic values y, with condition: y = x ∂ z,
∂ is a operation of arithmetic and z is a numeric value.

This case occurs when the condition 2 (increasing or decreasing value) that
require the values of a specific attribute of tuples to satisfy the condition. Some
linguistic values of attributes (remained values) will also have to change its value to
the corresponding to the numeric value.

For example, suppose that we have the condition 2 on an attribute A of a database
as follows:

"Increase values (for tuples that satisfy the first condition) of attribute A up to
15%" (#). How can we solve this query if the values of A do not include linguistic
values but also include real values ? We cannot perform this operation y = x ∂ z
because x and y are linguistic values.

To solve this problem, we propose approximate solution for this case as follows:
We will modify the "core" of linguistic values x, ϕ(x) become to fvalue so that

fvalue = ϕ(x) ∂ z. Next, we will review a series of similar intervals at level k for any k
≤ k* of values of attribute domain which we are considering to determine what
similarity intervals of depth k fvalue belong to, if fvalue ∈ Sk(x’) then x will be
modified become to y.

4.4 Some Examples about Databases with Linguistic Values

Example 1

Let’s consider relational shema R1(SffCode, Fullname, Recowork, Reward) store
information about bonus for staffs in a company. Sffcode: Staff code; Reworkco:
review work completion.

Recowork and Reward are two linguistic attributes with agreement

Dom(Recowork) = [0, 10] (review work completion get values from 0 to 10 points)
with generated elements of {Poor, Good }, H-= {Rather, Possible }, H + = {More,
Very} the Dom (Reward) = [0, 500] (Reward get the values from 0 to 500 million) are

r(R1)

SffCode Fullname Recowork Reward

A001 Nguyen Van Phu More Good More High
A002 Truong Phi Qua Poor Rather Low
A003 Huynh Phu Hao 8.5 More High
A004 Bang Quan Very Good 300
A005 Banh Tien Len 2 More Low
A006 Bui The Gian Very very good Very High

286 L.N. Hung et al.

linguistic variables with generated elements of {Low, High}, H- = {Rather, Possible},
H+ = {More, Very}

For attribute Recowork: Put fm(Poor) = 0.35 fm(Good) = 0.65; μ(Possible) =
0:15, μ(Rather) = 0.25 μ(More) = 0.2, μ(Very) = 0.4.

For attribute Reward: Put fm(Low) = 0:55, fm(High) = 0:45; μ(Possible) =
0:15, μ(Rather) = 0.25 μ(More) = 0.2, μ(Very) = 0.4.

On R we identify set F of FFD as follows:
[StffCode]→K[Funame], two attributes StffCode and Funame are classical one, so

FFD fuzzy return the common dependencies:
[SffCode] → [Funame] (1);
[StffCode] →K[Recowork] (2);
[StffCode] →K[Reword] (3);
These FFD are valid with k > 0.
StffCode is the key of R1
With every attributes belong to R3, suppose k* = 3.

Example 2

R2 (Antiqes, Techpater, Seprice) store information about the stock character of
antique shops. Antiqes: Antiques Name; Techpater: Technical Parameter; Seprice:
Sale Price.

r (R2)
Depth
of K

Antiqes Techpater Seprice

2, 2 Bowl Rather Good More High
1, 2 Bowl Good Low
3, 2 Plate Very Good High
3, 2 Big jar Possible Good Rather High
3, 2 Vase Rather Poor Rather High
3, 3 Cup Very Poor Rather High
3, 2 Big jar 4.5 Very Low

Attribute Techpater is a linguistic variable with Dom(Techpater) = [0, 10] and

two generated elements of {Good, Poor}
H - = {Rather, Possible}, H+ = {more very}. Put fm (Poor) = 0.45, fm(Good) =

0.55; μ(Possible) = 0.15, μ(Rather) = 0.25, μ(more) = 0.2, μ(very) = 0.4.
- Attribute SaPrice is a linguistic variable with Dom(SaPrice) = [500, 100000]

(from 500 USD to 100000 USD)
With two generated elements of {Low , High}. H - = {Rather, Possible } , H + =

{More,Very}. Put fm(Low) = 0.4, fm (High) = 0.6, μ(Possible) = 0.15, μ(Rather) =
0.25, μ(More) = 0.2, μ(Very) = 0.4.

Review set F of FFD on R2 include:
[Antiqes] [Techpater]→KSaPrice (5);
The Key on R2 be [Antiqes] [Techpater];
With every attributes in R3 . Suppose k* = 3

 Updating Relational Databases with Linguistic Data Based on Hedge Algebras 287

Example 3

R3(Brd, Impri , Stus, Sapri) of a database about sale the old and new garments. Brd:
Brand; Impri: Import price; Stus: Status, Sapri: Sale Price.

r(R3)

Depth of
K

Brd Impri Stus Sapri

2, 2, 2 Good 7000 Rather Old Rather High
1, 1, 1 Rather Poor Very Low Old 17000

- Attribute Brd is a linguistic variable with Dom (Brd) = [0, 10] and two generated

elements of {Good, Poor}, H- = {Rather, Possible}, H+ = {More, Very}.
Put fm (Poor) = 0.45, fm (Good) = 0.55; μ(Possible) = 0.15, μ(Rather) = 0.25,

μ(More) = 0.2, μ(Very) = 0.4.
- Attribute Impri is a linguistic variable Dom (Impri) = [5000, 150000] (from

150000 VND to 5000 VND). With two generated elements of {Low , High}, H- =
{Rather, Possible} , H+ = {More, Very}.

Put fm (Low) = 0.4, fm (High) = 0.6; μ(Possible) = 0.15, μ(Rather) = 0.25,
μ(More) = 0.2, μVery) = 0.4.

- Attribute Stus is a linguistic variable with Dom (Tinhtrang) = [0, 10] and two
generated elements {Old, New},

H- = {Rather, Possible}, H + = {More, Very}.
Put fm (Old) = 0.4, fm (New) = 0.6; μ(Possible) = 0.15, μ(Rather) = 0.25,

μ(More) = 0.2, μ(Very) = 0.4.
- Attribute Sapri is a linguistic variable Dom (Sapri) = [10000, 500000] (from

10000 VND to 500000 VND). With two generated elements of {Low, High}, H- =
{Rather, Possible} H+ = {More,Very}.

 Put fm(Low) = 0.4, fm (High) = 0.6; μ(Possible) = 015, μ(Rather) = 0.25,
μ(More) = 0.2, μ(Very) = 0.4.

Review:
F is a set of FFD on R3 include:
[Brd] [Impri] [Stus] →K[Sapri] (6).
The Key of R3 is [Brd] [Impri] [Stus].
With every attributes in R3, suppose k* = 3
Next, we will present the update on three schemas R1, R2, R3. schemes are

distinguished by their nature of key. The key of R1 only include clear attributes, the
key of R2 include mixed attributes (clear and fuzzy); the key of R3 only include
fuzzy attributes.

Insert Operation

Suppose we have the following requirements:

 Inserting tuple t = <"A008", "Phuong Nam Ngang", "Poor", "Rather Low">
on relations r (R1);

288 L.N. Hung et al.

 Inserting tuple p = <"Vase", 5.0, "Rather high"> on relations r (R2) with
matching level between p and the tuples in relation is KTechpater,Sapri = {1, 1};

 Inserting tuple q = <"Rather Good", 150000, " Rather Old", "230000"> with
level matching between p and tuples of the relationship is KImpri, Stus = {1, 1}.

With the Request 
This case a tuple is inserted into the relational schema with its key only include
classical attributes. Tuple t is inserted into r(R1) if t satisfy the FFDs:

 t satisfied FFDs: (1), (2), (3) and also satisfied monotonically increasing FFD (4).
Conclusion: t is inserted r(R1)
r(R1) after tuple t is inserted as follows:

With the Request 
This is insert operation on relational schema that its key contains mixed between
fuzzy attribute and classical ones.

Check p satisfies for FFD (5)?
For each s ∈ r(R2), we need to check p and s having same value ? that mean p and

s simultaneously satisfy FFD (5)?
Case p[Antiqes] = s[Antiqes], we need to check p [Techpater] =1 s[Techpater]?
If p[Antiqes] ≠ s[Antiqes], we conclude p and s satisfy with (5).
If ∃ s ∈ r so that key(p) =k key(s), we will conclude p does not satisfy (5) and

obviously p can not be inserted on r(R2).
Concretely, with the p as above, p[Antiqes] = "Big jar", this value is different

from all value in attribute Antiqes of tuples in r(R2) except tuple 4 (s4) and tuple 7
(S7). So, we just check if p[Techpater] =1 s4 [Techpater] then p[Saprice] =1 s4

[Saprice] ? (~)
 And if p [Techpater] =1 s7[Techpater] then p[Saprice] =1 s7 [Saprice]? (~ ~).
 Consider (~): With the matching of depth k = 1, S1(possible good) = T1(possible

good) = ((ϕ(Fine) + α.fm(Fine)) - fm (Possible good), ϕ(Fine) + α.fm(Fine))] = (0:45

SffC
ode

Fullname Recowork Reward

A001 Nguyen Van Phu More Good More High

A002 Truong Phi Qua Poor Rather Low

A003 Huynh Phu Hao 8.5 More High

A004 Bang Quan Very Good 300

A005 Banh Tien Len 2 More Low

A006 Bui The Gian Very very good Very High

A008 Phuong Nam Ngang Good Rather Low

 Updating Relational Databases with Linguistic Data Based on Hedge Algebras 289

+ 0.4 * 0:55 to 0:15 * 0:55, 0:45 + 0:55 * 0.4] = (0:45, 0.67], it mean interval (4.5,
6.7] on the reference value domain. S4 [Techpater] = 5.0 ∈ S1[Possible good) so
p[Techpater] =1 s4[Techpater]. Now we consider p[Sapri] =1 s4[Sapri]?

 p[Sapri] = "high" = s4[Sapri] so (~) is correct, mean p correct with the s4, so p
will not be inserted on r(R2) and we do not need to consider (~ ~).

Conclusion: The tuple p is not inserted into relations r(R2) at matching of depth
KTechpater, Sapri = {1, 1}. Relations r(R2) remain status.

With the Request 
This is case that relational schema has only fuzzy key.

Check for each s ∈ r(R3) if s and q satisfy (6)?
With first tuple (s1): we have s1[Impri] ≠ q[Impri], so the value of key are

different on s1 and q, that mean they satisfies (6)
With second tuple (s2): We have S1(very low) = [0 +5, fm (very low) * (150000 -

5000) +5] = [5000, 0.4 * 0.4 * 145000 +5000] = [5000, 28200], to replace q [Impri] =
150000 ∉ S1(very low), so q[Impri] ≠1s1[Impri], from this, we have value of key on
s2 and q are different, that mean they satisfy (6).

Conclusion: q will be inserted into r(R3) and r(R3) after insert tuple q as follows:

Level K Brd Impri Stus Sapri
2, 2, 2 Good 7000 Rather Old Rather High
1, 1, 1 Rather Poor Very Low Old 17000
1, 1, 1 Rather Good 150000 Old 23000

Delete Operation

Suppose that we have the following requirements:
- "Delete from r(R1) tuples which have "poor" Brd and the depth of k at kRecowork

=1 (when we apply delete condition" ;
Deletion condition includes linguistic attribute which can be formulated as

t[Recowork]=1"Poor". We have: S1(Poor) = (1.4, 2.6] and easily see that on relation
r(R1) tuple 2 (s2) and tuple 5 (s5) will be deleted, because s2[Recowork] and
s5[Recowork] belong to S1(Poor).

Relation r(R1) after delete:

SffCode Fullname Recowork Reward

A001 Nguyen Van Phu More Good More High

A003 Huynh Phu Hao 8.5 More High

A004 Bang Quan Very Good 300

A006 Bui The Gian Very very good Very High

290 L.N. Hung et al.

Modify Operation

Suppose we have the following requirements:
- " With relations r(R1) find all persons who have “very good” recowork, then

modified their Reward level become "High" (the matching operation of depth k=2)
(5)

Consider the Requirements (5)
Condition 1: All tuples t satisfying this condition, they must have t [Recowork]
=2"Very Good". we have S3(Very Good) = ((1 - fm (Very Good) + fm (Rather Very
Good), 1-fm (Very Very Good)] * 10 = (8.1, 9.0]; we have tuples 3 and 4 of r(R1)
will be modified values.

Condition 2: With tuple 3 (s3), value of attribute Reward satisfied. With tuple 4th
(s4), we have s4[Reward] = 300 ∉ S2(More High). We have ϕ(More High) = 1 - fm
(Very High) - bfm(More High) = 0.71, so, ϕ(300) will be replaced by ϕj(More High),
corresponding to the value of reference domain is 0.71 * 500 = 355.

Relation r(R1) after modified as required (5):

5 Conclusion

In this paper, we present updating operations on relational databases model with
linguistic data based on hedge algebra, included the operations insert, delete and
modify. Insert operation is proposed for the three relational schema types, including
relational schema with clear key, with fuzzy key and key including clear attributes
and fuzzy one; delete operation is done entirely due the delete condition is determined
based on the idea converting a fuzzy query become to a clear query with the similar
level k; modify operation to be carried out through the delete and insert operation.

With hedge algebras we have some concepts: SQM mapping, fuzziness-intervals-
based neighborhoods of a point, k-equality "=k " which enable us to build updating
operations on relational databases based on hedge algebras more conveniently than on
the other one.

SffCode Fullname Recowork Reward

A001 Nguyen Van Phu More Good More High

A002 Truong Phi Qua Poor Rather Low

A003 Huynh Phu Hao 8.5 More High

A004 Bang Quan Very Good 355

A005 Banh Tien Len 2 More Low

A006 Bui The Gian Very very good Very High

 Updating Relational Databases with Linguistic Data Based on Hedge Algebras 291

References

1. Ho, N.C., Wechler, W.: Hedge algebras: An algebraic approach to structures of sets of
linguistic domains of linguistic truth variable. Fuzzy Sets and Systems 35(3), 281–293
(1990)

2. Ho, N.C., Lan, V.N.: Hedge algebras: an algebraic approach to domains of linguistic
variables and their applicability

3. Ho, N.C.: Fuzzy Relational Database with Linguistic Data – Part II: Fuzzy Functional
Dependencies, Fuzzy Sets and Systems

4. Ho, N.C.: Linguistic Databases: Relational Model and Hedge-Algebra-Based Linguistic
Data Semantics

5. Ho, N.C., Vinh, L.X., Hao, N.C.: Unifying and building similar relation in linguistic
databases by Hedge algebras. Journal of Computer and Cybernetics, T.25, S.4, 314–332

6. Nakata, M., Murai, T.: Updating under integrity constraints in fuzzy databases. In: Proc.
Sixth IEEE Conf. on Fuzzy Systems (FUZZ-IEEE 1997), Barcelona, pp. 713–719. IEEE
(1997)

7. Raiju, K.V.S.V.N., Majumdar, A.K.: Fuzzy functional dependencies and lossless join
decomposition of fuzzy relational database system. ACM Trans. Databases Syst. 13,
129–166 (1988)

8. Ma, Z.M., Yan, L.: Updating Extended Possibility – Based Fuzzy Relational Databases.
International Journal of Intelligent Systems 22, 237–258 (2007)

9. Bahar, Ozgun, Yazici, Adnan: Normalization and Lossless Join Decomposition of
Similarity-Based Fuzzy Relational Databases. Internationnal Journal of Intelligent Systems
19, 885–917 (2004)

10. Ho, N.C., Hao, N.C.: Monotonically functional independencies in fuzzy databases based
on hedge algebras. Journal of Computer and Cybernetics, T.24, S.1 (2008)

	Updating Relational Databases
with Linguistic Data Based on Hedge Algebras
	1 Introduction
	2 Some Basic Concepts
	3 Relational Database with Linguistic Data Based on Hedge
Algebra
	3.1 The Basic Ideas for Building the Databases with Linguistic Data Based on
Hedge Algebras
	3.2 Fuzzy Functional Dependencies (FFD)

	4 Update Operations
	4.1 Insert Operation
	4.2 The Delete Operation
	4.3 The Modify Operation
	4.4 Some Examples about Databases with Linguistic Values

	5 Conclusion
	References

