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Abstract. Relational Databases (DB) with linguistic data based on hedge 
algebras (HA) were introduced, following this approach, data manipulation 
(include linguistic data) is simpler and more efficient, practical than the other 
one. On this basis, in this paper, we will present the update operations on 
relational databases with linguistic data based on HA. Update operations are 
built by mean of semantically quantifying mapping (SQM) and similarity 
relation of depth k, where k is the length of a linguistic value that belongs to the 
values domain of an attribute. 
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1 Introduction 

Updating and querying are major issues in databases. Continuing success in building 
theory database models following approaches such as: fuzzy set theory, possibility 
theory, extended possibility theory ... data updating problem has been studied.  
However, the results of these studies have not been reached practical requirements. In 
the fuzzy relational database model with linguistic attributes based on HA, universe U 
of its attributes is a set that includes two type of subsets, the first subset type contains 
classical attributes and the second subset contains attributes that are considered as 
linguistic variables. Linguistic and real values are adopted by linguistic variables. 

In HA we have notions: semantically quantifying mapping, smallest neighboring 
of depth k and similarity interval of depth k. By these notions, we can unify data type 
of real and linguistic value to manipulate with fuzzy data becoming easy. This is 
facility that enables us to build update operations on relation databases with linguistic 
data.  

The paper is organized as follows: in section 2, some basic concepts about HA 
will be introduced. Section 3 deals with relation databases with linguistic data based 
on HA. In section 4 update operations, the major problem in this paper, will be 
studied. Some conclusions will be given in Section 5. 
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2 Some Basic Concepts 

Definition 2.1 [1] 

Let AX = (X, G, C, H, ≤) be a linear  complete hedge algebras  (ComLin-HA), a 
mapping fm: X → [0, 1] is called a fuzziness  measure  (abbreviated fm) of  terms  
belong to X if: 

1. fm(c-) + fm(c+) = 1 and )()( ufmhufmHh = ∈ , with ∀ u ∈ X, in this case 

fm called complete. 
2. With the constants 0, W and 1:  fm (0) = fm (W) = fm (1) = 0; 

3. With ∀ x, y ∈ X, ∀ h ∈ H, 
)(

)(

)(

)(

yfm

hyfm

xfm

hxfm = , this ratio does not depend 

any fm(x), fm(y). and it is the  fuzziness measure of hedge h, denoted by  μ(h). 

Clause 2.1 [1]  

For each fuzziness measure on X fm, the following statements are true: 

1. fm(hx) = μ(h)fm(x), with ∀ x ∈ X; 
2. fm(c-) + fm(c+) = 1; 

3. )()(0, cfmchfm iipiq = ≠≤≤− , c ∈ {c-, c+}; 

4. )()(0, xfmxhfm iipiq = ≠≤≤− ; 

5. αμ = −≤≤− )(1 iiq h  và βμ = −≤≤− )(1 iiq h , α, β>0 and α + β = 1. 

Definition 2.2 [1] 

A sign function: X → {-1, 0, 1} is  a mapping  which is defined  recursively  as   
follows: with h, h’ ∈ H and  c ∈ {c-, c+} then 

1. Sign(c-) = -1, Sign(c+) = +1, 
2. Sign(hc) = - Sign(c)  if  h  is  negative w.r.t c, where as Sign(hc) = + Sign(c); 
3. Sign(h’hx) = - Sign(hx), if  h’hx ≠ hx and h’  is negative w.r.t h; Sign(h’hx) = + 

Sign(hx) if if  h’hx ≠ hx and h’  is positive w.r.t h 
Sign (h'hx) = + Sign (hx), if h'hx ≠ hx and h' is negative w.r.t h; 
4. Sign (h'hx) = 0 if h'hx = hx. 

Definition 2.3 [1] 

Let AX = (X, G, C, He, , Φ, ≤) be a ComLin-HA 
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A mapping ϕ: X → [0, 1] is called semantically quantifying mapping  
(abbreviated as SQM) of AX,  the  following affirms are  true: 

1. ϕ is mapped 1-1 from X on [0, 1] and  maintain  order  on  the X. With ∀ x, y ∈ 
X, x < y  ϕ(x) < ϕ(y) and ϕ(0) = 0, ϕ(1) = 1, với 0, 1 ∈ c; 

2. ∀ x ∈ X, ϕ(Φx) = infimum ϕ(H(x)) and ϕ(x) = supremum ϕ(H(x)). 

Definition 2.4 [1, 3- 4] 

fm is the  fuzziness  measure  on X. a mapping  ϕ: X → [0, 1],  induced  by  fm on X,  
is  defined  as  follows: 

1. ϕ(W) = θ = fm(c-), ϕ(c-) = θ - αfm(c-) = βfm(c-), ϕ(c+) = θ + αfm(c+); 

2. ϕ(hjx) = ϕ(x) + Sign(hjx){ )()()()( xhfmxhxhfm jji
j

jSigni ω− = }; with j ∈ 

{j: -q ≤ j ≤ p và j ≠ 0} (*) and ω(hjx) = )])(()(1[
2

1 αβ −+ xhhSignxhSign jpj ∈ 

{α, β}; 
3. ϕ(Φc-) = 0, ϕ(c-) = θ = ϕ(Φc+), ϕ(c+) = 1, with every j like (*), ϕ(Φhjx) = 

ϕ(x) + Sign(hjx){ )()(2

)(1
)(

)( xfmhi
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ϕ(hjx) = ϕ(x) + Sign(hjx){ )()(2
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3 Relational Database with Linguistic Data Based on Hedge 
Algebra 

3.1 The Basic Ideas for Building the Databases with Linguistic Data Based on 
Hedge Algebras 

Authors in [1, 3-4] have built a relational database model with language data based on 
HA as follows: 

Relational database schema with linguistic data DB = {U, R1, R2, ..., Rm, Const}, 
U = {A1, ... An} is  attribute universe; Ri are  relational schemas; Const is a set of  data 
constraint on DB. Each Ri may contain two attribute groups, first group is normal 
attributes (classical attributes),  the remaining groups is  linguistic  attributes. 

Each linguistic attribute can be viewed as a linguistic variable that its value 
domain  are linguistic values constitutes an HA mixed with set of real values. If Ai is 
a linguistic attribute then its value domain is D(Ai) = LDom (Ai) ∪ DAi, in which,  
LDom (Ai) is a set of  linguistic values  and  the  DAi  is a set of  real values.  

In addition, according to [4] the value domain of linguistic attribute can also 
receive value types such as interval values, undefined values, missing values, 
uncertain values, unknown values. These values can be transformed to unify with 
linguistic data in one data type. In this paper, we do not deal with these data types 
mentioned above. 
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Linguistic and real data type can be unified by mean of semantically quantifying 
mapping and  similar relation of depth k. Based on this, a linguistic value x belong to 
linguistic values domain of a linguistic  attribute,  can be expressed through two 
semantic components: 

- The first one is a semantic value which belong to the real domain DA,  it is just 
the value of   υ(x) (υ is a semantically quantifying mapping). 

- The second one is a finite set of fuzziness-intervals-based neighborhoods. 

Along with the concept of similar interval of depth k, Sk, we can build equal and 
matching operation of depth k to compare not only between two linguistic values also 
between linguistic value and real value. 

Similar relation of depth k based on equivalence classes, Sk, composed from D(A) 
permitting us to build matching operation on the databases. With x, y in D(A), we call 
“x similar to y at depth k or x =ky” if smallest neighborhoods of them located into 
same equivalence class of depth k. 

We can construct equivalence classes, Sk, as follows: 

Denote: k* is  a positive  integer  that is  maximum  length  of  each  value  in 
D(A). 

|x| ≤ k* is the length of linguistic values x, put j = | x |, Tk(x) is fuzziness interval 
of depth k that contain x by mean of mapping ϕ. 

Xk is the set of linguistic values of length k,  U  is  the  universe  of  attributes  
belong  to  the database. 

a.  If  k = j: Omin, k(x) = Tk + 1(h-1x) ∪ Tk + 1(h1x); 
b.  If 1≤ k < j: Omin, k(x) = Tj(x); 
c.  if  j + 1 ≤ k ≤ k*: Omin, k(x) = Tk + 1(hlx) ∪ Tk + 1(hl’x), with l, l’ ∈ {-q, p}.  
Put H1 is subset  of  strong hedges , H2  is subset  of  weak hedges, H1 = {hi, h-j | 1≤ 

i ≤ [p/2], 1 ≤ j ≤ [q/2]}, H2 = {hi, h-j | [p/2] ≤ i ≤ p, [q/2] ≤ j ≤ q}. 
Put  Ik+1(Hn) = {Tk+1(hiy) | y ∈ Xk, hi ∈ Hn}, with n = 1, 2. Two intervals Tk+1(x) 

and Tk+1(y) in Ik+1(Hn) are called interconnected exist intervals belong to Ik+1(Hn) 
consecutive ranging from Tk+1(x) to Tk+1(y). This relationship will compose Ik+1(Hn) 
into interconnected components. 

Denote C be the set of similarity intervals of depth k of linguistic value x, C is 
defined as follows: 

With Ik+1(H1) = {Tk+1(hiy)| y ∈ Xk, hi∈ H1}, C = {Tk+1(hiy) | hi ∈ H1} 
With Ik+1(H1) = {Tk+1(hiy)| y ∈ Xk, hi∈ H2}, Suppose that Xk = {xs | s = 0, …, m-

1} of m elements are arranged in  the sequence so that xi ≤ xj if and only if i ≤ j. 

Denote  H −
2 = H2 ∩ H- and H +

2  = H2 ∩ H+. Clusters generated from fuzziness 

intervals Ik+1(H2) has the following three categories:  

a. Cluster on the left x0: {Tk+1(hix0) | hi ∈ H +
2 }. 

b. Cluster on the right xm-1: {Tk+1(hixm-1) | hi ∈ H +
2 }. 

c. Clusters  in  between xs  and  xs+1 with s = 0, ..., m-2.;  depends  on  Sgn(hpxs) 
and   Sgn(hpxs+1): 
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C = {Tk+1(hixs), Tk+1(h’jxs+1) | hi ∈ H +
2 , h’j ∈ H −

2 }, if Sgn(hpxs) = +1 and 

Sign(hpxs+1) = +1; 

C = {Tk+1(hixs), Tk+1(h’jxs+1) | hi ∈ H +
2 , h’j ∈ H +

2 }, if Sgn(hpxs) = +1 and 

Sign(hpxs+1) = +1; 

C = {Tk+1(hixs), Tk+1(h’jxs+1) | hi ∈ H −
2 , h’j ∈ H −

2 }, if Sgn(hpxs) = +1 and 

Sign(hpxs+1) = +1; 

C = {Tk+1(hixs), Tk+1(h’jxs+1) | hi ∈ H −
2 , h’j ∈ H +

2 }, if Sgn(hpxs) = +1 and 

Sign(hpxs+1) = +1. 
Set the all clusters C  is  denoted ©. 

Definition 3.1 [5]  

Each C ∈ ©, similarity interval of depth k that correspond to C is:  

Sk(C) = ∪ {Tk+1 | Tk+1 ∈ C} 

Clause 3.1 [5]  

Let AX be a ComLin-HA of the attribute A, H+ and H- have at least two element, the 
fuzziness quantifying parameters are determined following the definition 2.4. We 
have: 

a. For each k,  {Sk(u) | u ∈ X ∪ C} are  uniquely  identified  and  it's  a partition of 
interval  [0, 1] 

b. For each x, u ∈ X ∪ C, if   ϕ(x) ∈ Sk(u) then  Omin, k(x) ⊆ Sk(u) 

Definition 3.2 [1]  

Let AX be a ComLin-HA  and fm is the fuzziness measurer. Suppose that ϕA is SQM on 
AX with each k that 1 ≤ k ≤ k*, Sk is similarity relationship of depth k on DA. Then, with 
two arbitrary tuples  t, s on U, t[A] and s[A] on the value domain has been called the 
equal level  k, denoted by t[A] = fm, k s[A] or t[A] = k s[A], if  there exists a  equivalence 
class  Sk (u)  of   Sk   so that Omin, k(t[A]) ⊆ Sk(u) and Omin, k(s[A]) ⊆ Sk(u). 

To be able to compare two values in the value domain of linguistic attribute as 
well as compare the value of two tuples on a set of attributes we have the following 
two definitions: 

Definition 3.3 [1] 

Suppose that t and s are two tuples  in the U. We write t[Ai] = ϕ, ks[Ai] and they are 
called equal in depth k, if the following conditions are true: 

1. If t[Ai], s[Ai] ∈ DA i
then t[Ai] = s[Ai]; 

2. If  only  one  of the two tuples  t[Ai] or s [Ai] is the linguistic data, assume that t 
[Ai]  then  s[Ai] ∈ Sk(t[Ai]); 
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Definition 3.4 [1] 

Assume t, s the same as in definition 3.2,  then  

1. We write t[Ai] < ϕ, ks[Ai], if  Sk(t[Ai]) < Sk(s[Ai]); 
2. We write t[Ai] > ϕ, ks[Ai], if  Sk(t[Ai]) > Sk(s[Ai]) ; 
3. We write t[Ai] ≤ϕ, ks[Ai], if   t[Ai] = ϕ, ks[Ai] or Sk(t[Ai]) < Sk(s[Ai]) and t[Ai]≥ϕ, 

ks[Ai], if t[Ai] = ϕ, ks[Ai] or Sk(t[Ai]) > Sk(s[Ai]). 

Thus,  a relational database with linguistic data, will be built with above  ideas , 
they  allow us to deploy this type of databases by following reasons: 

- The way to build models of a relational database with linguistic data based on 
hedge algebras  very simple, but the ability to capture, as well as the performed 
actions with linguistic information  is effective; 

- Data in the  linguistic  attributes of  the database has been unified into one data 
type that  should be very favorable for manipulation; 

- Linguistic data in real applications usually only the maximum length is 3 and the 
number of these linguistic  values are commonly used  is not greater, therefore  it's  
not too complex to build a series of elements of a Linguistic attribute; 

- It is not difficult to construct a sequence of  similarity intervals of depth k (Sk) to 
the linguistic values, based on a sequence of this intervals that manipulation with data 
become simple. 

3.2 Fuzzy Functional Dependencies (FFD) 

Authors in [3] presented general issues and complete information about FFD, we 
recall some of the concepts, definitions important about FFD: 

Let A is a linguistic attribute of the relational database with linguistic data,  it will 
be combined with a set of similarity relationships kA, this relationship is to define a 
concept of the fuzziness uncertain equal in level kA and the denoted  =k(A), 0 ≤ kA ≤ kA, 
kA  is the maximum length of terms over A. 

K : U → N  (N is the set of positive integers) is a function of parts, it is defined on 
the set  X ⊆ U  and assigned to each linguistic attribute A is a positive integer K(A) 
satisfies conditions kA ≥ K(A) = kA > 0. 

As so K = {kA : A ∈ X}; if  exists K = {kA: A ∈ X} and exists K’ = {k’A: A ∈ X  
and write KX ≥ K’X if  KA ≥ K’A for all  A ∈ X. 

With X ⊆ U, we say that two tuples  of t, s on U are equal with the similarity level 
K, and write t[X] = Ks[X], if we have t[A] = K(A)s[A], for all A ∈ X. 

Definition 3.3 [3] 

With DB is a relational database with linguistic data and R(U) is a relational  schema 
of DB. With any expression f = X →KY format  called  a  level K fuzziness 
dependencies  K (K-FFD), X, Y ⊆ R  and K  is  a  similarity   level  to  the  previous  
definition  XY = X ∪ Y,  and its  semantics  are interpreted as follows:  
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a relation any  r(R), f is called satisfies r  if 
(∀ t, s ∈ r) (t[X] =Ks[X])  t[Y] =Ks[Y]) 
In this case we also say that the relationship r satisfied X →KY  or X →KY be  true  

on r. 
Offers by [3] we have axiomatic system for case fuzziness function depends  as  

following: 

K1(Reflexivity):  if Y ⊆ X then  X  →KY 
K2(Subsumption): if  X  →KY then  X  →K*Y, with every  K* on XY so that  K*X 

≥ KX and K*Y ≤ KY. 
K3(Augmentation):   if  X  →KY then XZ  →K V K*(Z) YZ, with all Z ⊆ U and with 

all K*on Z so that K*Y ∩ Z ≤ KY ∩ Z, where XZ = X ∪ Z. and YZ = Y ∪ Z.   
K4 (TransitivIty): if X  →KY, Y  →K*Z then X  →K V K* Z, with K*Y ≤ KY with X 

⊆ U and t, s are two tuples  in U, we write  t[X] ≤K s[X], if  with any ∀A ∈ X we 

always have  t[A] ≤K A
 s[A].   

Definition 3.4 [10] 

Let R(U) be a relational shema, relation r on R. X, Y ⊆ U are two set of attributes. We 
can say r satisfy monotonically increasing fuzzy  function dependencies X determine 
Y at depth k, abbreviated X+ →KY in r, if we have: ∀ t, s ∈ r, t[X]≤K s[X]  t[Y] ≤K 
s[X]. 

Definition 3.5 [10] 

Let R(U) be a relational shema, relation r on R. X, Y ⊆ U are two set of attributes. We 
can say r satisfy monotonically decreasing fuzzy  function dependencies X determine 
Y at depth k, abbreviated X+ →KY in r, if we have: ∀ t, s ∈ r, t[X] ≤K s[X]  t[Y] ≥K 
s[X]. 

Definition 3.6 

Let R(U) is a relational schema, F be FFD on U, K are called key of R(U) if and only 
if the two following conditions  are simultaneously satisfied:  

1. K →KU 
2. Do not exists  K’ ⊂ K so that  K’ →KU. 

4 Update Operations  

If we resolve the problem of updating on fuzzy databases successfully, we can build 
significant factual applications.  Fuzzy databases with other approaches such as similar 
relation, possibility theory, extended possibility theory, … show many  limits in 
capturing, presenting and storing fuzzy data (see [5], [7]). So, the ability to deploy 
applications of these model are low because of this reason. With HA, we have concept 
of semantically quantifying mapping, smallest neighboring of depth k and similarity 
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interval of depth k. We can use these concepts to build matching operation, based on 
this operation, we will build updating operations on databases with linguistic. 

As stated above, a relational databases with  linguistic  data includes two attribute 
groups, the first group are the classical attributes, the second group are linguistic 
attributes as linguistic variables. 

In fact, the value of linguistic data in linguistic attributes do not usually have 
greater than 3 of length,  for instance, we consider a linguistic  attribute to store 
information describing the new or old status  of a product. The values of this attribute 
can be “very new”, “very very new “ ... or “old”, “very old”, “very very old”. The 
values like “very very very very new” … that is not factual. Thus, we suppose that 
linguistic attribute values that has the length is always less than or equal to 3. 

We distinguish three types of relational schema with linguistic data, including: 
relational schema with linguistic data has clear key  (the key includes only classical 
attributes), mixture key  (the key includes classical attributes and linguistic  attributes) 
and fuzzy key  (the key only includes linguistic attributes). 

As we known, the update operations that include insert, modify and delete 
operations. Now, we’ll study these operations on databases with linguistic data. 

Let  R (U, F) is a relational schema, in which, U is the universe of attributes, F = F 
= F1 ∪ F2. With F1 is the set of  FFD  by definition 3.3,  F2 is the set of  monotonically 
increasing (decreasing)  fuzzy  function dependencies  by  the definitions 3.4 and 3.5. 
Let U = A1… An, U = U1 ∪ U2, U1 = A1… Am are classical attributes and U2 = Am+1… 
An  are the linguistic  attributes. 

4.1 Insert Operation 

Insert operation  is understood  as  executed  by  adding  tuple t into a relation  r(R). 
Tuple t  will be inserted into  r, if  t  satisfies  the data constraint on r, concretely, t  
must  satisfy  the  FFD  in  F. These FFD in F are divided into two groups, first group, 
F1 and second group, F2, as mentioned above.  

Tuple t will  be inserted into  r(R) if  t can be passed two checks: check t if 
satisfies  F1 and check if t satisfies F2 ? and another problem of  insert operation to 
consider: tuple t as mentioned above, before it is inserted  into r(R), first,  we needs to 
check t satisfies  F1? For each s ∈ r(R), this check is actually check to see t and s have 
the same key at depth k or not. Thus, when we check to see whether there's the same 
key between t and s,  if we do not specify clearly which  of k that is matching, we will 
have to make even a lot of operations to insert t in the database. This case will 
become very complicated when r(R) has the large of tuples. So, it's necessary to 
specify what is the depth of k clearly. With the things that we discussed above, insert 
operation can be done as follows: 

Insertion can be divided into three cases corresponding to three types of relational 
schema: 

- In the first case: insertion in the relation scheme that has the clear key 
- In  the second case: insertion in the  relation scheme has the  mixture key  
- In the third case: insertion in the  relation scheme has The  fuzzy key   
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4.1.1    Insert Operation in the Relational Schema that Has the Clear Key 

Check Data Constraint  with  F1 

This check is tested to verify that tuple t be duplicated  the key with any tuple in r or 
not. It is done the same as in the classical relational schema. If the tuple t satisfied key 
constraint  then it will continue to be tested with data dependencies F2 with depth k, 
otherwise tuple t will not be inserted  into r (R). 

Check Data Constraint  with  F2 

If F2 exist, we will use them to check if the tuple t satisfy the condition in definition 
3.4 or 3.5, if tuple t satisfy these conditions then t will be inserted  into r. 

4.1.2    Insert Operation in the Relational Schema that Has the Mixed Key    
The examination of data constraint in this case more complicated than the first case.  
The key of relational schema in this case  = group of  classical attributes (X) ∪ group 
of  fuzzy attributes  (Y). 

Check  Data Constraint with  F1 

For each s ∈ r if s(key) = t(key) ⇔ s(X) = t(X) (1)  and  s(Y)  =K  t(Y) (2). 
The examination (1) is simple because of the comparison between two real values. 

Suppose (1) is correct, the  remaining  problem  is to check (2). 
To be able to check (2) we must perform the following steps: 

- Build similarity intervals of depth kAi  of the values ∈ Dom (Ai) with Ai ∈ Y; 

- If with ∀Ai ∈ Y that t[Ai] ∈ Sk Ai
(s[Ai]) then testing (2) is correct,  that mean 

tuple t will do not be inserted onto   r (R) (because the same key),  in contrast, tuple  t  
will be  checked  with  the group  of  F2  (if available). 

Check  Data Constraint with F2  

This check is done the same as the first case. 
To facilitate tracking of data values in a relation with mixtures key or fuzzy key, 

each relation need to be supplemented attribute of depth k that contains the set of 

values of  matching of depth kAi . Each value corresponds to a tuple in relation 
database to indicate the participating of this tuple in relation databases following the 
certain matching  of depth k. 

For example, we have the following relation: 
 

K A B 
3, 2 a1 b2 
2, 2 a2 b2 

 
In the above relation, we can see the first tuple, t1<a1, b2> is inserted into relation 

by  matching of depth k = {3, 2}. 
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4.1.3    Insert Operation in the Relational Schema that Has the Fuzzy Key  

Check Data Constraint  with F1 

Verifying duplicate key in this case is the same as case 2, because the relational 
schema’s key do not include classical attributes. 

Check with F2 Data Constraint with F2 

 It's  implemented as  two  above cases. 

4.2 The Delete Operation 

Executing this operation is accompanied by the delete condition to identify the tuples 
should be deleted, keep in mind if this condition is not accompanied by any 
conditions then all of the tuples in the relation will be deleted. Delete condition is 
actually a classical query, fuzzy query or both of all; With a fuzzy query, based on 
HA, we can  convert to a classical query of depth k. We can distinguish three case of 
delete conditions: 

Case 1:  
The delete condition do not include linguistic  attributes  (classical query). We can 
handle this case same as in classical databases. 

Case 2:  
The delete condition that has includes linguistic attributes (include both fuzzy query 
and classical query)  

This case, the delete condition has the form: ∀ t ∈ r, t (delete condition) = true ⇔ 

(t[X1] ∂ value1) θ (t[X2] ∂ value2) … θ (t[Xu] ∂ valueu) θ t[Y1] ∂k 1
fvalue1) θ (t[Y2] ∂k

2
fvalue2)…θ(t[Yv] ∂k v

fvaluev)  is  true; in which Xi ∈ U1 (i=1…u), Yj ∈ U2 (j = 1 … 

v); θ is the AND or OR operations; ∂ is one equation =, ≤, ≥, ≠, > and <.  
The tuple t satisfies two condition groups simultaneously, the first ones, tuple t 

must be satisfied on set of Xi ∈ U1 (i=1…u), the second  ones, tuple t must be 
satisfied on set of Yj ∈U2 (j = 1 … v).  

The  first  condition   group  was  processed  same as the classical databases, 
second condition group we will use  methods (*) below to process. 

 (1). Build  list  Vi  of  level  kYi  similarity  intervals,  SkYi  in  Dom (Yi)  with  Yi 
∈ U2 

 (2). For each t ∈ r: 

- Calculate similarity  intervals  Sk
iY
(t[Yi]); 

- Calculate Omin, k i
(fvaluei), fvaluei is a linguistic values; 

- Verify  whether value  of logical expression t[Y1] ∂k 1
fvalue1) θ (t[Y2] ∂k 2

fvalue2)…θ(t[Yv] ∂k v
fvaluev) is true or not? 
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4.3 The Modify Operation  

Modify operation to be made through the processing of the two conditions, first 
condition is used to determine tuples which be modified with matching of depth k in  
r  (denoted X, X ⊆ r, assume X has m elements), the second condition is the condition 

that ∀ t ∈ X after modified data be satisfied. 
So, the modify operation in nature is to delete tuples that it satisfies the condition 

1 (in X) and insert new tuples that it satisfies the condition 2 into r. We will study two 
methods for handling this condition. 

Processing Conditions 1 

Condition 1 of  modify  operation is the same as  delete condition, so we can apply 
again the way of condition processing of the delete operation above. 

Processing Conditions 2 

The result after condition 1 processed is understood as extracting X  from r, further work 
can be described as follows: extract tuple ti (i = 1, …, m)   form X  and  edit  the  values 
on  some  attributes of the ti so that  it  satisfies conditions 2 and finally insert  ti into r. 

The problem is that how do we  modify the value of some attributes of  ti? we  
would classify the attributes of ti that its  values be modified  into two groups: 

The first group: comprises the classical attributes group 
 The modifying  the value of this group is the same as in the  classic.   
The second group: consists of linguistic attributes 
Modifying the value of this group is not simple, it's  usually  classified into the 

following cases: 

Case 1 
A real value will be modified to another real value equal to a linguistic value of depth k. 

For example: in a employee salary management database, we have the  request: 
"Look for employees with relatively rather young age and their contributions at same 
level to raise their salary up to quite high ". 

Suppose that with matching operation of depth k = 2, an employee’s salary level  
at 2.0  belong to rather low level, now, we need to modify this salary level become to 
linguistic value at rather high. This  modify operation  is called  modifying a real 
value become to another real value other that it is similarity of depth k with a 
linguistic value. 

In general, we will process this case as follows: 
real c value is converted to real b value, that it is similarity of depth k with x 

linguistic values. 
if a’ = ϕ(x) , b is  similarity  to  with x  of depth k ( ∀ k ≤ k*). Thus, in this case 

the c value will be changed to  a’ =  ϕ(x). 

Case 2 
A linguistic value will be replaced by a purely linguistic values, such as  "rather good"  
replaced by "good" 
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To proceed this case, a linguistic value x will be modified to become a linguistic 
value y, easily, we replace string represented x  by  string represented y. 

Case 3 
Linguistic values x will be modified to a linguistic values y, with condition: y = x ∂ z, 
∂  is a  operation of arithmetic and z is a numeric value. 

This case occurs when  the condition 2 (increasing or decreasing value) that 
require the values of a specific attribute of tuples to satisfy the condition. Some 
linguistic values of attributes (remained values) will also have to change its value to 
the corresponding to the numeric value. 

For example, suppose that we have the condition 2 on an attribute A of a database 
as follows: 

"Increase values (for tuples that satisfy the first condition) of attribute A up to 
15%" (#). How can we solve this query if the values of A do not include linguistic 
values but also include real values ? We cannot perform this operation  y = x ∂ z 
because x and y are linguistic values.  

To solve this problem, we propose approximate solution for this case as follows: 
We will modify the "core" of linguistic values x, ϕ(x) become to fvalue so that  

fvalue = ϕ(x) ∂ z. Next, we will review a series of similar intervals at level k for any k 
≤ k* of values of attribute domain which we are considering to determine what 
similarity intervals of depth k fvalue belong to, if fvalue ∈ Sk(x’) then x will be 
modified become to y. 

4.4 Some Examples about Databases with Linguistic Values 

Example 1 

Let’s consider relational shema R1(SffCode, Fullname, Recowork, Reward) store 
information about bonus for staffs in a company. Sffcode: Staff code; Reworkco: 
review work completion. 

 

 
Recowork and Reward are two linguistic attributes with agreement  

Dom(Recowork) = [0, 10] (review work completion get values from 0 to 10 points) 
with generated elements of {Poor, Good }, H-= {Rather, Possible }, H + = {More, 
Very} the Dom (Reward) = [0, 500] (Reward get the values from 0 to 500 million) are 

r(R1)  

SffCode Fullname Recowork Reward 

A001 Nguyen Van Phu More Good More High 
A002 Truong Phi Qua Poor Rather Low 
A003 Huynh Phu Hao 8.5 More High 
A004 Bang Quan Very Good 300 
A005 Banh Tien Len 2 More Low 
A006 Bui The Gian Very very good  Very High 
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linguistic variables with generated elements of {Low, High}, H-  = {Rather, Possible}, 
H+ = {More, Very} 

For attribute Recowork: Put fm(Poor) = 0.35 fm(Good) = 0.65; μ(Possible) = 
0:15, μ(Rather) = 0.25 μ(More) = 0.2, μ(Very) = 0.4. 

For  attribute Reward:    Put fm(Low) = 0:55, fm(High) = 0:45; μ(Possible) = 
0:15, μ(Rather) = 0.25  μ(More) = 0.2, μ(Very) =  0.4. 

On R we identify set F of  FFD as follows: 
[ StffCode]→K[Funame], two attributes StffCode and Funame are classical one, so 

FFD fuzzy return the common dependencies: 
[SffCode] → [Funame]           (1); 
[StffCode] →K[Recowork]      (2); 
[StffCode] →K[Reword]          (3); 
These FFD  are valid  with  k > 0. 
StffCode is the key of R1 
With every attributes belong to  R3, suppose k* = 3. 

Example 2 

R2 (Antiqes, Techpater, Seprice) store  information  about  the stock character  of 
antique  shops. Antiqes:  Antiques Name; Techpater: Technical Parameter;  Seprice: 
Sale Price.  
 

r (R2)  
Depth 
of K 

Antiqes Techpater Seprice 

2, 2 Bowl Rather Good More High  
1, 2 Bowl Good Low 
3, 2 Plate Very Good High 
3, 2 Big jar Possible Good  Rather High 
3, 2 Vase Rather Poor Rather High 
3, 3 Cup  Very Poor Rather High 
3, 2 Big jar 4.5 Very Low 
 
Attribute Techpater is a linguistic variable with  Dom(Techpater) = [0, 10] and 

two generated elements  of  {Good, Poor} 
H -  = {Rather, Possible},  H+ = {more very}.  Put fm (Poor) = 0.45, fm(Good) = 

0.55; μ(Possible) = 0.15, μ(Rather) = 0.25,  μ(more) = 0.2, μ(very) = 0.4. 
- Attribute SaPrice is a  linguistic variable with  Dom(SaPrice) = [500, 100000] 

(from 500 USD to 100000 USD)  
With two generated elements  of {Low , High}. H - = {Rather, Possible } , H + = 

{More,Very}. Put  fm(Low) = 0.4,  fm (High) = 0.6, μ(Possible) = 0.15, μ(Rather) = 
0.25,  μ(More) = 0.2,  μ(Very) = 0.4. 

Review set F of FFD  on  R2 include: 
[Antiqes] [Techpater]→KSaPrice (5); 
The Key  on R2  be [Antiqes] [Techpater];  
With every attributes in  R3 . Suppose  k* = 3  
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Example 3 

R3(Brd, Impri , Stus, Sapri) of a database about sale the old and new garments. Brd: 
Brand; Impri: Import price; Stus: Status, Sapri: Sale Price.  
 

r(R3) 

Depth of 
K 

Brd Impri Stus Sapri 

2, 2, 2 Good 7000 Rather Old  Rather High 
1, 1, 1 Rather Poor Very Low Old 17000 

 
- Attribute Brd is a linguistic variable with Dom (Brd) = [0, 10] and two generated 

elements of {Good, Poor}, H- = {Rather, Possible}, H+  = {More, Very}.  
Put fm (Poor) = 0.45, fm (Good) = 0.55; μ(Possible) = 0.15,  μ(Rather) = 0.25,  

μ(More) = 0.2,  μ(Very) = 0.4. 
- Attribute Impri is a linguistic variable Dom (Impri) = [5000, 150000] (from 

150000 VND to 5000 VND). With two generated elements  of {Low , High}, H-  = 
{Rather, Possible} , H+ = {More, Very}.  

Put fm (Low) = 0.4, fm (High) = 0.6;  μ(Possible) = 0.15,  μ(Rather) = 0.25,  
μ(More) = 0.2, μVery) = 0.4. 

- Attribute Stus  is a linguistic variable with Dom (Tinhtrang) = [0, 10] and two 
generated elements {Old, New},  

H-  = {Rather, Possible}, H +  =  {More, Very}.  
Put fm (Old) = 0.4, fm (New) = 0.6; μ(Possible) = 0.15,   μ(Rather) = 0.25,  

μ(More) = 0.2,  μ(Very) = 0.4. 
- Attribute Sapri  is a linguistic  variable Dom (Sapri) = [10000, 500000] (from 

10000 VND to 500000 VND). With two generated elements of {Low, High}, H-  = 
{Rather, Possible}  H+  = {More,Very}.  

 Put fm(Low) = 0.4, fm (High) = 0.6; μ(Possible) = 015,  μ(Rather) = 0.25,  
μ(More) = 0.2,  μ(Very) = 0.4. 

Review: 
F is  a set of  FFD  on  R3  include: 
[Brd] [Impri] [Stus] →K[Sapri] (6). 
The Key of R3  is  [Brd] [Impri] [Stus]. 
With every attributes in R3,  suppose k* = 3 
Next, we will present the update on three schemas R1, R2, R3. schemes are 

distinguished by their nature of key. The key of R1 only include  clear attributes, the 
key of  R2  include  mixed attributes (clear and fuzzy); the key of  R3  only include  
fuzzy attributes. 

Insert Operation 

Suppose we have the following requirements: 

 Inserting  tuple   t = <"A008", "Phuong Nam Ngang", "Poor", "Rather Low"> 
on relations r (R1); 
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 Inserting tuple  p = <"Vase", 5.0, "Rather high"> on relations r (R2) with 
matching level between p and the tuples  in relation is KTechpater,Sapri = {1, 1}; 

 Inserting tuple  q = <"Rather Good", 150000, " Rather Old", "230000"> with 
level matching between p and tuples of the relationship is KImpri, Stus  = {1, 1}. 

With the Request  
This case a tuple  is inserted  into  the relational schema with its key only include 
classical attributes. Tuple t is inserted into r(R1)  if t satisfy the  FFDs: 

 t satisfied FFDs: (1), (2), (3) and also satisfied monotonically increasing FFD (4). 
Conclusion: t is inserted r(R1)  
r(R1) after tuple t is inserted as follows: 
 

 
With the Request  
This is insert operation on  relational schema that its key contains mixed between 
fuzzy attribute and classical ones. 

Check p satisfies  for FFD (5)? 
For each s ∈ r(R2), we need to check p and s having same value ? that mean p and 

s simultaneously satisfy FFD (5)? 
Case  p[Antiqes] =  s[Antiqes], we need to check   p [Techpater] =1 s[Techpater]? 
If  p[Antiqes] ≠ s[Antiqes], we conclude p and s  satisfy with (5). 
If ∃ s ∈ r so that key(p) =k key(s), we will conclude p does not satisfy (5) and 

obviously p can not be inserted on r(R2). 
Concretely, with the p as above, p[Antiqes] = "Big jar", this value is different 

from all value in attribute Antiqes of  tuples  in r(R2) except  tuple 4 (s4) and  tuple 7 
(S7). So, we just check  if  p[Techpater] =1 s4 [Techpater]  then  p[Saprice] =1 s4 

[Saprice] ? (~)  
 And if p [Techpater] =1 s7[Techpater] then p[Saprice] =1 s7 [Saprice]? (~ ~). 
 Consider (~): With the matching of depth  k = 1, S1( possible good) = T1(possible  

good) = ((ϕ(Fine) + α.fm(Fine)) - fm (Possible good), ϕ(Fine) + α.fm(Fine))] = (0:45 

SffC
ode 

Fullname Recowork Reward 

A001 Nguyen Van Phu More Good More High 

A002 Truong Phi Qua Poor Rather Low 

A003 Huynh Phu Hao 8.5 More High 

A004 Bang Quan Very Good 300 

A005 Banh Tien Len 2 More Low 

A006 Bui The Gian Very very good  Very High 

A008 Phuong Nam Ngang Good Rather Low 
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+ 0.4 * 0:55 to 0:15 * 0:55, 0:45 + 0:55 * 0.4] = (0:45, 0.67],  it mean interval  (4.5, 
6.7] on the  reference value domain. S4 [Techpater] = 5.0 ∈ S1[Possible good)  so  
p[Techpater] =1 s4[Techpater]. Now we consider  p[Sapri] =1 s4[Sapri]?  

 p[Sapri] = "high" = s4[Sapri]  so (~) is correct,  mean  p correct with the s4, so p 
will not be inserted on r(R2) and we do not need to consider (~ ~). 

Conclusion: The tuple  p  is not inserted  into  relations r(R2) at matching  of depth 
KTechpater, Sapri = {1, 1}. Relations r(R2) remain status. 

With the Request  
This  is case that relational schema has only fuzzy key. 

Check for each s ∈ r(R3) if s and q satisfy (6)? 
With first tuple (s1): we have s1[Impri] ≠ q[Impri], so the value of  key are 

different on  s1 and q, that mean they satisfies (6) 
With  second tuple (s2): We have S1(very low) = [0 +5, fm (very low) * (150000 -

5000) +5] = [5000, 0.4 * 0.4 * 145000 +5000] = [5000, 28200], to replace q [Impri] = 
150000 ∉ S1(very low), so  q[Impri] ≠1s1[Impri], from this, we have value of  key on 
s2 and q are  different, that mean they satisfy (6). 

Conclusion: q will be inserted into r(R3) and r(R3) after  insert tuple q as follows:  

 
Level K Brd Impri Stus Sapri 
2, 2, 2 Good 7000 Rather Old Rather High 
1, 1, 1 Rather Poor Very Low Old 17000 
1, 1, 1 Rather Good 150000 Old 23000 

Delete Operation 

Suppose that we have the following requirements: 
- "Delete from r(R1) tuples which have "poor" Brd and the depth of k at kRecowork 

=1 (when we apply delete condition" ; 
Deletion condition includes linguistic attribute which can be formulated as 

t[Recowork]=1"Poor". We have: S1(Poor) = (1.4, 2.6] and easily see that on relation 
r(R1) tuple 2 (s2) and tuple 5 (s5) will be deleted,  because  s2[Recowork] and 
s5[Recowork]  belong to S1(Poor). 

Relation  r(R1) after delete: 
 

SffCode Fullname Recowork Reward 

A001 Nguyen Van Phu More Good More High 

A003 Huynh Phu Hao 8.5 More High 

A004 Bang Quan Very Good 300 

A006 Bui The Gian Very very good  Very High 
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Modify Operation 

Suppose we have the following requirements: 
- " With relations r(R1) find all persons who have “very good” recowork, then 

modified their Reward level become "High" (the matching operation of depth k=2)  
(5) 

Consider the Requirements (5) 
Condition 1: All tuples t satisfying this condition, they must have t [Recowork] 
=2"Very Good". we have S3(Very Good) = ((1 - fm (Very Good) + fm (Rather Very 
Good), 1-fm (Very Very Good)] * 10 = (8.1, 9.0]; we have tuples 3 and 4 of  r(R1) 
will be modified values. 

Condition 2: With tuple 3 (s3), value of attribute Reward satisfied. With tuple 4th 
(s4),  we have s4[Reward] = 300 ∉ S2(More High). We have ϕ(More High) = 1 - fm 
(Very High) - bfm(More High) = 0.71, so, ϕ(300) will be replaced by ϕj(More High), 
corresponding to the value of reference domain  is 0.71 * 500 = 355. 

Relation r(R1)  after  modified  as required (5): 
 

5 Conclusion  

In this paper, we present updating operations on relational databases model with 
linguistic data based on hedge algebra, included the operations insert, delete and 
modify. Insert operation is proposed for the three relational schema types, including 
relational schema with clear key, with fuzzy key and key including clear attributes 
and fuzzy one; delete operation is done entirely due the delete condition is determined 
based on the idea converting a fuzzy  query become to a clear query with  the similar 
level k; modify operation to be carried out through the delete and insert operation.  

With hedge algebras we have some concepts: SQM mapping, fuzziness-intervals-
based neighborhoods of a point, k-equality  "=k " which enable us to build updating 
operations on relational databases based on hedge algebras more conveniently than on 
the other one. 

 

SffCode Fullname Recowork Reward 

A001 Nguyen Van Phu More Good More High 

A002 Truong Phi Qua Poor Rather Low 

A003 Huynh Phu Hao 8.5 More High 

A004 Bang Quan Very Good 355 

A005 Banh Tien Len 2 More Low 

A006 Bui The Gian Very very good  Very High 
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