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Abstract. Large-scale federated environments have emerged to meet the
requirements of increasingly demanding scientific applications. However,
the seemingly unlimited availability of computing resources and hetero-
geneity turns the scheduling into an NP-hard problem. Unlike exhaus-
tive algorithms and deterministic heuristics, evolutionary algorithms have
been shown appropriate for large-scheduling problems, obtaining near opti-
mal solutions in a reasonable time. In the present work, we propose a
Genetic Algorithm (GA) for scheduling job-packages of parallel task in
resource federated environments. The main goal of the proposal is to deter-
mine the job schedule and package allocation to improve the application
performance and system throughput. To address such a complex infras-
tructure, the GA is provided with knowledge based on slowdown predic-
tions for the application runtime, obtained by considering heterogeneity
and bandwidth issues. The proposed GA algorithm was tuned and evalu-
ated using real workload traces and the results compared with a range of
well-known heuristics in the literature.
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1 Introduction

The computing requirements of scientific applications are continuously growing
as is the amount of data that those applications produce and process. The use of
new and sophisticated infrastructures is necessary to cover these requirements.
One of the earliest infrastructures for covering scientist requirements was the
emergence of cluster systems that integrate a number of standalone computers
together to work as a single system. Later, despite the reduction in resource
costs and the sprawl of infrastructures in organizations and institutions, the
requirements still outweighed the local resources. To overcome the problem, grid
and cluster federation systems have been developed to enable federated resource
sharing logically or physically distributed in different administrative domains.
Nowadays, most of the scientific work-flows and applications are deployed in
these systems due to their high performance and large storage capacity. Recently,
the attention has switched to Cloud computing, a new paradigm for distributed
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computing, which transfers local processing to centralized facilities operated by
third-party utilities. This paradigm provides on-demand access to thousands of
computers distributed throughout the world, with different levels of services and
driven by economies of scale, applicable to completely new problems that are
beyond the aim of this work. The present paper is focused on federation systems
environment, which will allow to take profit for the idle computing resources
present in any organization.

The amount of available computing resources in federated systems, the het-
erogeneity and co-allocation of tasks between different administrative domains,
turns job scheduling into an NP-hard problem.The job scheduling optimization
methodologies can be mainly categorized as Deterministic Algorithms (DA) and
Approximate Algorithms (AA). DAs [1] can find good solutions among all the
possible ones but do not guarantee that the best or the near optimal solution
will be found. These methodologies are faster than traditional exhaustive algo-
rithms but inappropriate for large-scale scheduling problems. AAs [2,3] employ
iterative strategies to find optimal or near optimal solutions. The Genetic Algo-
rithms (GAs) especially find excellent solutions by simulating nature. Although
they are less efficient than deterministic algorithms they can find better solutions
for large-scale problems in a reasonable time.

In this paper, we focus on the batch-scheduling optimization of parallel appli-
cations in heterogeneous federated environments. Specifically, we design different
GAs to minimise the Makespan of parallel batch jobs. The first proposal is to
use a random strategy to create the initial population in the initialization stage.
The second one uses the knowledge produced by a heuristic based on the esti-
mation of the execution slowdown to guide the GA search process. The model
of execution slowdown used by the GA was previously proposed by the authors
in [4]. The model envisages the resource heterogeneity and also the contention
of the communication links to estimate the execution slowdown. This model is
used for objective function evaluation in the proposed GA algorithms.

The reminder of this paper was organized as follows. Section 2 presents
related work. The proposed genetic algorithm with its variants are elaborated in
Section 3. Section 4 demonstrates the performance analysis and the simulation
results for real Workload traces. The conclusions and future work are presented
in Section 5.

2 Related Work

The potential benefit of sharing jobs between independent sites in federated
environments has been widely discussed in previous research [5,6].However, the
resource heterogeneity, data transferring and contention in the communication-
links have a large influence on the cost of execution of parallel applications,
becoming critical aspects for the exploitation of resources and application per-
formance [7–9]. To improve the performance of co-allocation frameworks many
policies and models have been proposed. Mohamed et al. [10] proposed the co-
allocation of tasks in resources that are close to the input files with the aim
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of reducing communication overhead. Jones et al. [8] proposed minimising the
communication link usage by maximizing the grouping of tasks in clusters with
available resources, but without considering the heterogeneity. The performance
of different scheduling strategies using co-allocation based on job queues was
analyzed in [6]. This work concludes that unrestricted co-allocation is not rec-
ommended and limiting the component sizes of the co-allocated jobs improves
performance. The performance for large-scale grid environments was explored
in [11,12], concluding that workload-aware co-allocation techniques are more
effective at reducing the mean response time and obtaining better load-balance.

Traditional algorithms on job scheduling have in common that jobs are
treated individually [1,13]. Allocating jobs without taking into account the rest
of the jobs can reduce the performance of future allocations and could decrease
overall system performance [14]. More recent research has proposed algorithms
that consider later jobs in the queue when making scheduling decisions. Shmueli
et al. [14] proposed a backfilling technique in which later jobs are packaged to
fill in holes and increase utilization without delaying the earlier jobs. Tsafrir et
al. [13] proposed a method to select the most suitable jobs to be moved for-
ward based on system-generated response time predictions. These techniques
are based on predetermined order, moving some jobs that accomplish specific
deadline requirements forward only on certain occasions. Another point of view
had been proposed by Blanco et al. [4], presenting a new technique that tries to
schedule the set of jobs in the queue based on the prediction of execution time
slowdown.

A common issue in the previous works is that they are based on deterministic
heuristics that obtain good results but do not guarantee the best solution. Other
techniques based on exhaustive algorithms were explored in the literature [7,15,
16]. However, they are impractical for large-scale environments due to their time
cost. Alternatively, approximate techniques, such as Simulated Annealing, Tabu
Search, Genetic Algorithms, Particle Swarm, etc., have emerged as effective for
complex large-scale environments. Particularly, GA are well known for their good
results and robustness and are being applied successfully to solving scheduling
problems in a wide range of fields [1,17,18].

Our proposal overcome previous works as it is designed to treat large com-
plete set of jobs identifying their resources allocation, and in case that not enough
free resources are available, it also determines the best job execution order that
minimizes the global makespan.

3 Genetic Algorithm Meta-Heuristic

A Genetic Algorithm (GA) is a stochastic search heuristic used to find nearly-
optimal solutions with the use of nature-based techniques. It starts by creating
an initial population of solutions known as individuals, each one encoded using a
chromosome. To create a new generation, four steps are performed: ranking the
individuals driven by a fitness function, a ranking-based selection, the crossover
and the mutation. The algorithm is motivated by the hope that, after several
generations, the new population will be better than the older ones.
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One of the key decisions in GA is the chromosome design, which represents
each individual in the population. In order to reduce the chromosome size, and
thus the offspring generation time, the chromosome corresponds to the job order
in which the jobs have to be executed. Given a chromosome, the final allocation is
decided by a deterministic method described in Algorithm 1. It has shown good
results for improving the system overall system performance [4]. The method
first searches for the most powerful nodes available lines 2-4, where Power(n)
is the computational power of the node n. However, for the parallel jobs, their
execution time is denoted by the slowest computational node used. So, some of
these powerful nodes will not be used at their full. Then, the heuristic tries to
make these nodes free, wich can be achieved by using slower ones without loosing
performance in the job execution time lines 5-10.

Algorithm 1.. Allocation Algorithm
Require: Q : Set of jobs
Ensure: A : Set of (Task,Node)
1: for Job ∈ Q do
2: for Task ∈ Job do
3: A ← A ∪ (Task, argmaxn∈FreeNodes(Power(n)))
4: end for
5: for (Task,Node) ∈ A : Node = argmax(t,n)∈A(Power(n)) do
6: Node′ ∈ FreeNodes : Power(Node′) ≥ min(t,n)∈A(Power(n))
7: if ∃Node′ then
8: A ← A \ (Task,Node) ∪ (Task,Node′)
9: end if

10: end for
11: end for

To start the evolutionary process, it is necessary to have an initial population
composed of a varied set of chromosomes to facilitate a thorough exploration of
the search space. In our first proposal, named GA-Random, the chromosomes
that make up the initial population are randomly generated by using different
permutations of the set of jobs.

Next, the GA uses the heuristic described in Algorithm 1 to allocate the jobs
to the computational nodes. If we run out of computational nodes, GA predicts
the first job to finish using a execution slowdown model and releases its allocated
nodes for the subsequent jobs.

The individuals in the population of each generation are evaluated to score
the scheduling solutions. In the present work, such a score depends on the
makespan.

The makespan is defined as the elapsed time between the submission of the
first job until the finalization of the last one. It is calculated as max(Fi)−min(Ij)
for all the jobs in the workload, Fi being the time when job i finishes, and Ij
being the time when job j starts.
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The crossover operator combines the information about the different indi-
viduals in the current generation to create new individuals as offspring. First a
mask of random binary values is generated. For every position with value 1, the
job of the first parent is placed into the offspring. For the missing jobs, the order
of the second parent is chosen. Additionally, some parents are not crossed but
copied to the next generation.

The selection operator is used to choose which individuals should mate. The
population is ordered by using the standard tournament selection algorithm.

Finally, the mutation is the operation used to find new points to evaluate
the search space. In our case, a mutation is the swapping of two jobs in a given
assignment.

In our second proposal, named GA-METL, we decided to add some knowl-
edge into the genetic algorithm to speed-up the search: one of the individuals in
the initial population is created by a systematic search solution, based on the
heuristic presented in [4] named METL (Minimum Execution Time Loss), that
considers heterogeneity and bandwidth contention for predicting the execution
slowdown and chooses the job with less time lose for execution. This addition
of knowledge helps the GA by starting the search with a good solution in the
initial population.

4 Experimentation

In this section we have conducted an experimental study with the aim to deter-
mine the best GA parameters. Finally we compared the effectiveness of the GA
with other heuristics present in the literature.

An important contribution of our proposals is the ability to obtaining better
scheduling solutions by means an effective packing of the jobs in the queue.
The package size can have a great impact on the effectiveness of the scheduling
algorithm, and by this, first was conducted an experimental study to analyze
the performance of the GA proposals for different package sizes.

Figure 1 shows the results of the makespan with bars (primary Y axes)
and their time-cost with lines (secondary Y axes) obtained by our proposed
meta-heuristics. The package size was ranged from 100 to 1000 jobs. As can be
observed, the time cost of both proposals GA-METL and GA-Random, is very
similar irrespectively of the package size. Instead, when the number of jobs in the
package increases the GA-METL is able to reduce the makespan while for the
GA-Random the results worsen. This is because the initial random population
needs more iterations to evolve to an adequate solution when the search space
increases. These results show that providing the GA with some knowledge (GA-
METL) allows to improve the algorithm effectiveness.

Other parameters critical for the effectiveness of the genetic algorithms and
directly related with the package size are the number of iterations and the pop-
ulation size. To evaluate how these parameters affect the effectiveness of the
proposed algorithms a new experimentation was conducted varying them sepa-
rately. The package size was fixed to 1000 jobs, the value which provides bigger
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Fig. 1. Method performance for workload of 2000 jobs by package size. Population and
Iterations fixed to preliminar values.

differences between GA-Random and GA-METL in the previous experimenta-
tion.

Figure 2 shows the results varying the number of iterations from 100 to 500
with the population size fixed to 500. As can be observed, the GA-Random
benefits from this increase reducing the makespan. This results show the ability
to achieve better solutions when the population evolves. On the other side, the
GA-METL that starts with certain knowledge in the initial population produce
a significant improvement in makespan. However, the execution times increase
largely.
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Fig. 2. Performance incrementing the
number of iterations when the popula-
tion size is fixed to 500
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Fig. 3. Performance incrementing the
population size when the number of
iterations is fixed to 500
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The results when varying the population size can be seen in Figure 3. In the
case of the GA-Random, larger populations allows major number of crossover
and mutations obtaining better results. In the other hand, the behavior for
the GA-METL algorithm is similar to the above but with much higher gains
of makespan, due to the initial knowledge produces faster convergence towards
better solutions. As can be seen, the execution time has the same tendency that
in the previous experimentation.

Finally, we compared the performance of the GA proposals with diverse
heuristics with co-allocation capabilities from the literature. These heuristic are
JPR, a variant of Naik’s heuristic [16], where the tasks are matched with the
most powerful available resources to take advantage of the heterogeneity in multi-
cluster resources. CBS (Chunk Big Small) [8], which tries to allocate a “large
chunk” (75% of the job tasks) to a single cluster in an attempt to avoid inter-
cluster link saturation. Both of them evaluates individual jobs from the workload.
We also used the heuristic METL (Minimum Execution Time Loss) [4], that is
able to consider a set of jobs with the aim to minimize the global job execution
slowdown based on the available resources. The set of parameters that guide
our proposals were adjusted as shown in Table 1, selected by taking a trade-off
between the performance improvement and the computational cost according to
the previous experimentation.

Table 1. Settings of GA proposals key parameters

Parameter GA-Random

Num. Iterations 500
Population Size 200

Mutation Frequency 1%
Crossover Frequency 80%

We have evaluated six different workloads {Wk-1,..Wk-6}, composed of 2000
jobs, from the HPC2N. They were evaluated for two different package sizes,
small packages (100 jobs) and big packages (1000 jobs). When evaluating the
workload with small packages, Figure 4, we can observe that GA-Random pro-
posal obtained better results than the METL technique (by about 20%), even
without using extra knowledge in the initial population. This is because the
search space is limited being easier to find a better solutions. Furthermore, GA-
METL proposal performs better than any other, as it was expected. The single
job traditional heuristics, JPR and CBS, obtained worst results because they
scheduled the jobs individually allocating them in the best available resources
without taking into account the following jobs in the queue.

The results obtained for big packages are shown in Figure 5. The GA-Random
obtained worse results than the experimentation with small package sizes. By
contrast, the GA-METL maintained its behavior obtaining in all cases good
makespan results. When the size of the packages are huge, the solutions search
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Fig. 4. Makespan results for different workloads composed of 2000 jobs, evaluated with
package size of 100

space grew exponentially and both GAs, with the previously chosen parameters,
have difficulties to find better results. However, this did not occur with the METL
heuristic that was able to obtain good results because its behavior does not
depend on the size of the package, and also the best solution it is not guaranteed.
In conclusion, to improve the GAs effectiveness for huge packages it is necessary
not only to increase the iteration and population parameters but also to redefine
the GA functions such as the crossover, mutation, etc.
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Fig. 5. Makespan results for different workloads composed of 2000 jobs, evaluated with
package size of 1000

5 Conclusions

The research for new ways to schedule the jobs in federated resource environ-
ments is a critical issue for improving the performance of these systems. We
can see that such sophisticated heuristic methods such as the METL heuristic
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achieve very good results, outperforming other heuristics that only take into
account the optimization of a simpler criteria such as computational power,
bandwidth, etc. However, these deterministic heuristics have proven to be inap-
propriate for large-scale and dynamic environments. In this paper, the authors
present a GA that obtains better results than the heuristic methods. The results
also showed that providing some knowledge to guide the GA gives better per-
formance results, and also helps the algorithm to converge quickly and reduce
the time cost. However, when the package size increase largely the GA showed
difficulties to find solutions without modifying the configuration parameters.

In a future work, we are interested in exploring new evolutionary functions
applied to our GA proposal in order to obtain better results with lower compu-
tational cost when evaluating large packages of jobs. We also aim to study differ-
ent meta-heuristics that have shown good performance for large-scale problems
such as Particle Swarm Optimization (PSO), Ant Swarm Optimization (ASO),
or hybrid techniques.
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