
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
P.C. Vinh et al. (Eds.): ICTCC 2014, LNICST 144, pp. 191–201, 2015.
DOI: 10.1007/978-3-319-15392-6_19

Measurement of Cloud Computing Services Availability

Jakub Pavlik, Vladimir Sobeslav(), and Ales Komarek

Department of Information Technologies, Faculty of Informatics and Management,
University of Hradec Kralove, Rokitanskeho 62,

500 03 Hradec Kralove, Czech Republic
{Jakub.pavlik,vladimir.sobeslav,ales.komarek}@uhk.cz

Abstract. Recently we are witnessing the engagement of cloud computing ser-
vices such as emails, web services, mobile application, sharing data-stores and
many others. Huge number of companies, customers and public institutions are
considering the migration to the cloud services. The topical questions behind
this effort is the efficiency and measurement of the QoS – Quality of Services
of the cloud computing utilisation. This paper is focused on the problematic of
measuring and monitoring service availability in Cloud Computing. It deals
with the Service-Level Agreement (SLA) monitoring approaches and frame-
works. Furthermore it presents a new approach of the cloud service availability
monitoring from the client-centric perspective. On the basis of the client-centric
approach a new solution was designed, implemented and tested on a sample
cloud environment.

Keywords: QoS · SLA · Cloud Computing · Service availability · SLA
monitoring

1 Introduction

Cloud Computing creates a new trend in which companies buy IT resources, plat-
forms, and applications as a service. This approach provides multiple economic, tech-
nological and functional benefits. But, these are accompanied by new threats, prob-
lems and challenges such as security issues, quality of service definition and measur-
ing, responsibility between related parties, service availability, etc. Cloud computing
also promises to provide high quality and on-demand services. However, cloud ser-
vices usually come with various levels of services and performance characteristics
which complicate the chances for precise classifications [2]. As shown in Fig. 1,
Cloud Computing distinguishes between three basic service models. Cloud service
can be the end user software (SaaS), a platform especially used by developers (PaaS),
or an infrastructure itself (IaaS) [3]. The goal of Cloud Computing services is to con-
solidate and optimize existing software and hardware resources and provide auto-
mated, on-demand, service-oriented solution with broad network access [4].

Success of these cloud services depends on the required functionality and other
characteristics such as availability, respond time, latency, performance, timeliness,
scalability, high availability, trust, security, etc. All of these characteristics can be

192 J. Pavlik et al.

covered by the term Quality of Cloud Service (QoCS) which comes from general QoS
[5]. QoCS parameters are non-functional definition and properties of cloud service.
Hence, it is difficult to assure the accurate evaluation and measuring of QoCS. On the
one hand, it solves requirements such as security and trust which are very difficult to
evaluate, and on the other hand it resolves the reliability, availability, and perform-
ance characteristics. Another problem is the great variety of different cloud providers,
as well as the variety of cloud services. Here come the questions of how to evaluate
the QoCS and how to ensure its monitoring and compliance.

Fig. 1. Cloud services

In practice, QoCS are technical parameters of provided services which are con-
tained and formalized into Service Level Agreements (SLA). SLAs are part of service
contracts and are usually agreements between two parties (service provider and cus-
tomer) which formally define the services. Service contracts use the percentage of
service availability as a unit. In practice, today SLAs are not sufficiently accurate and
need to be proved and measured. Furthermore, they do not provide guarantees for the
availability of services. Rather, the whole process is based on customers’ claims of
outages or downtime incidents sent to the provider [6]. This paper is a part of a bigger
project where the overall goal of the project is to define some nonfunctional aspects,
using the Web Ontology Language OWL [7] and focusing on the automatic or semi-
automatic generation of cloud service agreements by using ontologies including
monitoring, measuring and compliance checking for SLAs. This paper defines a new
approach for monitoring, measuring and compliance validation of SLA in Cloud
Computing from Client-Centric point of view.

2 Analysis of Existing SLA Monitoring Solutions

This section focuses on SLA in terms of its monitoring and measuring, because only
given availability percentage nines (e.g. 99.99%) are not enough for a quality of the
cloud service. The goal is also to provide a view on the standard and current SLA
monitoring approaches, frameworks or languages which is the cornerstone
for designing the future of cloud availability monitoring tools. As [8] describes, the

 Measurement of Cloud Computing Services Availability 193

best-known projects for SLA specifications include: RBSLA, SLAng, SLA@SOI, and
WSLA. Each of them are briefly specified in the following subsections.¨

2.1 RBSLA

Rule based SLA is a rule based approach to SLA representation and management
which allows separating the contractual business logic from the application logic and
enables automated execution and monitoring SLA’s specifications. The key features
of this concept are: good integration of external data or systems; ECA rules including
monitoring intervals, active event monitoring (measurement) functions and executable
actions [10]. The whole concept of Rule-based Service Level Management is being
built with a computational model based on the ContractLog and the open source rule
engine Prova [9].

2.2 SLAng

In addition to RBSLA, SLAng is a language for defining Service Level Agreements
that cover needs for Quality of Service [11]. SLAng provides the format for defini-
tions of QoS, responsibility between parties, and language appropriate for automated
reasoning systems. The SLAng syntax is obviously an XML schema, specifically a
combination of WSDL and BPEL. This approach is based on the Service Provision
Reference Model. The nodes are architecture components and edges depict possibili-
ties for SLA between two parties. The structure is divided into three parts: Applica-
tion tier, Middle tier, and Underlying resources. Thus, the SLA classification distin-
guishes between Horizontal (different parties with same service) and Vertical SLA
(parties on different levels of service) [11].

2.3 SLA@SOI

The SLA@SOI is the largest project related to the SLA field sponsored by leading
Industrial, Academic and Research Institutes from around Europe. SLA@SOI “cre-
ated a holistic view for the management of service level agreements (SLAs) and pro-
vides an SLA management framework that can be easily integrated into a service-
oriented infrastructure” [12]. This approach is not only about definition of SLA, their
measurement, and results, it provides a complex view on the whole area of business.
It includes requirements and functions like: predictability and dependability of all
components in the processes; holistic SLA management gaining the transparent IT;
automated negotiation of SLA between parties.

2.4 WSLA

Last approach of existing SLA concepts is Web service SLA. Even though this is the
oldest one, all other approaches mentioned above are based on it [12] [11] [8]. Con-
sidering [8], we decided that the best is to thoroughly describe this approach and build
our solution on it. Software & Hardware solutions and their service availability have
usually a set of specific requirements for availability, reliability, etc. For this purpose,

194 J. Pavlik et al.

the Web Service Level Ag
cially for the Web Services
provider to perform a servic
process-level service param
to be taken in case of devia
example, a notification of
schema forming an abstrac
ment on both consumer an
structure is not the subject o

3 Client-Centric S

Based on our research, clo
done from the consumer's p
independently of provider.
concluded:

• Client-centric

structure. Provi
structure should

• Automated solu
able flexible res

• General and si
any kind of clou

All of these requirement
chine. We propose three b
BlackBox detection and m
quests for the cloud service
latency). The representation
analysis (probability distrib
solution puts the BlackBox
the consumer machine and
analyze direct user’s reques

The second approach pl
each consumer end machine
tation agent which detects

greement (WSLA) language was created and is used es
s domains as SOAP, which “defines assertions of a serv
ce according to agreed guarantees for IT-level and busin

meters such as response time and throughput, and measu
tion and failure to meet the asserted service guarantees,
the service customer.” [13]. Result of WSLA is an XM
t language for implementation of the whole SLA mana

nd provider side. Detailed description of the SLA and
of this paper.

Solution

oud service availability measuring and analysis should
perspective (the client-centric approach), automatically

The following important issues and requirements can

solution – should be independent of the provider’s in
der’s monitoring systems or probes located in their in

d not be used due to inaccuracy of results.
ution – fully automated or semi-automated in order to

sponse to changes in cloud services.
imple solution – should be standardized and applicable
ud service such as IaaS, PaaS, or SaaS.

ts aim to create an agent software for the consumer’s m
basic approaches or solution designs. Each of them u

monitoring systems. The detection discovers consumer
e and the monitoring gathers data sets (success or fail
n of availability is evaluated by using goodness-of-fit te
bution) in the next steps. As shown in Figure 2, the f
x detection and monitoring system in one location betw
d the cloud service as a kind of proxy site. The goal is
st to the service to decide about availability.

Fig. 2. Solution Approach I

laces the BlackBox on a consumer side, more precisely
e. The consumer environment is affected by the implem
cloud service requests and gathers data about them. D

spe-
vice
ness
ures
 for
ML
age-
d its

d be
and

n be

nfra-
nfra-

en-

e for

ma-
uses

re-
and
ests
first

ween
s to

y to
men-
Data

 M

are gathered only during co
does not provide accurate
service when he/she needs i
of cloud service offering. A
failure on the consumer sid
that neither of the mentione

The last approach tries
This means to separate Bla
The detection is done on the
cloud service requests and p
The detection can be carrie
analysis.

4 Monitoring Solu

Generally, there are two w
ware, etc. - Agent-based an
monitoring agents installed
data is collected and sent
proach monitors the system
agents are installed on the m
based approach has more c
and allows more control of
our solution should work
Agentless approach is the fi

In addition to the Agentl
standard and easy to deplo

Measurement of Cloud Computing Services Availability

onsumer communication with cloud service, which actua
service availability, because the consumer only uses
it. The goal is to provide precise SLA for the whole per

Another issue is related to service unavailability caused
de, e.g. internet outage on the consumer side. This me
ed approaches is optimal.

Fig. 3. Solution Approach II

to resolve disadvantages of the previous two approach
ackBox detection and monitoring into different locatio
e consumer's machine by an installed agent which analy
provides materials for configuration of remote monitori
d out by a machine learning process together with netw

Fig. 4. Solution Approach III

ution

ways how to monitor systems, applications, software, ha
nd Agentless. An Agent-based approach uses a software

directly inside the target monitored system, where spec
to the monitoring server side. In contrast, Agentless

ms remotely from the server side, which means that
monitoring server and not on the target system. An Age
capabilities and power than agentless monitoring soluti
f the target monitoring configuration. As Figure 4 sho

as the Blackbox remote monitoring server. Therefo
irst requirement which must be fulfilled.
less criteria, the monitoring system must be open, flexib

oy withing enterprise-class. A survey was conducted (w

195

ally
the

riod
d by
eans

hes.
ons.
yzes
ing.

work

ard-
lite

cific
ap-
the

ent-
ions
ows,
ore,

ble,
with

196 J. Pavlik et al.

four big customers in the Czech Republic) among IT companies and it was found that
the most widely used open source tool is Nagios [14]. Nagios is the Industry Standard
in IT Infrastructure Monitoring and it is provided in commercial or open source ver-
sions. Its biggest advantage is the large number of existing monitoring plugins that
allow virtual monitoring of many entities. The last requirement is the web graphical
interface enabling scalable real-time graphing of collected data. This function pro-
vides wide range of options to display data in time.

As mentioned above, Nagios meets the requirements of the first two paragraphs,
but for graphical function a commercial license is needed and the output is more suit-
able for classic static infrastructure monitoring than for the purpose in question.
Therefore, it was decided to use the open-source project Graphite [15] for scalable
real-time graphing and replace Nagios by the open-source monitoring framework
Sensu [16], which can reuse existing Nagios plugins. The reason for choosing Sensu
instead of Nagios was primarily due to the absolute openness and simplicity. Figure
Fig. 5 shows the resulting monitoring architecture where the two above mentioned
open-source projects were joined (beyond the standard projects like Apache or Ra-
bitMQ).

As mentioned above, the cornerstones of our solution are Sensu and Graphite. The
monitoring architecture (Fig. 5) contains following components:

Fig. 5. Monitoring Architecture

Client side - monitoring agents located inside the target system, application, etc.
These measure, poll and collect data and send them into monitoring server core. In the
current case it is located on the same side (physical or virtual machine) as Server side,
because the Agentless approach is used

 Measurement of Cloud Computing Services Availability 197

Sensu server - is responsible for orchestrating check executions, the process of
checking results, and event handling. It stores last status of check with details and
launches event notifications, which are kept there until resolved. In this solution it is
used primarily for scheduling execution and real-time verification of cloud service.

5 Statistical Data Analysis

The main idea of the solution is to be simple, easy to implement, and automatic or
semiautomatic. Therefore, all the monitoring checks generate similar data sets. Each
of them creates two data types: Availability data - discrete data that can only take
certain values. In this case it is value “1” or “0”, success or failure. Latency data -
continuous data that can take any value within a specific range. In this case it is the
response time or latency of our monitoring check given in UNIX time stamp (nano-
seconds).

Availability data is almost the same for any cloud service, unlike latency for which
response time can be completely different and the similarity among cloud services is
almost never the same. The next difference is that the Availability data is always pre-
sent (except failure of monitoring server), but the Latency data is only present if
availability is “1”. Otherwise, the latency is useless. This means that the latency anal-
ysis is valuable only if the cloud service is available.

We estimated types of probability distribution function using descriptive statistic
and graphical methods. Descriptive statistics consists of calculating parameters such
as Mean, Median, Maximum, Minimum, Standard Deviation, Variance, Summary,
Skewness, and Kurtosis. This led to the finding that availability data distribution is
almost always skewed towards the left, which confirms the statement that the median
is greater than the mean.

After that several graphical techniques (histograms, empirical cumulative distribu-
tion function, Q-Q plot, and density plot) for data analysis were used. These can help
to identify the kind of pdf to use to fit the model. They were compared with other
theoretical discrete distributions, such as Poisson, Binomial, and others.

Based on the foregoing, it was concluded that the availability of data can be repre-
sented by Binomial or Poisson distributions. Both are very similar. Due to the large
number of values (N), Binomial distribution looks like a Poisson with the same mean
[23]. Poisson distribution is used in the case when p is very small or N is very large.
The hypergeometric distribution was also considered, but it was rejected due to the
fact that it describes the probability of k successes in n draws without replacement. It
is a contrast to Binomial which is with replacement. The availability data is with re-
placement, because both values can appear more than one time.

This statement is supported by mathematical goodness of fit test using Chi-square
testing. Chi-square test is based on comparing empirical frequencies with theoretical
frequencies. Theoretical distribution was estimated using the maximum likelihood
estimate (MLE), which is naturally implemented in R language. The chi-square test is
defined for the hypothesis:

198 J. Pavlik et al.

H0: the data follows the specified distribution
HA: the data does not follow the specified distribution
The basic calculation formula is defined as:

 ܺଶ ൌ ෎ ௜ܱ െ ܧ௜ଶܧ௜
௞

௜ ୀଵ

where Oi indicates the observed frequency of the number (e.g. number of 0 value) and
Ei is the expected frequency of pdf. For any X2 test, the number of degrees of freedom
is given as k-p-1. p is the parameter estimated from the sample data. The hypothesis
H0 is accepted if X2 is lower than the chi-square percent point function with degrees of
freedom and a significance level of α. Each time it is assumed that the significance
level is 5%. Asample plot of goodness of fit summary (Fig. 6) can be also drawn. X-
axis displays the number of occurrences and Y-axis shows the squared frequencies.

Fig. 6. Availability data vs Binomial distribution

The availability data was described by basic tests, then the pdf and estimated pa-
rameters of the model were suggested. The goodness of fit tests were performed and it
was decided that the data comes from Binomial distribution. When the probability
distribution is known, a specific statistical analysis and tests can be applied. The se-
lection of these tests is based on source [24] which deals with the modeling of binary
data.

Correlation or linear regression cannot be conducted to one statistic variable, which
is caused by storing latency only in case of successful check. The linear dependency
between statistics variables cannot be measured when the availability is zero, due the

 Measurement of Cloud Computing Services Availability 199

latency is missing. If HA is rejected, then the statistical analysis of latency data is run
to guarantee a defined cloud service quality. Otherwise, the quality measurement is
pointless.

In general, statisticians test if data is normally distributed, because most of the spe-
cific tests (t test, z test, F test, ANOVA) assume the normality of data. That is why it
was decided to replace the goodness of fit tests with normality tests. Another reason
for this was the excessive existing probability distribution (Lognormal, Gamma,
Weibull, Exponential, etc.), which would not allow the future automation of the entire
solution, because each monitoring check may follow different distribution and it is not
possible to cover all existing cases.

At first the graphical evaluation of normality Q-Q was tested. It was a scatter plot
comparing the fitted and empirical distribution (availability data) in terms of the di-
mensional values of the variable. If the data is obtained from normal population, the
points should fall approximately along the reference line. Fig. 7 shows that data is not
normally distributed.

Fig. 7. Normal Q-Q Plot

6 Conclusions

The basic statistical analysis which is automated was conducted and it provided the
automatic SLA compliance check for specific time period. The difference between
time periods validation was not analyzed and the time series, which can be used for
predictive analysis were also not considered. This procedure is simple, but meets all
the requirements for the service availability and SLA. Due to this simplicity, it can be
easily developed and implemented in future objectives as user request detection tools.

This research shows that the suggested client-centric approach is applicable for de-
ployment in real environment. The questions of measuring and monitoring availability
of cloud services remotely were answered and the experiments to find out, what the

200 J. Pavlik et al.

probability distribution data follows, were conducted. This helps to create very accu-
rate results and moves the availability of cloud services further than just like the num-
ber of “nines” usually specified in the SLA document.

Acknowledgment. This work was supported by the project of specific research no. 2103. Fac-
ulty of Informatics and Management, University of Hradec Kralove.

References

[1] Gartner.com. Gartner it glossary - cloud computing (February 2014).
http://www.gartner.com/it-glossary/cloud-computing/

[2] Wang, S., Liu, Z., Sun, Q., Zou, H., Yang, F.: Towards an accurate evaluation of quality
of cloud service in service-oriented cloud computing. Journal of Intelligent Manufactur-
ing, 1–9 (2012)

[3] Furht, B., Escalante, A.: Handbook of cloud computing. Springer, New York (2010)
[4] Mell, P., Grance, T.: The NIST definition of cloud computing. NIST Special Publication

800(145), 7 (2011)
[5] Stantchev, V.: Performance evaluation of cloud computing offerings, pp. 187–192

(2009)
[6] Bauer, E., Adams, R.: Reliability and availability of cloud computing. Wiley-IEEE

Press, Hoboken, N.J. (2012)
[7] Rady, M.: Formal Definition of Service Availability in Cloud Computing Using OWL.

In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) Computer Aided
Systems Theory - EUROCAST 2013. Lecture Notes in Computer Science, vol. 8111,
pp. 189–194. Springer, Heidelberg (2013)

[8] Nie, G.E.X., Chen, D.: Research on Service Level Agreement in Cloud Computing,
pp. 39–43 (2012). 10.1007/978-3-642-28744-2_5

[9] Paschke, A.: rbsla - RBSLA: Rule Based Service Level Agreements Project.
http://ibis.in.tum.de/projects/rbsla/ (accessed: March 19, 2014)

[10] Paschke, A., Bichler, M., Dietrich, J.: ContractLog: An Approach to Rule Based Moni-
toring and Execution of Service Level Agreements, pp. 209–217 (2005).
10.1007/11580072_19

[11] Lamanna, D.D., Skene, J., Emmerich, W.: SLAng: A Language for Defining Service
Level Agreements, p. 100 (2003). http://dl.acm.org/citation.cfm?id=797134 (accessed:
March 19, 2014)

[12] Wieder, P.: Service level agreements for cloud computing. Springer, New York (2011)
[13] Ludwig, H., Franck, R.: Web Service Level Agreement (WSLA) Language Specifica-

tion (2003)
[14] Nagios.com.: Nagios - The Industry Standard in IT Infrastructure Monitoring and Alert-

ing. http://www.nagios.com/ (accessed: March 19, 2014)
[15] Graphite.wikidot.com.: Graphite - Scalable Realtime Graphing - Graphite.

http://graphite.wikidot.com/ (accessed: March 19, 2014)
[16] Heavy Water Operations, L. Sensu | An open source monitoring framework.

http://sensuapp.org/ (accessed: March 19, 2014)
[17] Redis.io. Redis. http://redis.io/ (accessed: March 19, 2014)
[18] Rabbitmq.com. RabbitMQ - Messaging that just works. http://www.rabbitmq.com/ (ac-

cessed: March 19, 2014)

 Measurement of Cloud Computing Services Availability 201

[19] Graphite.readthedocs.org. The Render URL API — Graphite 0.10.0 documentation.
https://graphite.readthedocs.org/en/latest/render_api.html (accessed: March 19, 2014)

[20] Karian, Z.A., Dudewicz, E.J.: Handbook of Fitting Statistical Distributions with R. CRC
Press, Boca Raton (2011)

[21] Ricci, V.: Fitting distribution with R (2005)
[22] Teaching, C.: Goodness of fit tests (2010)
[23] Collins, J.C.: Binomial Distribution: Hypothesis Testing, Confidence Intervals (CI), and

Reliability with Implementation in S-PLUS (2010)
[24] Collett, D.: Modelling Binary Data. Chapman & Hall/CRC, Boca Raton (2003)
[25] Teaching, C.: Hypotesis testing: One sample test (2010)
[26] Lowry, R.: Concepts and Applications of Inferential Statistics (1998)
[27] Fee, K.: Delivering E-Learning: A Complete Strategy for Design, Application and As-

sessment, 4th Edn. Kogan Page, ISBN:978-0749453978 (2009)

	Measurement of Cloud Computing Services Availability
	1 Introduction
	2 Analysis of Existing SLA Monitoring Solutions
	2.1 RBSLA
	2.2 SLAng
	2.3 SLA@SOI
	2.4 WSLA

	3 Client-Centric Solution

	4 Monitoring Solution

	5 Statistical Data Analysis
	6 Conclusions
	References

