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Abstract. Most network-based clustering methods are based on the assumption 
that the labels of two adjacent vertices in the network are likely to be the same. 
However, assuming the pairwise relationship between vertices is not complete. 
The information a group of vertices that show very similar patterns and tend to 
have similar labels is missed. The natural way overcoming the information loss 
of the above assumption is to represent the given data as the hypergraph. Thus, 
in this paper, the two un-normalized and random walk hypergraph Laplacian 
based un-supervised learning methods are introduced. Experiment results show 
that the accuracy performance measures of these two hypergraph Laplacian 
based un-supervised learning methods are greater than the accuracy perfor-
mance measure of symmetric normalized graph Laplacian based un-supervised 
learning method (i.e. the baseline method of this paper) applied to simple graph 
created from the incident matrix of hypergraph. 
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1 Introduction  

In data mining problem sceneries, we usually assume the pairwise relationship among 
the objects to be investigated such as documents [1,2], or genes [3], or digits [1,2]. 
For example, if we group a set of points in Euclidean space and the pairwise relation-
ships are symmetric, an un-directed graph may be employed. In this un-directed 
graph, a set of vertices represent objects and edges link the pairs of related objects. 
However, if the pairwise relationships are asymmetric, the object set will be modeled 
as the directed graph. Finally, a number of data mining methods for un-supervised 
learning [4] (i.e. clustering) and semi-supervised learning [5,6,7] (i.e. classification) 
can then be formulated in terms of operations on this graph. 

However, in many real world applications, representing the set of objects as un-
directed graph or directed graph is not complete. Approximating complex relationship 
as pairwise will lead to the loss of information. Let us consider classifying a set of 
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genes into different gene functions. From [3], we may construct an un-directed graph 
in which the vertices represent the genes and two genes are connected by an edge if 
these two genes show a similar pattern of expression (i.e. the gene expression data is 
used as the datasets in [3]). Any two genes connected by an edge tend to have similar 
functions. However, assuming the pairwise relationship between genes is not com-
plete, the information a group of genes that show very similar patterns of expression 
and tend to have similar functions [8] (i.e. the functional modules) is missed. The 
natural way overcoming the information loss of is to represent the gene expression 
data as the hypergraph [1,2]. A hypergraph is a graph in which an edge (i.e. a hyper-
edge) can connect more than two vertices. However, the clustering methods for this 
hypergraph datasets have not been studied in depth. Moreover, the number of hyper-
edges may be large. Hence this leads to the development of the clustering method that 
combine the dimensional reduction methods for the hypergraph dataset and the popu-
lar hard k-mean clustering method. Utilizing this idea, in [1,2], the symmetric normal-
ized hypergraph Laplacian based un-supervised learning method have been developed 
and successfully applied to zoo dataset. To the best of our knowledge, the random 
walk and un-normalized hypergraph Laplacian based un-supervised learning methods 
have not yet been developed and applied to any practical applications. In this paper, 
we will develop the random walk and un-normalized hypergraph Laplacian based un-
supervised learning methods and apply these two methods to the zoo dataset available 
from UCI repository. 

We will organize the paper as follows: Section II will introduce the definition of 
hypergraph Laplacians and their properties. Section III will introduce the un-
normalized, random walk, and symmetric normalized hypergraph Laplacian based un-
supervised learning algorithms in detail. In section IV, we will apply the symmetric 
normalized graph Laplacian based un-supervised learning algorithm (i.e. the current 
state of art network based clustering method) to zoo dataset available from UCI repos-
itory and compare its accuracy performance measure to the two proposed hypergraph 
Laplacian based un-supervised learning algorithms’ accuracy performance measures. 
Section V will conclude this paper and the future directions of research of these 
methods will be discussed.    

2 Hypergraph Definitions  

Given a hypergraph G=(V,E), where V is the set of vertices and E is the set of hyper-
edges. Each hyper-edge ݁ א  is the subset of V. Please note that the cardinality of e ܧ
is greater than or equal two. In the other words, |݁| ൒ 2, for every ݁ א  Let w(e) be .ܧ
the weight of the hyper-edge e. Then W will be the ܴ|ா|כ|ா| diagonal matrix containing 
the weights of all hyper-edges in its diagonal entries.    

2.1 Definition of Incidence Matrix H of G  

The incidence matrix H of G is a ܴ|௏|כ|ா| matrix that can be defined as follows ݄ሺݒ, ݁ሻ ൌ ቄ1 ݂݅ ݁ݏ݅ݓݎ݄݁ݐ݋ 0݁ ݁݃݀݁ݎ݁݌ݕ݄ ݋ݐ ݏ݃݊݋݈ܾ݁ ݒ ݔ݁ݐݎ݁ݒ         
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From the above definition, we can define the degree of vertex v and the degree of 
hyper-edge e as follows ݀ሺݒሻ ൌ ∑ ሺ݁ሻݓ כ ݄ሺݒ, ݁ሻ௘אா                       ݀ሺ݁ሻ ൌ ∑ ݄ሺݒ, ݁ሻ௩א௏          

Let ܦ௩ ܽ݊݀ ܦ௘ be two diagonal matrices containing the degrees of vertices and the 
degrees of hyper-edges in their diagonal entries respectively. Please note that ܦ௩  is the ܴ|௩|כ|௩| matrix and ܦ௘  is the ܴ|௘|כ|௘| matrix.   

2.2 Definition of the Un-normalized Hypergraph Laplacian               

The un-normalized hypergraph Laplacian is defined as follows ܮ ൌ ௩ܦ െ ௘ିܦܹܪ ଵ்ܪ            

2.3 Properties of L            

 1. For every vector ݂ א ܴ|௏|, we have       ்݂݂ܮ ൌ ଵଶ ∑ ∑ ௪ሺ௘ሻௗሺ௘ሻሼ௨,௩ሽكா௘אா ሺ݂ሺݑሻ െ ݂ሺݒሻሻଶ                  

 2. L is symmetric and positive-definite 
 3. The smallest eigenvalue of L is 0, the corresponding eigenvector is the 

constant one vector 1 
 4. L has |ܸ| non-negative, real-valued eigenvalues 0 ൑ ଵߣ ൑ ଶߣ ൑ ڮ ൑       |௏|ߣ
Proof: 

1. We know that 

                      
ଵଶ ∑ ∑ ௪ሺ௘ሻௗሺ௘ሻሼ௨,௩ሽكா௘אா ሺ݂ሺݑሻ െ ݂ሺݒሻሻଶ       

                  ൌ ଵଶ ∑ ∑ ௪ሺ௘ሻௗሺ௘ሻሼ௨,௩ሽكா௘אா ሺ݂ሺݑሻଶ ൅ ݂ሺݒሻଶ െ 2݂ሺݑሻ݂ሺݒሻሻ                          

                  ൌ ∑ ∑ ௪ሺ௘ሻௗሺ௘ሻ ൫݂ሺݑሻଶ െ ݂ሺݑሻ݂ሺݒሻ൯௨,௩א௏௘אா ݄ሺݑ, ݁ሻ݄ሺݒ, ݁ሻ                              

         ൌ∑ ∑ ,ݑሻଶ݄ሺݑሺ݁ሻ݂ሺݓ ݁ሻ ∑ ௛ሺ௩,௘ሻௗሺ௘ሻ௩א௏௨א௏௘אா െ ∑ ∑ ௪ሺ௘ሻௗሺ௘ሻ ݂ሺݑሻ݂ሺݒሻ݄ሺݑ, ݁ሻ݄ሺݒ, ݁ሻ௨,௩א௏௘אா                               

                  ൌ ∑ ∑ ,ݑሻଶ݄ሺݑሺ݁ሻ݂ሺݓ ݁ሻ௨א௏௘אா െ ∑ ∑ ௪ሺ௘ሻௗሺ௘ሻ ݂ሺݑሻ݂ሺݒሻ݄ሺݑ, ݁ሻ݄ሺݒ, ݁ሻ௨,௩א௏௘אா                         

                  ൌ ∑ ݂ሺݑሻଶ ∑ ,ݑሺ݁ሻ݄ሺݓ ݁ሻ െ௘אா௨א௏ ∑ ∑ ௪ሺ௘ሻௗሺ௘ሻ ݂ሺݑሻ݂ሺݒሻ݄ሺݑ, ݁ሻ݄ሺݒ, ݁ሻ௨,௩א௏௘אா                             

                  ൌ ∑ ݂ሺݑሻଶ݀ሺݑሻ െ௨א௏ ∑ ∑ ௪ሺ௘ሻௗሺ௘ሻ ݂ሺݑሻ݂ሺݒሻ݄ሺݑ, ݁ሻ݄ሺݒ, ݁ሻ௨,௩א௏௘אா                                                       

                  ൌ ௩݂ܦ்݂ െ ௘ିܦܹܪ்݂ ଵ்݂ܪ                                             
                  ൌ ்݂ሺܦ௩ െ ௘ିܦܹܪ ଵ்ܪሻ݂                     
                  ൌ                                                                                                      ݂ܮ்݂
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2. L is symmetric follows directly from its own definition.  

Since for every vector ݂ א ܴ|௏|, ்݂݂ܮ ൌ ଵଶ ∑ ∑ ௪ሺ௘ሻௗሺ௘ሻሼ௨,௩ሽكா௘אா ሺ݂ሺݑሻ െ݂ሺݒሻሻଶ ൒ 0. We conclude that L  
is positive-definite.  
3. The fact that the smallest eigenvalue of L is 0 is obvious. 

Next, we need to prove that its corresponding eigenvector is the con-
stant one vector 1.     

Let ݀௩ א ܴ|௏| be the vector containing the degrees of vertices of 
hypergraph G, ݀௘ א ܴ|ா| be the vector containing the degrees of hyper-
edges of hypergraph G, ݓ א ܴ|ா| be the vector containing the weights of 
hyper-edges of G, 1 א ܴ|௏| be vector of all ones, and ݁݊݋ א ܴ|ா| be the 
vector of all ones. Hence we have 1ܮ ൌ ሺܦ௩ െ ௘ିܦܹܪ ଵ்ܪሻ1 ൌ ݀௩ െ ௘ିܦܹܪ ଵ݀௘ ൌ ݀௩ െ ݁݊݋ܹܪ ൌ ݀௩ െݓܪ ൌ ݀௩ െ ݀௩ ൌ 0             

4. (4) follows directly from (1)-(3).     

2.4 The Definitions of Symmetric Normalized and Random Walk Hypergraph 
Laplacians                

The symmetric normalized hypergraph Laplacian (defined in [1,2]) is defined as fol-
lows      ܮ௦௬௠ ൌ ܫ െ ௩ିܦ భమܦܹܪ௘ି ଵܦ்ܪ௩ି భమ             

The random walk hypergraph Laplacian (defined in [1,2]) is defined as follows  ܮ௥௪ ൌ ܫ െ ௩ିܦ ଵܦܹܪ௘ି ଵ்ܪ                                            

2.5 Properties of ࢓࢙࢟ࡸ and ࢝࢘ࡸ                           

 1. For every vector ݂ א ܴ|௏|, we have         ்݂ܮ௦௬௠݂ ൌ ଵଶ ∑ ∑ ௪ሺ௘ሻௗሺ௘ሻሼ௨,௩ሽكா௘אா ሺ ௙ሺ௨ሻඥௗሺ௨ሻ െ ௙ሺ௩ሻඥௗሺ௩ሻሻଶ                              

 2. λ is an eigenvalue of ܮ௥௪ with eigenvector u if and only if λ is an eigen-

value of ܮ௦௬௠ with eigenvector ݓ ൌ                           ݑ௩భమܦ
 3. λ is an eigenvalue of ܮ௥௪ with eigenvector u if and only if λ and u solve 

the generalized eigen-problem ݑܮ ൌ                         ݑ௩ܦߣ
 4. 0 is an eigenvalue of ܮ௥௪ with the constant one vector 1 as eigenvector. 0 

is an eigenvalue of ܮ௦௬௠ with eigenvector ܦ௩భమ1                                            
 |ܸ| ௥௪ haveܮ ௦௬௠ andܮ ௦௬௠ is symmetric and positive semi-definite andܮ .5 

non-negative real-valued eigenvalues 0 ൑ ଵߣ ൑ ڮ ൑                   |௏|ߣ
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Proof: 
1. The complete proof of (1) can be found in [1]. 
2. (2) can be seen easily by solving ܮ௦௬௠ݓ ൌ ݓߣ ฻ ቆܫ െ ௩ିܦ భమܦܹܪ௘ି ଵܦ்ܪ௩ି భమቇ ݓ ൌ          ݓߣ

                                               ฻ ௩ିܦ భమ ቆܫ െ ௩ିܦ భమܦܹܪ௘ି ଵܦ்ܪ௩ି భమቇ ݓ ൌ ௩ିܦߣ భమݓ                  

                                               ฻ ௩ିܦ భమݓ െ ௩ିܦ ଵܦܹܪ௘ି ଵܦ்ܪ௩ି భమݓ ൌ ௩ିܦߣ భమݓ                          

 Let ݑ ൌ ௩ିܦ భమݓ, (in the other words, ݓ ൌ ݓ௦௬௠ܮ we have ,(ݑ௩భమܦ ൌ ݓߣ ฻ ݑ െ ௩ିܦ ଵܦܹܪ௘ି ଵݑ்ܪ ൌ  ݑߣ
                                                   ฻ ሺܫ െ ௩ିܦ ଵܦܹܪ௘ି ଵ்ܪሻݑ ൌ                                             ݑߣ
                                                   ฻ ݑ௥௪ܮ ൌ                                        ݑߣ

 This completes the proof.       
3. (3) can be seen easily by solving ܮ௥௪ݑ ൌ ݑߣ ฻ ሺܫ െ ௩ିܦ ଵܦܹܪ௘ି ଵ்ܪሻݑ ൌ                                      ݑߣ

                                                         ฻ ܫ௩ሺܦ െ ௩ିܦ ଵܦܹܪ௘ି ଵ்ܪሻݑ ൌ                ݑ௩ܦߣ
                                                         ฻ ሺܦ௩ െ ௘ିܦܹܪ ଵ்ܪሻݑ ൌ                  ݑ௩ܦߣ
                                                         ฻ ݑܮ ൌ                                        ݑ௩ܦߣ

 This completes the proof.  
4. First, we need to prove that ܮ௥௪1 ൌ 0. 

Let ݀௩ א ܴ|௏| be the vector containing the degrees of vertices of 
hypergraph G, ݀௘ א ܴ|ா| be the vector containing the degrees of hyper-edges 
of hypergraph G, ݓ א ܴ|ா| be the vector containing the weights of hyper-
edges of G, 1 א ܴ|௏| be vector of all ones, and ݁݊݋ א ܴ|ா| be the vector of all 
ones. Hence we have  ܮ௥௪1 ൌ ሺܫ െ ௩ିܦ ଵܦܹܪ௘ି ଵ்ܪሻ1       

                                                   ൌ 1 െ ௩ିܦ ଵܦܹܪ௘ି ଵ݀௘          
                                                   ൌ 1 െ ௩ିܦ ଵ݁݊݋ܹܪ        
                                                   ൌ 1 െ ௩ିܦ ଵݓܪ           
                                                   ൌ 1 െ ௩ିܦ ଵ݀௩     
                                                   ൌ 0                  

 The second statement is a direct consequence of (2). 
5. The statement about ܮ௦௬௠ is a direct consequence of (1), then the state-

ment about ܮ௥௪ is a direct       
consequence of (2).              
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3 Algorithms  

Given a set of points ሼݔଵ, ,ଶݔ … , -௡} where ݊ is the total number of points (i.e. vertiݔ
ces) in the hypergraph G=(V,E) and given the incidence matrix H of G.                           

Our objective is to partition these n points into k groups.           

Random walk hypergraph Laplacian based un-supervised learning algorithm 
First, we will give the brief overview of the random walk hypergraph Laplacian based 
un-supervised learning algorithm. The outline of this algorithm is as follows 

1. Construct ܦ௩ ܽ݊݀ ܦ௘ from the incidence matrix H of G 
2. Compute the random walk hypergraph Laplacian ܮ௥௪ ൌ ܫ െܦ௩ି ଵܦܹܪ௘ି ଵ்ܪ     
3. Compute all eigenvalues and eigenvectors of ܮ௥௪ and sort all eigenval-

ues and their corresponding eigenvector in ascending order. Pick the 
first ݇ eigenvectors ݒଶ, ,ଷݒ … , -௥௪ in the sorted list. k can be deܮ ௞ାଵ ofݒ
termined in the following two ways: 

a. k is the number of connected components of ܮ௥௪ [4] 

b. k is the number such that 
ఒೖశమఒೖశభ or ߣ௞ାଶ െ ௞ାଵ is largest for all 2ߣ ൑ ݇ ൑ ݊         

4. Let ܸ א ܴ௡כ௞ be the matrix containing the vectors ݒଶ, ,ଷݒ … ,  ௞ାଵ asݒ
columns. 

5. For ݅ ൌ 1, . . , ݊, let ݕ௜ א ܴଵכ௞ be the vector corresponding to the i-th row 
of V. 

6. Cluster the points ݕ௜  for all 1 ൑ ݅ ൑ ݊ with k-means clustering method.   

Un-normalized hypergraph Laplacian based un-supervised learning algorithm 
Next, we will give the brief overview of the un-normalized hypergraph Laplacian 
based un-supervised learning algorithm. The outline of this algorithm is as follows 

1. Construct ܦ௩ ܽ݊݀ ܦ௘ from the incidence matrix H of G 
2. Compute the un-normalized hypergraph Laplacian ܮ ൌ ௩ܦ െܦܹܪ௘ି ଵ்ܪ       
3. Compute all eigenvalues and eigenvectors of L and sort all eigenvalues 

and their corresponding eigenvector in ascending order. Pick the first ݇ 
eigenvectors ݒଶ, ,ଷݒ … ,  ௞ାଵ of L in the sorted list. k can be determinedݒ
in the following two ways: 

a. k is the number of connected components of L [4] 

b. k is the number such that 
ఒೖశమఒೖశభ or ߣ௞ାଶ െ -௞ାଵ is largߣ

est for all 2 ൑ ݇ ൑ ݊         
4. Let ܸ א ܴ௡כ௞ be the matrix containing the vectors ݒଶ, ,ଷݒ … ,  ௞ାଵ asݒ

columns 
5. For ݅ ൌ 1, . . , ݊, let ݕ௜ א ܴଵכ௞ be the vector corresponding to the i-th row 

of V 
6. Cluster the points ݕ௜  for all 1 ൑ ݅ ൑ ݊ with k-means clustering method 
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Symmetric normalized hypergraph Laplacian based un-supervised learning  
algorithm 
Next, we will give the brief overview of the symmetric normalized hypergraph 
Laplacian based un-supervised learning algorithm which can be obtained from [1,2]. 
The outline of this algorithm is as follows 

1. Construct ܦ௩ ܽ݊݀ ܦ௘ from the incidence matrix H of G 
2. Compute the symmetric normalized hypergraph Laplacian ܮ௦௬௠ ൌ ܫ െܦ௩ି భమܦܹܪ௘ି ଵܦ்ܪ௩ି భమ 
3. Compute all eigenvalues and eigenvectors of ܮ௦௬௠ and sort all eigenval-

ues and their corresponding eigenvector in ascending order. Pick the 
first ݇ eigenvectors ݒଶ, ,ଷݒ … ,  ௦௬௠ in the sorted list. k can beܮ ௞ାଵ ofݒ
determined in the following two ways: 

a. k is the number of connected components of ܮ௦௬௠ [4] 

b. k is the number such that 
ఒೖశమఒೖశభ or ߣ௞ାଶ െ -௞ାଵ is largߣ

est for all 2 ൑ ݇ ൑ ݊         
4. Let ܸ א ܴ௡כ௞ be the matrix containing the vectors ݒଶ, ,ଷݒ … ,  ௞ାଵ asݒ

columns 
5. For ݅ ൌ 1, . . , ݊, let ݕ௜ א ܴଵכ௞ be the vector corresponding to the i-th row 

of V 
6. Cluster the points ݕ௜  for all 1 ൑ ݅ ൑ ݊ with k-means clustering method 

At step 6 of the above three algorithms, k-means clustering method is used for sim-
plicity and is not discussed. Next, the k-mean clustering methods will be discussed. 
The k-mean clustering method is considered the most popular method in clustering 
field [4]. The k-mean clustering method can be completed in the following four steps: 

1. Randomly choose k initial cluster centers (i.e. centroids). 
2. For every feature vector, associate it with the closest centroid. 
3. Recalculate the centroid for all k clusters. 
4. Repeat step 2 and step 3 until convergence. 

In the other words, the k-mean clustering method is trying to minimize the objec-
tive function 

ܬ ൌ ෍ ෍ ,ሺ݅ܨ||௜௝ݎ : ሻ െ ௝ܿ||ଶ௡
௜ୀଵ

௞
௝ୀଵ  

In the above formula, ௝ܿ is the centroid of the cluter j. ܨሺ݅, : ሻ is the i-th feature vec-
tor. The matrix R is defined as follows ݎ௜௝ ൌ ቄ1 ݂݅ ݂݁ܽ݁ݏ݅ݓݎ݄݁ݐ݋ 0݆ ݎ݁ݐݏݑ݈ܿ ݋ݐ ݏ݃݊݋݈ܾ݁ ݅ ݎ݋ݐܿ݁ݒ ݁ݎݑݐ  

Moreover, we can also easily see that 
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ܬ ൌ ሺ෍݁ܿܽݎݐ ෍൫ܨሺ݅, : ሻ െ ௝ܿ൯்ሺܨሺ݅, : ሻ െ ௝ܿሻ௜א௝
௞

௝ୀଵ ሻ 

Finally, the current state of the art network based clustering method (i.e. the sym-
metric normalized graph Laplacian based un-supervised learning method) can be 
completed in the following steps. 

1. Compute the symmetric graph Laplacian ܮ௚ି௦௬௠: ܮ௚ି௦௬௠ ൌܫ െ      .భమିܦభమܹିܦ
2. Compute all eigenvalues and eigenvectors of ܮ௚ି௦௬௠ and sort 

all eigenvalues and their corresponding eigenvector in ascend-
ing order. Pick the first ݇ eigenvectors ݒଶ, ,ଷݒ … ,  ௚ି௦௬௠ in the sorted list. k can be determined in the followingܮ ௞ାଵ ofݒ
two ways: 

a. k is the number of connected components of ܮ௚ି௦௬௠ 
[4] 

b. k is the number such that 
ఒೖశమఒೖశభ or ߣ௞ାଶ െ -௞ାଵ is largߣ

est for all 2 ൑ ݇ ൑ ݊         
3. Let ܸ א ܴ௡כ௞ be the matrix containing the vectors ݒଶ, ,ଷݒ … ,  .௞ାଵ as columnsݒ
4. Compute the new matrix ܷ א ܴ௡כ௞ from V as follows ݑ௜௝ ൌ ∑௜௝ඥݒ ௜௟ଶ௟ݒ  

5. For ݅ ൌ 1, . . , ݊, let ݕ௜ א ܴଵכ௞ be the vector corresponding to the 
i-th row of U. 

6. Cluster the points ݕ௜  for all 1 ൑ ݅ ൑ ݊ with k-means clustering 
method. 

The way describing how to construct W and D will be discussed in the next section.  

4 Experiments and Results 

Datasets 
In this paper, we used the zoo data set which can be obtained from UCI repository. 
The zoo data set contains 100 animals with 17 attributes. The attributes include hair, 
feathers, eggs, milk, etc. The animals have been classified into 7 different classes. Our 
task is to embed the animals in the zoo dataset into Euclidean space by using random 
walk and un-normalized hypergraph Laplacian Eigenmaps and by using the symmet-
ric normalized graph Laplacian Eigenmaps. We embed those animals into Euclidean 
space by using the eigenvectors of the graph Laplacian and hypergraph Laplacians 
associated with the 7 (i.e. number of classes) smallest eigenvalues different from 0. 
Finally, the k-mean clustering method is applied to the transformed dataset. 
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There are three ways to construct the similarity graph from the incident matrix H of 
zoo dataset: 

a. The ε-neighborhood graph: Connect all animals whose 
pairwise distances are smaller than ε. 

b. k-nearest neighbor graph: Animal i is connected with ani-
mal j if animal i is among the k-nearest neighbor of animal 
j or animal j is among the k-nearest neighbor of animal i.     

c. The fully connected graph: All animals are connected. 

In this paper, the similarity function is the Gaussian similarity function ݓ௜௝ ൌ ,ሺ݅ܪሺݏ : ሻ, ,ሺ݆ܪ : ሻሻ ൌ exp ሺെ ݀൫ܪሺ݅, : ሻ, ,ሺ݆ܪ : ሻ൯ݐ ሻ 

In this paper, t is set to 10 and the 3-nearest neighbor graph is used to construct the 
similarity graph from the zoo dataset. This describes how we construct W of the sim-
ple graph. D is the diagonal matrix and its i-th element is defined as follows: ݀௜ ൌ ෍ ௜௝௝ݓ  

Experiments and Results 
In this section, we experiment with the above proposed un-normalized and random 
walk hypergraph Laplacian based un-supervised learning methods (i.e. hypergraph 
spectral clustering) and the current state of the art method (i.e. the symmetric normal-
ized graph Laplacian based un-supervised learning method) which is spectral cluster-
ing method in terms of accuracy performance measure. The accuracy performance 
measure Q is given as follows ܳ ൌ ݁ݒ݅ݐ݅ݏ݋ܲ ݁ݑݎܶ ൅ ݁ݒ݅ݐ݅ݏ݋ܲ ݁ݑݎܶ݁ݒ݅ݐܽ݃݁ܰ ݁ݑݎܶ ൅ ݁ݒ݅ݐܽ݃݁ܰ ݁ݑݎܶ ൅ ݁ݒ݅ݐ݅ݏ݋ܲ ݁ݏ݈ܽܨ ൅  ݁ݒ݅ݐܽ݃݁ܰ ݁ݏ݈ܽܨ

All experiments were implemented in Matlab 6.5 on virtual machine. The accuracy 
performance measures of the above proposed methods and the current state of the art 
method is given in the following table 1 

Table 1. Accuracies of the two proposed methods and the current state of the art method 

Accuracy Performance Measures (%) 
Graph 

(symmetric normalized) 
Hypergraph 

(random walk) 
Hypergraph 

(un-normalized) 
89.43 94.86 93.71 

 
From the above table, we recognized that the accuracy of the random walk hyper- 

graph Laplacian method is slightly better than the accuracy of the un-normalized 
hypergraph Laplacian method. Interestingly, the accuracies of the two proposed 
hypergraph Laplacian methods are significantly better than accuracy of the current state 
of the art method. 
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5 Conclusion       

We have proposed the detailed algorithms the two un-normalized and random walk 
hypergraph Laplacian based un-supervised learning methods applying to the zoo da-
taset. Experiments show that these two methods greatly perform better than the un-
normalized graph Laplacian based un-supervised learning method since these two 
methods utilize the complex relationships among points (i.e. not pairwise relation-
ship). These two methods can also be applied to digit recognition and text classifica-
tion. These experiments will be tested in the future. Moreover, these two methods can 
not only be used in the clustering problem but also the ranking problem. In specific, 
given a set of genes (i.e. the queries) involved in a specific disease such as leukemia 
which is my future research, these two  methods can be used to find more genes  
involved in leukemia by ranking genes in the hypergraph constructed from gene ex-
pression data. The genes with the highest rank can then be selected and checked by 
biology experts to see if the extended genes are in fact involved in leukemia. Finally, 
these selected genes will be used in cancer classification. 

Recently, to the best of my knowledge, the un-normalized hypergraph p-Laplacian 
based un-supervised learning method has not yet been developed. This method is 
worth investigated because of its difficult nature and its close connection to partial 
differential equation on hypergraph field.         
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