
Modeling Swarm Robotics with KnowLang

Emil Vassev and Mike Hinchey

Lero–the Irish Software Engineering Research Centre,
University of Limerick, Limerick, Ireland
{emil.vassev,mike.hinchey}@lero.ie

Abstract. Swarm robotics has emerged as a paradigm whereby intelli-
gent agents are considered to be autonomous entities that interact either
cooperatively or non-cooperatively. The concept is biologically-inspired
and offers many advantages compared with single-agent systems, such
as: greater redundancy, reduced costs and risks, and the ability to dis-
tribute the overall work among swarm members, which may result in
greater efficiency and performance. The distributed and local nature of
these systems is the main factor in the high degree of parallelism dis-
played by their dynamics that often results in adaptation to changing
environmental conditions and robustness to failure. This paper presents
a formal approach to modeling self-adaptive behavior for swarm robotics.
The approach relies on the KnowLang language, a formal language ded-
icated to knowledge representation for self-adaptive systems.

1 Introduction

Aside from complex mechanics and electronics, building robots is about the chal-
lenge of interacting with a dynamic and unpredictable world, which requires the
presence of intelligence. In swarm robotics systems, in addition to this challenge,
we also need to deal with the dynamic local interactions among robots, often
resulting in emergent behavior at the level of the entire swarm. Real swarm
intelligence systems such as social insects, bird flocks and fish schools, leverage
such parallelism to achieve remarkable efficiency and robustness to hazards. The
prospect of replicating the performance of natural systems and their incredible
ability of self-adaptation is the main motivation in the study of swarm robotics
systems.

Swarm robotics brings most of the challenges that the theories and method-
ologies developed for self-adaptive systems are attempting to solve. Hence, self-
adaptation has emerged as an important paradigm making a swarm robotics
system capable of modifying the system behavior and/or structure in response
to increasing workload demands and changes in the operational environment.
Note that robotic artificial intelligence (AI) mainly excels at formal logic, which
allows it, for example, to find the appropriate action from hundreds of possible
actions.

In this paper, we present a formal approach to modeling self-adaptive behav-
ior of swarm robotics. We use KnowLang, a formal framework under development

c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
P.C. Vinh et al. (Eds.): ICTCC 2014, LNICST 144, pp. 13–22, 2015.
DOI: 10.1007/978-3-319-15392-6 2

14 E. Vassev and M. Hinchey

under the mandate of the FP7 project, ASCENS [1]. KnowLang’s notation is
a formal language dedicated to knowledge representation for self-adaptive sys-
tems, so the framework provides both a notation and reasoning to deal with
self-adaptation.

The rest of this paper is organized as follows. Section 2 presents the ARE app-
roach that helps us capture the requirements for self-adaptive behavior. Section
3 describes our swarm robotics case study. Section 4 presents our approach to
specifying the self-adaptive behavior of swarm robots with KnowLang. Finally,
Section 5 provides brief concluding remarks and a summary of our future goals.

2 Requirements for Self-adaptive Behavior

We aim to capture self-adaptive behavior so that it can be properly designed
and subsequently implemented. To do so, we consider that self-adaptive behavior
extends the regular objectives of a system upstream with special self-managing
objectives, also called self-* objectives [6]. Basically, the self-* objectives provide
autonomy features in the form of a system’s ability to automatically discover,
diagnose, and cope with various problems. This ability depends on the system’s
degree of autonomicity, quality and quantity of knowledge, awareness and mon-
itoring capabilities, and quality characteristics such as adaptability, dynamic-
ity, robustness, resilience, and mobility. The approach for capturing all of these
requirements is called Autonomy Requirements Engineering (ARE) [4–6]. This
approach aims to provide a complete and comprehensive solution to the problem
of autonomy requirements elicitation and specification. Note that the approach
exclusively targets the self-* objectives as the only means to explicitly determine
and define autonomy requirements. Thus, it is not meant to handle the regular
functional and non-functional requirements of the systems, presuming that those
might by tackled by the traditional requirements engineering approaches, e.g.,
use case modeling, domain modeling, constraints modeling, etc. Hence, func-
tional and non-functional requirements may be captured by the ARE approach
only as part of the self-* objectives elicitation.

The ARE approach starts with the creation of a goals model that represents
system objectives and their interrelationships for the system in question. For this,
we use GORE (Goal-Oriented Requirements Engineering) where ARE goals are
generally modeled with intrinsic features such as type, actor, and target, with
links to other goals and constraints in the requirements model. Goals models
may be organized in different ways copying with the system’s specifics and the
engineers’ understanding of the system’s goals. Thus we may have hierarchical
structures where goals reside at different level of granularity and concurrent
structures where goals are considered as being concurrent to each other.

The next step in the ARE approach is to work on each one of the system
goals along with the elicited environmental constraints to come up with the self-
* objectives providing the autonomy requirements for this particular system’s
behavior. In this phase, we apply a special Generic Autonomy Requirements
model to a system goal to derive autonomy requirements in the form of the goal’s

Modeling Swarm Robotics with KnowLang 15

supportive and alternative self-* objectives along with the necessary capabilities
and quality characteristics.

Finally, the last step after defining the autonomy requirements per the sys-
tem’s objectives is the formalization of these requirements, which can be con-
sidered as a form of formal specification or requirements recording. The formal
notation used to specify the autonomy requirements is KnowLang [7]. The pro-
cess of requirements specification with KnowLang extends over a few phases:

1. Initial knowledge requirements gathering – involves domain experts to deter-
mine the basic notions, relations and functions (operations) of the domain
of interest.

2. Behavior definition – identifies situations and behavior policies as “control
data”, helping to identify important self-adaptive scenarios.

3. Knowledge structuring – encapsulates domain entities, situations and behav-
ior policies into KnowLang structures such as concepts, properties, function-
alities, objects, relations, facts and rules.

To specify self-* objectives with KnowLang, we use special policies associated
with goals, special situations, actions (eventually identified as system capabili-
ties), metrics, etc.[7]. Hence, self-* objectives are represented as policies describ-
ing at an abstract level what the system will do when particular situations arise.
The situations are meant to represent the conditions needed to be met in order
for the system to switch to a self-* objective while pursuing a system goal. Note
that policies rely on actions that are a priori defined as functions of the system.
In the case that such functions have not been defined yet, the needed functions
should be considered as autonomous functions and their implementation will be
justified by the ARE’s selected self-* objectives.

According to the KnowLang semantics, in order to achieve specified goals
(objectives), we need to specify policy-triggering actions that will eventually
change the system states, so the desired ones, required by the goals, will become
effective [7]. Note that KnowLang policies allow the specification of autonomic
behavior (autonomic behavior can be associated with self-* objectives), and
therefore, we need to specify at least one policy per single goal; i.e., a policy
that will provide the necessary behavior to achieve that goal. Of course, we may
specify multiple policies handling same goal (objective), which is often the case
with the self-* objectives and let the system decide which policy to apply taking
into consideration the current situation and conditions. The following is a formal
presentation of a KnowLang policy specification [7].

Policies (Π) are at the core of autonomic behavior (autonomic behavior
can be associated with autonomy requirements). A policy π has a goal (g),
policy situations (Siπ), policy-situation relations (Rπ), and policy conditions
(Nπ) mapped to policy actions (Aπ) where the evaluation of Nπ may eventually
(with some degree of probability) imply the evaluation of actions (denoted with

Nπ
[Z]→ Aπ (see Definition 2). A condition is a Boolean function over ontology

(see Definition 4), e.g., the occurrence of a certain event.

16 E. Vassev and M. Hinchey

Definition 1. Π := {π1, π2,, πn}, n ≥ 0 (Policies)

Definition 2. π :=< g, Siπ, [Rπ], Nπ, Aπ,map(Nπ, Aπ, [Z]) >

Aπ ⊂ A,Nπ
[Z]→ Aπ (Aπ - Policy Actions)

Siπ ⊂ Si, Siπ := {siπ1 , siπ2 ,, siπn
}, n ≥ 0

Rπ ⊂ R,Rπ := {rπ1 , rπ2 ,, rπn
}, n ≥ 0

∀rπ ∈ Rπ • (rπ :=< siπ, [rn], [Z], π >) , siπ ∈ Siπ

Siπ
[Rπ]→ π → Nπ

Definition 3. Nπ := {n1, n2,, nk}, k ≥ 0 (Conditions)

Definition 4. n := be(O) (Condition - Boolean Expression)

Definition 5. g := 〈⇒ s′〉|〈s ⇒ s′〉 (Goal)

Definition 6. s := be(O) (State)

Definition 7. Si := {si1, si2,, sin}, n ≥ 0 (Situations)

Definition 8. si :=< s,A
←
si , [E

←
si], Asi > (Situation)

A
←
si⊂ A (A ←

si - Executed Actions)
Asi ⊂ A (Asi - Possible Actions)
E

←
si⊂ E (E ←

si - Situation Events)

Policy situations (Siπ) are situations that may trigger (or imply) a policy π,

in compliance with the policy-situations relations Rπ (denoted with Siπ
[Rπ]→ π),

thus implying the evaluation of the policy conditions Nπ (denoted with π →
Nπ)(see Definition 2). Therefore, the optional policy-situation relations (Rπ)
justify the relationships between a policy and the associated situations (see Def-
inition 2). In addition, the self-adaptive behavior requires relations to be specified
to connect policies with situations over an optional probability distribution (Z)
where a policy might be related to multiple situations and vice versa. Proba-
bility distribution is provided to support probabilistic reasoning and to help the
KnowLang Reasoner choose the most probable situation-policy “pair”. Thus, we
may specify a few relations connecting a specific situation to different policies to
be undertaken when the system is in that particular situation and the probabil-
ity distribution over these relations (involving the same situation) should help

the KnowLang Reasoner decide which policy to choose (denoted with Siπ
[Rπ]→ π

- see Definition 2).
A goal g is a desirable transition to a state or from a specific state to another

state (denoted with s ⇒ s′) (see Definition 5). A state s is a Boolean expression
over ontology (be(O))(see Definition 6), e.g., “a specific property of an object
must hold a specific value”. A situation is expressed with a state (s), a history
of actions (A ←

si) (actions executed to get to state s), actions Asi that can be
performed from state s and an optional history of events E

←
si that eventually

occurred to get to state s (see Definition 8).

Modeling Swarm Robotics with KnowLang 17

Ideally, policies are specified to handle specific situations, which may trigger
the application of policies. A policy exhibits a behavior via actions generated
in the environment or in the system itself. Specific conditions determine which
specific actions (among the actions associated with that policy - see Definition
2) shall be executed. These conditions are often generic and may differ from
the situations triggering the policy. Thus, the behavior not only depends on the
specific situations a policy is specified to handle, but also depends on additional
conditions. Such conditions might be organized in a way allowing for synchro-
nization of different situations on the same policy. When a policy is applied,
it checks what particular conditions are met and performs the mapped actions
(see map(Nπ, Aπ, [Z])) - see Definition 2). An optional probability distribution
can additionally restrict the action execution. Although initially specified, the
probability distribution at both mapping and relation levels is recomputed after
the execution of any involved action. The re-computation is based on the conse-
quences of the action execution, which allows for reinforcement learning.

3 The Ensemble of Robots Case Study

The ensemble of robots case study targets swarms of intelligent robots with self-
awareness capabilities that help the entire swarm acquire the capacity to reason,
plan, and autonomously act. The case study relies on the marXbot robotics
platform [2], which is a modular research robot equipped with a set of devices
that help the robot interact with other robots of the swarm or the robotic envi-
ronment. The environment is defined as an arena where special cuboid-shaped
obstacles are present in arbitrary positions and orientations. Moreover, the envi-
ronment may contain a number of light sources, usually placed behind the goal
area, which act as environmental cues used as shared reference frames among all
robots.

Each marXbot robot is equipped with a set of devices to interact with the
environment and with other robots of the swarm:

• a light sensor, that is able to perceive a noisy light gradient around the robot
in the 2D plane;

• a distance scanner that is used to obtain noisy distances and angular values
from the robot to other objects in the environment;

• a range and bearing communication system, with which a robot can com-
municate with other robots that are in line-of-sight;

• a gripper, that is used to physically connect to the transported object;
• two wheels independently controlled to set the speed of the robot.

Currently, the marXbots robots are able to work in teams where they coordinate
based on simple interactions in group tasks. For example, a group of marXbots
robots may collectively move a relatively heavy object from point A to point B
by using their grippers.

For the purpose of the Ensemble of Robots case study, we developed a simple
scenario that requires self-adaptive behavior of the individual marXbot robots

18 E. Vassev and M. Hinchey

[3]. In this scenario, a team of marXbot robots, called rescuers, is deployed in
a special area, called a deployment area. We imagine that some kind of disaster
has happened, and the environment is occasionally obstructed by debris that the
robots can move around. In addition, a portion of the environment is dangerous
for robot navigation due to the presence of radiation. We assume that prolonged
exposition to radiation damages the robots. For example, short-term exposition
increases a robot’s sensory noise. Long-term damage, eventually, disables the
robot completely. To avoid damage, the robots can use debris to build a protective
wall.

Further, we imagine that a number of victims are trapped in the environment
and must be rescued by the robots. Each victim is suffering a different injury. The
robots must calculate a suitable rescuing behavior that maximizes the number
of victims rescued. A victim is considered rescued when it is deposited in the
deployment area alive. To perform its activities, a robot must take into account
that it has limited energy.

4 Formalizing Swarm Robotics with KnowLang

Following the scenario described in Section 3, we applied the ARE approach
(see Section 2) and derived the goals along with the self-* objectives assisting
these goals when self-adaptation is required. Note that the required analysis
and process of building the goals model along with the process of deriving the
adaptation-supporting self-* objectives is beyond the scope of this paper. These
will be addressed in a future paper.

Based on the rationale above, we applied the ARE approach (see Section 2)
and derived the system’s goals along with the self-* objectives assisting these
goals when self-adaptation is required. Note that the required analysis and pro-
cess of building the goals model for swarm robotics along with the process of
deriving the adaptation-supporting self-* objectives is beyond the scope of this
paper.

Figure 1 depicts the ARE goals model for swarm robotics where goals are
organized hierarchically at three different levels. As shown, the goals from the
first two levels (e.g., “Rescue Victims”, “Protect against Radiation”, and “Move
Victims away”) are main system goals captured at different levels of abstraction.
The 3rd level is resided by self-* objectives (e.g., “Clean Debris”, “Optimize
Rescue Operation”, and “Avoid Radiation Zones”) and supportive goals (e.g.,
“Exploration and Mapping” and “Find Victim”) associated with and assisting
the 2nd-level goals. Basically, all self-* objectives inherit the system goals they
assist by providing behavior alternatives with respect to these system goals.
The system switches to one of the assisting self-* objectives when alternative
autonomous behavior is required (e.g., a robot needs to avoid a radiation zone).
In addition, Figure 1 depicts some of the environmental constraints (e.g., “Radi-
ation” and “Debris”), which may cause self-adaptation.

In order to specify the autonomy requirements for swarm robotics, the first
step is to specify a knowledge base (KB) representing the swarm robotics sys-
tem in question, i.e., robots, victims, radiation, debris, etc. To do so, we need

Modeling Swarm Robotics with KnowLang 19

Fig. 1. Swarm Robotics Goals Model with Self-* Objectives

to specify ontology structuring the knowledge domain of the case study. Note
that this domain is described via domain-relevant concepts and objects (concept
instances) related through relations. To handle explicit concepts like situations,
goals, and policies, we grant some of the domain concepts with explicit state
expressions where a state expression is a Boolean expression over the ontology
(see Definition 6 in Section 2). Note that being part of the autonomy require-
ments, knowledge plays a very important role in the expression of all the auton-
omy requirements (see Section 2).

Figure 2, depicts a graphical representation of the swarm robotics ontology
relating most of the domain concepts within a swarm robotics system. Note
that the relationships within a concept tree are ”is-a” (inheritance), e.g., the
Radiation Zone concept is an EnvironmentEntity and the Action concept is a
Knowledge and consecutively Phenomenon, etc. Most of the concepts presented
in Figure 2 were derived from the Swarm Robotics Goals Model (see Figure 1).
Other concepts are considered explicit and were derived from the KnowLang
specification model [8].

The following is a sample of the KnowLang specification representing the
Robot concept. As specified, the concept has properties of other concepts, func-
tionalities (actions associated with that concept), states (Boolean expressions
validating a specific state), etc. For example, the IsOperational state holds

20 E. Vassev and M. Hinchey

Fig. 2. Swarm Robotics Ontology Specified with KnowLang

when the robot’s battery (the rBattery property) is not in the batteryLow state
and the robot itself is not in the IsDamaged state.
CONCEPT Robot {

PROPS {

PROP rBattery {TYPE{swarmRobots.robots.CONCEPT_TREES.Battery} CARDINALITY{1}}

PROP rPlanner {TYPE{swarmRobots.robots.CONCEPT_TREES.Planner} CARDINALITY{1}}

PROP rCommunicationSys {TYPE{swarmRobots.robots.CONCEPT_TREES.CommunicationSys} CARDINALITY{1}}

PROP liftCapacity {TYPE{NUMBER} CARDINALITY{1}}

PROP dragCapacity {TYPE{swarmRobots.robots.CONCEPT_TREES.Capacity} CARDINALITY{1}}

PROP rDamages {TYPE{swarmRobots.robots.CONCEPT_TREES.Damage} CARDINALITY{*}}

PROP distDebries {TYPE{swarmRobots.robots.CONCEPT_TREES.Dstance_to_Debries} CARDINALITY{1}}

PROP victimToCareOf {TYPE{swarmRobots.robots.CONCEPT_TREES.Victim} CARDINALITY{1}}}

FUNCS {

FUNC plan {TYPE {swarmRobots.robots.CONCEPT_TREES.Plan}}

FUNC explore {TYPE {swarmRobots.robots.CONCEPT_TREES.Explore}}

FUNC selfCheck {TYPE {swarmRobots.robots.CONCEPT_TREES.CheckForDamages}}

FUNC dragVictimAway {TYPE {swarmRobots.robots.CONCEPT_TREES.DragVictim}}

FUNC carryVictim {TYPE {swarmRobots.robots.CONCEPT_TREES.CarryVictim}}

FUNC buildWall {TYPE {swarmRobots.robots.CONCEPT_TREES.BuildWall}}}

STATES {

STATE IsOperational{ NOT swarmRobots.robots.CONCEPT_TREES.Robot.PROPS.rBattery.STATES.batteryLow AND

NOT NOT swarmRobots.robots.CONCEPT_TREES.Robot.STATES.IsDamaged }

STATE IsDamaged { swarmRobots.robots.CONCEPT_TREES.Robot.FUNCS.selfCheck > 0 }

STATE IsPlaning { IS_PERFORMING{swarmRobots.robots.CONCEPT_TREES.Robot.FUNCS.plan} }

STATE IsExploring { IS_PERFORMING{swarmRobots.robots.CONCEPT_TREES.Robot.FUNCS.explore} }

STATE HasDebrisNearby { swarmRobots.robots.CONCEPT_TREES.Victim.PROPS.distDeplArea < 3 } //less than 3 m

}}

Note that states are extremely important to the specification of goals, situations,
and policies. For example, states help the KnowLang Reasoner determine at
runtime whether the system is in a particular situation or a particular goal has
been achieved. The following code sample presents a partial specification of a
simple goal.
CONCEPT_GOAL Protect_Victim_against_Radiation {

SPEC {

DEPART { swarmRobots.robots.CONCEPT_TREES.Victim.STATES.underRadiation }

ARRIVE { swarmRobots.robots.CONCEPT_TREES.Victim.STATES.radiationSafe }}}

The following is the specification of a policy called ProtectV ictimAgainst
Radiation. As shown, the policy is specified to handle the Protect V ictim
against Radiation goal and is triggered by the situation V ictimNeedsHelp.

Modeling Swarm Robotics with KnowLang 21

Further, the policy triggers via its MAPPING sections conditionally the exe-
cution of a sequence of actions. When the conditions are the same, we specify a
probability distribution among the MAPPING sections involving same condi-
tions (e.g., PROBABILITY {0.6}), which represents our initial belief in action
choice.

CONCEPT_POLICY ProtectVictimAgainstRadiation {

SPEC {

POLICY_GOAL { swarmRobots.robots.CONCEPT_TREES.Protect_Victim_against_Radiation }

POLICY_SITUATIONS { swarmRobots.robots.CONCEPT_TREES.VictimNeedsHelp }

POLICY_RELATIONS { swarmRobots.robots.RELATIONS.Policy_Situation_1 }

POLICY_ACTIONS { swarmRobots.robots.CONCEPT_TREES.DragVictim,

swarmRobots.robots.CONCEPT_TREES.CarryVictim,swarmRobots.robots.CONCEPT_TREES.BuildWall}

POLICY_MAPPINGS {

MAPPING {

CONDITIONS { swarmRobots.robots.CONCEPT_TREES.Robot.STATES.IsOperational AND

swarmRobots.robots.CONCEPT_TREES.Robot.PROPS.victimToCareOf.PROPS.victimMass >

swarmRobots.robots.CONCEPT_TREES.Robot.PROPS.liftCapacity AND

swarmRobots.robots.CONCEPT_TREES.Robot.STATES.HasDebrisNearby}

DO_ACTIONS {swarmRobots.robots.CONCEPT_TREES.Robot.FUNCS.dragVictimAway} PROBABILITY {0.6}}

MAPPING {

CONDITIONS { swarmRobots.robots.CONCEPT_TREES.Robot.STATES.IsOperational AND

swarmRobots.robots.CONCEPT_TREES.Robot.PROPS.victimToCareOf.PROPS.victimMass >

swarmRobots.robots.CONCEPT_TREES.Robot.PROPS.liftCapacity AND

swarmRobots.robots.CONCEPT_TREES.Robot.STATES.HasDebrisNearby}

DO_ACTIONS {swarmRobots.robots.CONCEPT_TREES.Robot.FUNCS.buildWall} PROBABILITY {0.4}}

MAPPING {

CONDITIONS { swarmRobots.robots.CONCEPT_TREES.Robot.STATES.IsOperational AND

swarmRobots.robots.CONCEPT_TREES.Robot.PROPS.victimToCareOf.PROPS.victimMass <=

swarmRobots.robots.CONCEPT_TREES.Robot.PROPS.liftCapacity}

DO_ACTIONS {swarmRobots.robots.CONCEPT_TREES.Robot.FUNCS.carryVictim} PROBABILITY {0.6}}

MAPPING {

CONDITIONS { swarmRobots.robots.CONCEPT_TREES.Robot.STATES.IsOperational AND

swarmRobots.robots.CONCEPT_TREES.Robot.PROPS.victimToCareOf.PROPS.victimMass <=

swarmRobots.robots.CONCEPT_TREES.Robot.PROPS.liftCapacity}

DO_ACTIONS { swarmRobots.robots.CONCEPT_TREES.Robot.FUNCS.dragVictimAway} PROBABILITY {0.4}

}}}}

As specified, the probability distribution gives the designer’s initial preference
about what actions should be executed if the system ended up running that
policy. Note that at runtime, the KnowLang Reasoner maintains a record of all
the action executions and re-computes the probability rates every time when
a policy has been applied and subsequently, actions have been executed. Thus,
although initially the system will execute the function dragV ictimAway (it has
the higher probability rate of 0.6), if that policy cannot achieve its goal with this
action, then the probability distribution will be shifted in favor of the function
buildWall, which may be executed the next time when the system will try to
apply the same policy. Therefore, probabilities are recomputed after every action
execution, and thus the behavior changes accordingly.

5 Conclusion and Future Work

Swarm robotics systems generally exhibit a number of autonomic features result-
ing in complex behavior and complex interactions with the operational environ-
ment, often leading to a need for self-adaptation. The need of self-adaptation
arises when a system needs to cope with changes in order to ensure realization
of its objectives. To properly develop such systems, it is very important to appro-
priately handle their self-adaptive behavior. In this paper, we have presented an
approach to capturing the requirements for, and modeling self-adaptive behavior,
of swarm robotics. We consider that self-adaptive behavior extends the regular
goals of a system upstream with special self-* objectives in the form of system’s

22 E. Vassev and M. Hinchey

ability to automatically discover, diagnose, and cope with various problems. To
formalize self-* objectives, the approach relies on the KnowLang language, a for-
mal language dedicated to knowledge representation for self-adaptive systems.

Future work is mainly concerned with further development of the Autonomy
Requirements Engineering approach along with full implementation of KnowL-
ang, involving tools and a test bed for autonomy requirements verification and
validation.

Acknowledgments. This work was supported by the European Union FP7 Inte-
grated Project Autonomic Service-Component Ensembles (ASCENS) and by Science
Foundation Ireland grant 03/CE2/I303 1 to Lero–the Irish Software Engineering
Research Centre.

References

1. ASCENS: ASCENS - Autonomic Service-Component Ensembles. ascens-ist.eu
(2014). http://www.ascens-ist.eu/

2. Bonani, M., Baaboura, T., Retornaz, P., Vaussard, F., Magnenat, S., Burnier,
D., Longchamp, V., Mondada, F.: marXbot, Laborotoire de Systemes Robotiques
(LSRO), Ecole Polytechnique Federale de Lausanne. mobots.epfl.ch (2011). http://
mobots.epfl.ch/marxbot.html

3. Serbedzija, N., Hoch, N., Pinciroli, C., Kit, M., Bures, T., Monreale, G., Montanari,
U., Mayer, P., Velasco, J.: D7.3: Third Report on WP7 Integration and Simulation
Report for the ASCENS Case Studies. ASCENS Deliverable (2013)

4. Vassev, E., Hinchey, M.: Autonomy requirements engineering. In: Proceedings of
the 14th IEEE International Conference on Information Reuse and Integration (IRI
2013), pp. 175–184. IEEE Computer Society (2013)

5. Vassev, E., Hinchey, M.: Autonomy requirements engineering: A case study on the
bepicolombo mission. In: Proceedings of C* Conference on Computer Science &
Software Engineering (C3S2E 2013), pp. 31–41. ACM (2013)

6. Vassev, E., Hinchey, M.: On the autonomy requirements for space missions. In:
Proceedings of the 16th IEEE International Symposium on Object/Component/
Service-oriented Real-time Distributed Computing Workshops (ISCORCW 2013).
IEEE Computer Society (2013)

7. Vassev, E., Hinchey, M., Gaudin, B.: Knowledge representation for self-adaptive
behavior. In: Proceedings of C* Conference on Computer Science & Software
Engineering (C3S2E 2012), pp. 113–117. ACM (2012)

8. Vassev, E., Hinchey, M., Montanari, U., Bicocchi, N., Zambonelli, F., Wirsing, M.:
D3.2: Second Report on WP3: The KnowLang Framework for Knowledge Modeling
for SCE Systems. ASCENS Deliverable (2012)

http://www.ascens-ist.eu/
http://mobots.epfl.ch/marxbot.html
http://mobots.epfl.ch/marxbot.html

	Modeling Swarm Robotics with KnowLang
	1 Introduction
	2 Requirements for Self-adaptive Behavior
	3 The Ensemble of Robots Case Study
	4 Formalizing Swarm Robotics with KnowLang
	5 Conclusion and Future Work
	References

