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Abstract. Recently we are witnessing the engagement of cloud computing ser-
vices such as emails, web services, mobile application, sharing data-stores and 
many others. Huge number of companies, customers and public institutions are 
considering the migration to the cloud services. The topical questions behind 
this effort is the efficiency and measurement of the QoS – Quality of Services 
of the cloud computing utilisation. This paper is focused on the problematic of 
measuring and monitoring service availability in Cloud Computing. It deals 
with the Service-Level Agreement (SLA) monitoring approaches and frame-
works. Furthermore it presents a new approach of the cloud service availability 
monitoring from the client-centric perspective. On the basis of the client-centric 
approach a new solution was designed, implemented and tested on a sample 
cloud environment.  
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1 Introduction 

Cloud Computing creates a new trend in which companies buy IT resources, plat-
forms, and applications as a service. This approach provides multiple economic, tech-
nological and functional benefits. But, these are accompanied by new threats, prob-
lems and challenges such as security issues, quality of service definition and measur-
ing, responsibility between related parties, service availability, etc. Cloud computing 
also promises to provide high quality and on-demand services. However, cloud ser-
vices usually come with various levels of services and performance characteristics 
which complicate the chances for precise classifications [2]. As shown in Fig. 1, 
Cloud Computing distinguishes between three basic service models. Cloud service 
can be the end user software (SaaS), a platform especially used by developers (PaaS), 
or an infrastructure itself (IaaS) [3]. The goal of Cloud Computing services is to con-
solidate and optimize existing software and hardware resources and provide auto-
mated, on-demand, service-oriented solution with broad network access [4]. 

Success of these cloud services depends on the required functionality and other 
characteristics such as availability, respond time, latency, performance, timeliness, 
scalability, high availability, trust, security, etc. All of these characteristics can be 
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covered by the term Quality of Cloud Service (QoCS) which comes from general QoS 
[5]. QoCS parameters are non-functional definition and properties of cloud service. 
Hence, it is difficult to assure the accurate evaluation and measuring of QoCS. On the 
one hand, it solves requirements such as security and trust which are very difficult to 
evaluate, and on the other hand it resolves the reliability, availability, and perform-
ance characteristics. Another problem is the great variety of different cloud providers, 
as well as the variety of cloud services. Here come the questions of how to evaluate 
the QoCS and how to ensure its monitoring and compliance. 

 

 

Fig. 1. Cloud services 

In practice, QoCS are technical parameters of provided services which are con-
tained and formalized into Service Level Agreements (SLA). SLAs are part of service 
contracts and are usually agreements between two parties (service provider and cus-
tomer) which formally define the services. Service contracts use the percentage of 
service availability as a unit. In practice, today SLAs are not sufficiently accurate and 
need to be proved and measured. Furthermore, they do not provide guarantees for the 
availability of services. Rather, the whole process is based on customers’ claims of 
outages or downtime incidents sent to the provider [6]. This paper is a part of a bigger 
project where the overall goal of the project is to define some nonfunctional aspects, 
using the Web Ontology Language OWL [7] and focusing on the automatic or semi-
automatic generation of cloud service agreements by using ontologies including 
monitoring, measuring and compliance checking for SLAs. This paper defines a new 
approach for monitoring, measuring and compliance validation of SLA in Cloud 
Computing from Client-Centric point of view. 

2 Analysis of Existing SLA Monitoring Solutions 

This section focuses on SLA in terms of its monitoring and measuring, because only 
given availability percentage nines (e.g. 99.99%) are not enough for a quality of the 
cloud service. The goal is also to provide a view on the standard and current SLA 
monitoring approaches, frameworks or languages which is the cornerstone  
for designing the future of cloud availability monitoring tools. As [8] describes, the 
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best-known projects for SLA specifications include: RBSLA, SLAng, SLA@SOI, and 
WSLA. Each of them are briefly specified in the following subsections.¨ 

2.1 RBSLA 

Rule based SLA is a rule based approach to SLA representation and management 
which allows separating the contractual business logic from the application logic and 
enables automated execution and monitoring SLA’s specifications. The key features 
of this concept are: good integration of external data or systems; ECA rules including 
monitoring intervals, active event monitoring (measurement) functions and executable 
actions [10]. The whole concept of Rule-based Service Level Management is being 
built with a computational model based on the ContractLog and the open source rule 
engine Prova [9]. 

2.2 SLAng 

In addition to RBSLA, SLAng is a language for defining Service Level Agreements 
that cover needs for Quality of Service [11]. SLAng provides the format for defini-
tions of QoS, responsibility between parties, and language appropriate for automated 
reasoning systems. The SLAng syntax is obviously an XML schema, specifically a 
combination of WSDL and BPEL. This approach is based on the Service Provision 
Reference Model. The nodes are architecture components and edges depict possibili-
ties for SLA between two parties. The structure is divided into three parts: Applica-
tion tier, Middle tier, and Underlying resources. Thus, the SLA classification distin-
guishes between Horizontal (different parties with same service) and Vertical SLA 
(parties on different levels of service) [11].  

2.3 SLA@SOI 

The SLA@SOI is the largest project related to the SLA field sponsored by leading 
Industrial, Academic and Research Institutes from around Europe.  SLA@SOI “cre-
ated a holistic view for the management of service level agreements (SLAs) and pro-
vides an SLA management framework that can be easily integrated into a service-
oriented infrastructure” [12]. This approach is not only about definition of SLA, their 
measurement, and results, it provides a complex view on the whole area of business. 
It includes requirements and functions like: predictability and dependability of all 
components in the processes; holistic SLA management gaining the transparent IT; 
automated negotiation of SLA between parties.  

2.4 WSLA 

Last approach of existing SLA concepts is Web service SLA. Even though this is the 
oldest one, all other approaches mentioned above are based on it [12] [11] [8]. Con-
sidering [8], we decided that the best is to thoroughly describe this approach and build 
our solution on it. Software & Hardware solutions and their service availability have 
usually a set of specific requirements for availability, reliability, etc. For this purpose, 
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Fig. 2. Solution Approach I 
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Fig. 3. Solution Approach II 
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four big customers in the Czech Republic) among IT companies and it was found that 
the most widely used open source tool is Nagios [14]. Nagios is the Industry Standard 
in IT Infrastructure Monitoring and it is provided in commercial or open source ver-
sions. Its biggest advantage is the large number of existing monitoring plugins that 
allow virtual monitoring of many entities. The last requirement is the web graphical 
interface enabling scalable real-time graphing of collected data. This function pro-
vides wide range of options to display data in time. 

As mentioned above, Nagios meets the requirements of the first two paragraphs, 
but for graphical function a commercial license is needed and the output is more suit-
able for classic static infrastructure monitoring than for the purpose in question. 
Therefore, it was decided to use the open-source project Graphite [15] for scalable 
real-time graphing and replace Nagios by the open-source monitoring framework 
Sensu [16], which can reuse existing Nagios plugins. The reason for choosing Sensu 
instead of Nagios was primarily due to the absolute openness and simplicity. Figure 
Fig. 5 shows the resulting monitoring architecture where the two above mentioned 
open-source projects were joined (beyond the standard projects like Apache or Ra-
bitMQ). 

As mentioned above, the cornerstones of our solution are Sensu and Graphite. The 
monitoring architecture (Fig. 5) contains following components: 

 

  
 

Fig. 5. Monitoring Architecture 

Client side - monitoring agents located inside the target system, application, etc. 
These measure, poll and collect data and send them into monitoring server core. In the 
current case it is located on the same side (physical or virtual machine) as Server side, 
because the Agentless approach is used 
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Sensu server - is responsible for orchestrating check executions, the process of 
checking results, and event handling. It stores last status of check with details and 
launches event notifications, which are kept there until resolved. In this solution it is 
used primarily for scheduling execution and real-time verification of cloud service.  

5 Statistical Data Analysis 

The main idea of the solution is to be simple, easy to implement, and automatic or 
semiautomatic. Therefore, all the monitoring checks generate similar data sets. Each 
of them creates two data types: Availability data - discrete data that can only take 
certain values. In this case it is value “1” or “0”, success or failure. Latency data - 
continuous data that can take any value within a specific range. In this case it is the 
response time or latency of our monitoring check given in UNIX time stamp (nano-
seconds). 

Availability data is almost the same for any cloud service, unlike latency for which 
response time can be completely different and the similarity among cloud services is 
almost never the same. The next difference is that the Availability data is always pre-
sent (except failure of monitoring server), but the Latency data is only present if 
availability is “1”. Otherwise, the latency is useless. This means that the latency anal-
ysis is valuable only if the cloud service is available. 

We estimated types of probability distribution function using descriptive statistic 
and graphical methods. Descriptive statistics consists of calculating parameters such 
as Mean, Median, Maximum, Minimum, Standard Deviation, Variance, Summary, 
Skewness, and Kurtosis. This led to the finding that availability data distribution is 
almost always skewed towards the left, which confirms the statement that the median 
is greater than the mean.  

After that several graphical techniques (histograms, empirical cumulative distribu-
tion function, Q-Q plot, and density plot) for data analysis were used. These can help 
to identify the kind of pdf to use to fit the model. They were compared with other 
theoretical discrete distributions, such as Poisson, Binomial, and others.  

Based on the foregoing, it was concluded that the availability of data can be repre-
sented by Binomial or Poisson distributions. Both are very similar. Due to the large 
number of values (N), Binomial distribution looks like a Poisson with the same mean 
[23]. Poisson distribution is used in the case when p is very small or N is very large. 
The hypergeometric distribution was also considered, but it was rejected due to the 
fact that it describes the probability of k successes in n draws without replacement. It 
is a contrast to Binomial which is with replacement. The availability data is with re-
placement, because both values can appear more than one time. 

This statement is supported by mathematical goodness of fit test using Chi-square 
testing. Chi-square test is based on comparing empirical frequencies with theoretical 
frequencies. Theoretical distribution was estimated using the maximum likelihood 
estimate (MLE), which is naturally implemented in R language. The chi-square test is 
defined for the hypothesis: 
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H0: the data follows the specified distribution 
HA: the data does not follow the specified distribution 
The basic calculation formula is defined as: 

 ܺଶ ൌ ෎ ௜ܱ െ ܧ௜ଶܧ௜
௞

௜ ୀଵ  

where Oi indicates the observed frequency of the number (e.g. number of 0 value) and 
Ei is the expected frequency of pdf. For any X2 test, the number of degrees of freedom 
is given as k-p-1. p is the parameter estimated from the sample data. The hypothesis 
H0 is accepted if X2 is lower than the chi-square percent point function with degrees of 
freedom and a significance level of α. Each time it is assumed that the significance 
level is 5%. Asample plot of goodness of fit summary (Fig. 6) can be also drawn. X-
axis displays the number of occurrences and Y-axis shows the squared frequencies. 

 

 

Fig. 6. Availability data vs Binomial distribution 

The availability data was described by basic tests, then the pdf and estimated pa-
rameters of the model were suggested. The goodness of fit tests were performed and it 
was decided that the data comes from Binomial distribution. When the probability 
distribution is known, a specific statistical analysis and tests can be applied. The se-
lection of these tests is based on source [24] which deals with the modeling of binary 
data. 

Correlation or linear regression cannot be conducted to one statistic variable, which 
is caused by storing latency only in case of successful check. The linear dependency 
between statistics variables cannot be measured when the availability is zero, due the 
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latency is missing. If HA is rejected, then the statistical analysis of latency data is run 
to guarantee a defined cloud service quality. Otherwise, the quality measurement is 
pointless. 

In general, statisticians test if data is normally distributed, because most of the spe-
cific tests (t test, z test, F test, ANOVA) assume the normality of data. That is why it 
was decided to replace the goodness of fit tests with normality tests. Another reason 
for this was the excessive existing probability distribution (Lognormal, Gamma, 
Weibull, Exponential, etc.), which would not allow the future automation of the entire 
solution, because each monitoring check may follow different distribution and it is not 
possible to cover all existing cases. 

At first the graphical evaluation of normality Q-Q was tested. It was a scatter plot 
comparing the fitted and empirical distribution (availability data) in terms of the di-
mensional values of the variable. If the data is obtained from normal population, the 
points should fall approximately along the reference line. Fig. 7 shows that data is not 
normally distributed. 

 

Fig. 7. Normal Q-Q Plot 

6 Conclusions 

The basic statistical analysis which is automated was conducted and it provided the 
automatic SLA compliance check for specific time period. The difference between 
time periods validation was not analyzed and the time series, which can be used for 
predictive analysis were also not considered. This procedure is simple, but meets all 
the requirements for the service availability and SLA. Due to this simplicity, it can be 
easily developed and implemented in future objectives as user request detection tools. 

This research shows that the suggested client-centric approach is applicable for de-
ployment in real environment. The questions of measuring and monitoring availability 
of cloud services remotely were answered and the experiments to find out, what the 
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probability distribution data follows, were conducted. This helps to create very accu-
rate results and moves the availability of cloud services further than just like the num-
ber of “nines” usually specified in the SLA document. 
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