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Abstract. Today, the urban computing scenario is emerging as a concept where 
humans can be used as a component to probe city dynamics. The urban activi-
ties can be described by the close integration of ICT devices and humans. In the 
quest for creating sustainable livable cities, the deep understanding of urban 
mobility and space syntax is of crucial importance. This research aims to ex-
plore and demonstrate the vast potential of using large-scale mobile-phone GPS 
data for analysis of human activity and urban connectivity. A new type of mo-
bile sensing data called “Auto-GPS” has been anonymously collected from 1.5 
million people for a period of over one year in Japan. The analysis delivers 
some insights on interim evolution of population density, urban connectivity 
and commuting choice. The results enable urban planners to better understand 
the urban organism with more complete inclusion of urban activities and their 
evolution through space and time.  
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1 Introduction 

New technology can help cities manage guarantee and deliver a sustainable future. In 
the past few years, it has become possible to explicitly represent and account for time-
space evolution of the entire city organism. Information and communication technolo-
gy (ICT) has the unique capability of being able to capture the ever-increasing amounts 
of information generated in the world around us, especially the longitudinal infor-
mation that enables us to investigate patterns of human mobility over time. Thus, the 
use of real-time information to manage and operate the city is no longer just an inter-
esting experience but a viable alternative for future urban development. 

In this research, the analysis of mobile phone location, namely “Auto-GPS”, has 
been used to serve as frameworks for the variety of measures of effective city planning. 
More specifically, we explore the use of location information from Auto-GPS to char-
acterize human mobility in two major aspects. First is the commuting statistics and 
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second is the city activity, how the change of activities in part of urban space can be 
detected over times.     

In general, a classic travel survey is frequently used to acquire urban connectivity 
and trip statistics. However, they truly lack of long-term observation and sample size is 
always the main limitation due to the highly cost and extra processing time. In this 
paper, we propose a novel approach that takes advantage of anonymous long-term and 
preciously collected spatial-temporal location generated by Auto-GPS function from 
ordinary mobile phone users. As of the best of our knowledge, this is the first time that 
large-scale GPS traces from the mobile phone have been observed and analyzed coun-
trywide for travel behavior research.  

To have evidence showing clearly how this would help planning and decision mak-
ing, we selected one of the major active area in central Tokyo called Odaiba as our 
study area. Odaiba is a large artificial island in Tokyo Bay, Japan. It was initially built 
for defensive purposes in the 1850s, dramatically expanded during the late 20th centu-
ry as a seaport district, and has developed since the 1990s as a major commercial, resi-
dential and leisure area. Odaiba is suitable for this analysis since it is isolated from 
other parts of Tokyo. It provides all urban amenities like a small city including hotels, 
department stores, parks, museums, office buildings and residential areas.   

The rest of the paper is organized as follows: Section 2 outlines related work; Sec-
tion 3 describes the datasets and the basics of Auto-GPS; Section 4 covers methodol-
ogy; Section 5 explains the results from our analysis; and Section 6 provides conclu-
sion. 

2 Related Work 

Location traces from mobile devices have been increasingly used to study human mo-
bility, which is important for urban planning and traffic engineering. Several aspects of 
human mobility have been exploited. Human trajectories show a high degree of tem-
poral and spatial regularity with a significant likelihood of returning to a few highly 
visited locations [1]. Despite the differences in travel patterns, there is a strong regular-
ity in our mobility on a regular basis, which makes 93% of our whereabouts predicta-
ble [2]. Understanding mobility patterns would yield insights into a variety of im-
portant social issues, such as the environmental impact of daily commutes [3]. 

These recent studies have emphasized on modeling, prediction, and inter-urban 
analysis of human mobility, but not on the richer context of it such as the engaged 
activity in the location visited. There are many studies that use GPS records to identify 
trip trajectories. Most of these works begin with the segmentation of GPS logs into 
individual trips, usually when there is a significant drop in speed [4][5], or when GPS 
logs remain in one area for a certain amount of time [6][7].   

With the advance of today’s ICT technologies, it is possible to realize a sort of so-
cio-technical super-organism to support high levels of collective “urban” intelligence 
and various forms of collective actions [8]. It therefore becomes our interest in this 
work, by building on our previous research [9,10], to investigate on how to use large-
scale, long-term GPS data from mobile phones to extract valuable urban statistics and 
to project the real world information. 
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Dthreh is the maximum coverage threshold of movement in which an area is considered 
as a stay point, and Tthreh is the required minimum amount of time that the user spends 
in a stay point.  

We recruited 15 subjects to carry a smartphone for one month with an application 
that allowed the subjects to identify stops that they made each day. With this ground 
truth information, we found that the spatial and temporal criteria [12] to identify stay 
points most accurately were 196 meters and 14 minutes, as shown in our experimental 
results in Figs. 4 and 5.  

 

Fig. 4. Stop detection accuracies for different distance threshold values 

 

Fig. 5. Stop detection accuracies for different time threshold values 
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Based on the detected stay points, we estimated home location of each subject as 
the location with the highest number of stay points between midnight and 6 a.m. This 
yielded a fairly accurate estimation of home locations, which is comparable (R2 = 0.79) 
to the population density information of the Census Data provided by the Statistics 
Bureau, Ministry of Internal Affairs and Communications, as shown in Fig. 6. 

According to the result in Fig. 6, we considered our “stay points” to be reliable for 
our further analysis. The stay points and home locations were used as inputs for calcu-
lation of various urban indicators and statistics across different spatial and temporal 
levels in the next section. 

 

Fig. 6. A comparison of the estimated home locations from the Auto-GPS data against the 
Census Data of one-square kilometer grids 

5 Results 
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