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Abstract. In this paper we introduce a new approach to dynamic
converting conceptual models in a simulation platform as the GAMA
platform (represented in form of GAML syntax) into corresponding oper-
ational models (represented in form of Java syntax). This approach aims
at providing a more flexible solutions to actual simulation models imple-
mented in a simulation platform as the GAMA. This new approach will
facilitate the exhibits of a simulation platform to work with different
types of simulation models represented in different forms of syntax.

Keywords: Domain-specific language · Operational model · Simulation
platform · Dynamic compilation

1 Introduction

GAML [26] is the modeling language of the GAMA platform [22], which was based
on XML syntax [3]. This language designed as a simple scripting language for plat-
form of simulation, has grown into a general language dedicated to the modeling
(modeling language [24]). From its appearing, the diversity of multi modeling lan-
guage resulted a difficult challenge to reuse models between platforms, to increase
numbers of new features and to have a large developer community. In this con-
text, we propose a generic method of establishing operational model in simula-
tion platforms. Since version 1.4, GAMA has had a developed environment built
with the technology XText [4](based on ANTLR [17] grammar) and is considered,
ultimately, able to build models directly in Java [5].

The main objective of our work is to convert from a GAML model, represent
the Abstract Syntax Tree [11] as one Java class or even one Java project Java
which can run alone without the GAMA compiler. From this Java model, we
can have another way to combine the models, to attach plugins, and of course
to have inheritance of Java. In addition, running the Java models will take less
time and memories, gain speed of models processing. With this work, we can
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take a review of what the current grammar can do now, by translation to Java
syntax, review the advantages and inconveniences between Java platform and
GAMA platform.

This paper will be represented in six parts. The second part introduces related
works of three type of model in modeling. In the third part, we talk about our
methodology for establishing operational model, due to algorithm of traversing
Abstract Syntax Tree and our strategies of creating Java syntax. In the fourth
part, this method was implemented into a simulation platform GAMA. Then
we’ll tell you how our experimental results have been taken in the fifth part,
based on converting Bug model with description of model, species, attributes
and behaviors. Finally, in sixth part, we give information about our results and
ongoing work.

2 Related Work

2.1 From XML to Operational Model

XML [3] has usually been used in modeling domains, which can be considered
as an flexible integration approach into modeling and simulation systems [19].
As the effort towards standardization of formalism representations, based on
the XML schema definition of a formalism, a binding compiler generates model
classes that support the user in constructing models according to the formalism.
Although simulators could be built for these declarative model descriptions, they
would be hardly efficient. To this end, a separate transformation component is
required according to manually pre-defined XML schemas [7].

Other effort of using XML in modeling and simulation is to compose simu-
lations from XML-specified model components [20]. It presents the realization
of a component framework that can be added as an additional layer on the
top of simulation systems. It builds upon platform independent specifications of
components in XML to evaluate dependent relationships and parameters dur-
ing composition. The process of composition is split up into four stages. Starting
from XML documents component instances are created. These can be customized
and arranged to form a composition. Finally, the composition is transformed to
an executable simulation model.

in the DEVS community , a current notable effort is to provide a worldwide
platform for distributed modeling and simulation based on web services and
related technologies[24].This infrastructure will allow the sharing and reuse of
simulation models and experiments and will permit attacking different aspects
of interoperability at the right level of abstraction: the simulation-based inter-
operability at the level of the data transfer among components in a distributed
simulation, the model-based interoperability to share models and experiments.
An essential requirement is that a common, unique and complete representation
must be adopted to store, retrieve, share and make interoperable simulation
models. The author represent all the aspects included in all possible use cases
and proposes an XML-based language that can serve as a basis for defining a
standard for distributed simulation linking DEVS and non-DEVS simulations.
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2.2 From Domain-Specific Language to Operational Model

Domain-specific languages (DSL) [16] are languages tailored to a specific appli-
cation domain. They offer substantial gains in expressiveness and ease of use
compared with general-purpose programming languages in their domain of appli-
cation. DSL development is hard, and it requires both domain knowledge and
language development expertise. Few people have all these two. Not surprisingly,
the decision to develop a DSL is often postponed indefinitely, if considered at
all, and most DSLs never get beyond the application library stage.

Aspen (Abstract Scalable Performance Engineering Notation) [21] fills an
important gap in existing performance modeling techniques and is designed to
enable rapidly exploration of new algorithms and architectures. It includes a
formal specification of an application’s performance behavior and an abstract
machine’s model. It provides an overview of Aspen’s features and demonstrate
how it can be used to express a performance model for a three dimensional
Fast Fourier Transform [8] . It demonstrates the composability and modularity
of Aspen by importing and reusing the FFT model in a molecular dynamics
model. It have also created a number of tools that allow scientists to balance
application and system factors quickly and accurately.

2.3 Dynamic Compilation

Dynamic compilation [23] is a process used by some programming language
implementations to gain performance during program execution. Although the
technique is originated in the Self [6] programming language, the best-known
language that uses this technique is Java. Since the machine code emitted by a
dynamic compiler is constructed and optimized at program runtime, the use of
dynamic compilation enables optimizations for efficiency not available to com-
piled programs except through code duplication or meta-programming. Runtime
environments using dynamic compilation typically have programs run slowly for
the first few minutes, and after that, most of the compilation and recompila-
tion is done and it runs quickly. Due to this initial performance lag, dynamic
compilation is undesirable in certain cases. In most implementations of dynamic
compilation, some optimizations that could be done at the initial compile time
are delayed until further compilation at run time, causing further unnecessary
slowdowns. Just in time compilation is a form of dynamic compilation.

Dynamic compilation bring more and more fast, effective and optimization
values [1] [12] due to invariant data computed at run-time. Using the values of
these run-time constants, a dynamic compiler can eliminate their memory loads,
perform constant propagation and folding, remove branches they determine, and
fully unroll loops they bound.

Dynamic compilation increases Java virtual machine (JVM) performance [15]
because running compiled codes is faster than interpreting Java byte-codes. How-
ever, inappropriate decision on dynamic compilation may degrade performance
owing to compilation overhead. A good heuristic algorithm for dynamic com-
pilation should achieve an appropriate balance between compilation overhead
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and performance gain in each method invocation sequence. A method-size and
execution-time heuristic algorithm is proposed in the study.

In brief, dynamic compilation have fully of benefits investing [14]. Dynamic
compilation is typically performed in a separate thread, asynchronously with
the remaining application threads. It explores a number of issues surrounding
asynchronous dynamic compilation in a virtual machine by describing the short-
comings of current approaches and demonstrate their potential to perform poorly
under certain conditions. It shown the importance of ensuring a level of utiliza-
tion for the compilation thread and empirically validate this in a production
virtual machine on a large benchmark suite; beside evaluation a range of compi-
lation thread utilizations and quantify the effect on both performance and pause
times.

3 From Domain-Specific Language to Operational Model

3.1 What Is a Model?

Model [18], especially scientific model [25], is an abstract construction, that
allows to comprehensive functions of the reference system by answering one
scientific question. It is an simplify representation of the reference system, relying
on generic theory and can be expressed in one specific language which called
Modeling language [9].

3.2 Model in a Simulation Platform

Model in simulation platform, especially GAMA, contains 4 main sections:
Global section contains all declaration of variables, parameters at global

scope. These declarations can be used anywhere in model. This section also con-
tains starting point when a model is executed, init block. This ”global” section
defines the ”world” agent, a special agent of a GAMA model. We can define
variables and behaviors for the ”world” agent. Variables of ”world” agent are
global variables thus can be referred by agents of other species or other places
in the model source code.

Environment section contains informations about topology which are used
by agents. GAMA supports three types of topologies for environments: contin-
uous, grid and graph. By default, the world agent (i.e. the global agent that
contains all of the other agents) has a continuous topology. This section could
include the definition of one or several environments with grid topology.

Entities section defines of all species which are placed into this section.
A model can contain any number of species. Species are used to specify the
structure and behaviors of agents. Although the definitions below apply to all
the species, some of them require specific declarations: the species of the world
and the species of the environmental places.

Experiment section defines experiments to run. Two kinds of experiment
are supported: gui (graphic user interface, which displays its input parameters
and outputs) and batch (Allows to setup a series of simulations without graphical
interface).
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3.3 Abstract Syntax Tree

An abstract syntax tree (AST) [11] , is a tree representation of the abstract
syntactic structure of source code written in a programming language. Each
node of the tree denotes a construct occurring in the source code. The syntax
is ’abstract’ and doesn’t represent every detail appearing in the real syntax. For
instance, grouping parentheses are implicit in the tree structure, and a syntactic
construction like an if-condition-then expression may be denoted by means of
a single node with two branches. This distinguishes abstract syntax trees from
concrete syntax trees, traditionally designated parse trees, which are often built
by a parser during the source code translation and compiling process. Once built,
additional information is added to the AST by means of subsequent processing,
e.g., contextual analysis. Abstract syntax trees are also used in program analysis
and program transformation systems.

3.4 AST of Operational Model

The current version of GAMA contains five main types of node in AST, with
respect to meta-model of Multi-agent systems. There are:

– Model Description: Root node of a model. It contains others children nodes.
This ”global” section defines the ”world” agent, a special agent of a GAMA
model. We can define variables and behaviors for the ”world” agent. Vari-
ables of ”world” agent are global variables thus can referred by agents of
other species or other places in the model source code.

Fig. 1. AST of GAML syntax

– Experiment Description: this type of node describes the inputs, outputs
parameters, the way that model would be simulated. Based on concept of
MAS, Experiment can be a special species in model.
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– Species Description: due to multi-scale hierarchy, a species could be a child
of another species, models, or even experiments

– Type Description: more likely in a programming language, we have several
base data types, integer, string, double. In fact, modelers can define them-
self theirs own data types, which is related to complex structures. Especially
a species could be a data type, to be declared and assigned as variable later.

– Statement Description: includes simple statement and complex (sequence)
statement. It’s correspond with the smallest element of programming lan-
guage. A species can thus contain several statements representing different
behaviors that agents of the species can execute. GAMA offers a statement
framework that facilitates the extension, i.e., the introduction of new types
of agent’s behavior. Developer can extend, in case of new needed appear, a
new Statement by implement this class.

– Variable Description: In this declaration, information of variables data type
refers to the name of a built-in type or a species declared in the model. The
value of name can be any combination of letters and digits that does not
begin with a digit and that follows certain rules. If the value of the variable
is not intended to change over time, it is preferable to declare it as a constant
in order to avoid any surprise (and to optimize, a little bit, the compiler’s
work). This is done with the const attribute set to true (if const is not
declared, it is considered as false by default):

An example of AST for operational model in GAMA can be found in fig.2.
On the right, It’s an example in simple model of GAMA. In entities section,
it’s declared 2 species which are type of SpeciesDescription node in AST. In
species definition, user can define other children nodes as VariableDescription,
TypeDescription, StatementDescription. This example shows the usage of built-
in TypeDescription of Integer number as int keyword. And the most important
description, species have several Statement to do behaviors, e.g. move behavior
in Ant species, and hunt behaviors in Predator.

Fig. 2. AST of operational model in
GAMA

Fig. 3. AST of Java statement
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3.5 Converting from GAML Syntax to Operational Model (with
Java Syntax)

As both GAMA model and Java program base on a tree (Abstract Syntax Tree),
we use the algorithm of traversing to explore AST.

Recursivement, we traverse the AST, from root node. At each node, by con-
sidering node’s type, compiler will translate into correspond Java syntax. Fol-
lowing pseudo-code describe whole progress.

This function builds a abstract syntax tree which contains each node as Java
syntax. It takes input as a GAML Node, which can be following type: Mod-
elDescription, SpeciesDescription, TypeDescription, VariableDescription, Sym-
bol Description. At first, an empty tree would be created in local scope, with root
node that will be created in next steps. This tree has attached the node which was
translated in Java syntax. Next, the type of the current node was returned into
variable t. Regarding value of this variable, compiler gets pre-defined template
as string tplt. This template is input parameter of merging method, described in
Fig. 5. This method manipulates information of the current node and template
tplt by combining together at needed XML tag. The output is considered as root
node of local tree. The loop of each child node do a recursive calling itself. After
calling, root node attachs these results to child node. Finally, method returns
thes whole structure tree in Java syntax.

Fig. 4. Algorithm of traversing on Abstract Syntax Tree, applying to convert from
GAML to Java

3.6 Generate Java Syntax

There are 2 types of generating Java syntax. The first way is to use static tem-
plate, which is pre-defined by programmer. It is used to apply on non-volatile
type, like Model, Species’s Description, corresponding with a package, a class in
Java. The second way is to use more informations inside each node of AST. It’s
Java annotation, declared for operator, statement and other components.
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Fig. 5. Merging GAML with templates to get Java syntax

Fig. 6. Modules of G2J plugin

4 G2J Plugin

To facilitate the whole process of establishing, and make it re-usable, we imple-
mented our method as plugin in GAMA platform. This plugin named G2J (fig.6)
(GAML to Java) which is implemented in Java language. This plugin contains
4 following modules: GAML Parser, Java syntax template, Java Annotation
Processor, Dynamic Compiler, which are separated into 2 phases : parsing and
running. In parsing phase, it takes into account 2 process. Firstly, GAML parser
is integrated into parsing process of ANTLR as grammar syntax processing. The
output of GAML parser is transfered to Java Syntax Templates, and at the same
time to Java Annotations Processor. These two module work in collaboration
with each other to establish a complete Java Syntax Tree with the most comfort-
able solutions. After the first phase, Java Syntax Tree uses as input of Dynamic
Compiler, which pre-compile to byte code (.class) of Java.

4.1 GAML Parser

This module implements algorithm to traversing AST in fig.4 and builds the Java
syntax tree. The input of this module is a Description tree, which is described
in part 3. This tree contains several types of nodes. This module is injected into
parsing process of GAMA. It provides method parseTree() to call algorithm of
traversing tree, return Java syntax tree.
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4.2 Java Syntax Template

This module aims at reproduce corresponding Java syntax, due to pre-defined
XML templates. It uses an likely-XML parser. With informations of a node from
Description Tree, it get XML node in templates.

4.3 Java Annotations Processor

Beside the solution of using pre-defined templates, this module is considered as
pre-processer of all Java annotation in all modules, plugins, to build additional
information. These information will be used in GAML parser when traversing
AST, or be combined with XML templates when calling module 2. This module
provides more flexibility, and reusable solutions, in case of pre-defined templates
couldn’t suitable with large amount of evolving syntax in GAMA.

4.4 Java Dynamic Compiler

In addition to GAMA compiler, we have used a Java Dynamic compiler [2]
[10] [13], to compile from Java syntax tree to Java byte-code class. This class
is taken into account when we launch the simulation, instead of re-compiling
original Abstract Syntax tree each time. In this part we introduce the method to
compile the Java model and attach it to the execution tree. When we finished this
paper, we had succeeded to translate only the Species entity to Java, by adding
a boolean keyword named compiled, to tell the compiler if it must use the Java
class instead of original species class in the model description tree. After having
created the Java class, we use a Java plugin,batch compiler (org.eclipse.jdt.core),
to compile the Java class to byte code, and load it to memory, on run time.

Fig. 7. Compilation process in Java species instead of GAML species

5 Experiments

By applying our manner of establishing operational, we consider below our exper-
imental result in a simple model in simulation platform GAMA. We do some
experiences on a simple model which contains model and entities section. It
shows the establishment from GAML to Java on declaration of a model, a
species, which demonstrates the usage of Java Syntax Templates, an operator
and a statement, which are supposed to use Java Annotations Processor.
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5.1 Data Described

Let’s consider the model below in GAMA platform, it describes a bug which
can change its color in a square environment. This species has one attribute,
mycolor, representing its body’s color. This bug shows itself as a circle of which
the radius is 10 units and the color is green as default. At each simulation step,
the attribute mycolor will change to a random rgb value, thanks to operator
rnd(255). This action is a reaction of species basing on reflex architecture (line
11), which will happen if it reaches the condition following keyword when. In
this case, it always happens because the condition is always return true.

Fig. 8. Definition of Species Bug in GAML and Java

5.2 Convert Domain-Specific Language to Operational Model

By applying algorithm as Fig. 4, there are 3 following cases that we consider as
main points.

Convert Species and Model. At first, by regarding the proper syntax of
GAML and Java defining Species and Model, we create manually an XML tem-
plate, content format of these two descriptions. Then when compiler traverses
each nodes of constructed Abstract Syntax Tree, we detect the type of the cur-
rent node. If it’s Model node, we look into template to get corresponding XML
node. In this case, a Java class would be returned which have class name be
name of Model node, extended class ModelDescription to have all default pre-
defined parameters, skills, behaviors. In Fig. 10, we have a normal declaration
of model. It contains keyword model, followed by the model’s name as a string.
This string will be used in place of tag name in its corresponding template.
After combination, compiler create an empty Java class. Body of this class will
be completed later. When compiler encounters a node with type Species, process
flow is much similar with previous type (Model), except some varied in extending
class SpeciesDescription. This predefined class contents all must-have attributes
of formal Species, ex. location, size, shape. . . (Fig. 11).

Applying the same manner to some more type of node in AST, we get an
advantage of possibility to translate all GAML syntax to Java syntax. But it’s a
big challenge for modelers to create and develop new operators, skills, behaviors.
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Fig. 9. Converting cases from GAML to Java

Beside of theirs implementations in Java, they must create them-self template
for their new things. The job to read and create all correspond templates must
take too much time, and actually in future, it will not adapt well and quickly
(depend on human-additions templates) when GAML syntax has evolved.

Fig. 10. Case Model Fig. 11. Case Species

Convert Attributes, Behaviors. Almost operators, type, statements, and
even skills, are interpreted thanks to annotation, and can execute thanks to
GAML additions helpers. The helpers is an Java interface linked to Java class
which take care on process the command. The idea is focus to declared anno-
tations, implement a Java class to read all the annotation, and then translate
it to Java syntax. When GAML model compiled, by mixing the tree and Java
syntax, we have translated whole model into Java class.

Attributes declaration syntax contains two part: type and name, which are
converted into declaration of variable in Java. In contructor of species, there is
an initialization of these attributes, with default values.
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Behaviors, which are Statements (simple and complex), is converted into
Java’s methods. These methods are called in Species body at each simulation
step.

Operators include unary, binary or nnary, as example, binary operator ’OR’
take two parameters, left operand and right operand. Its description in annota-
tion (Fig. 12) will be translate in form of method which have constructor in form
keyword(param1, param2,. . . ) , expression in GAML, we have the annotation
in original Java class.

Fig. 12. Case Operators Fig. 13. Case Statements

With this annotation processing method, we can translate automatically
almost GAML syntax. And it’s so flexible when the grammar change by anno-
tation. The name, the parameters, return types, will be updated automatically
by annotation. But it still has some complex statement and skill which face the
problem of logical and syntactic in Java, that can be solve by merging the two
strategies, using both template and annotation.

5.3 Results of Dynamic Compilation

By using this model, we execute simulation 100 times and get the average statis-
tic about running time, memory using. Regarding the advantages of compiling
dynamically species into Java, we can see the following:

- Faster execution (although we can’t prove it now, it is fairly obvious that
compiled code should be faster than interpreted one, especially because Java
code can be compiled on the fly to native code by the JVM).

- Better verification (for the code to compile properly, it needs to be correct
in GAML).

- Possibility to further optimize the execution of agents by changing the Java
code directly (instead of being restricted by the GAML set of primitives).
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Fig. 14. Compare between dynamic compilation with original compilation method

6 Conclusion

This paper has established an operational model from conceptual model for a
simulation platform, applicant to GAMA platform. With algorithm to traversing
AST, combining templates and annotation, compiler create an operational model
correspond with conceptual structure. With this research, model in GAML was
convert into Java syntax, containing species, theirs attributes and simple reflex
behaviors . This method has implemented into GAMA in form a plugin to facil-
itate the process of converting. In the next time, we will made entire structure
of model with complex behaviors, skills and linking between multi model.
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