Modular Design and Verification of Distributed
Adaptive Real-Time Systems

Thomas G6thel®™) and Bjorn Bartels

Technische Universitdt Berlin, Berlin, Germany
{thomas.goethel,bjoern.bartels}@tu-berlin.de

Abstract. We present and apply a design pattern for distributed adap-
tive real-time systems using the process calculus Timed CSP. It provides
a structured modelling approach that is able to cope with the complex-
ity of distributed adaptive real-time systems caused by the interplay
of external stimuli, internal communication and timing dependencies.
The pattern allows to differentiate between functional data and adaptive
control data. Furthermore, we enable the modular verification of func-
tional and adaptation behaviour using the notion of process refinement
in Timed CSP. The verification of refinements and crucial properties is
automated using industrial-strength proof tools.

Keywords: Adaptive Systems + Modelling - Verification + Timed CSP

1 Introduction

Modern adaptive systems are distributed among different network nodes. One of
the advantages of (distributed) adaptive systems is their robustness, which must
not be corrupted by single points of failures as provoked by centralized compo-
nents. Thus, adaptation of the entire network’s behaviour should be distributed
as well. This means that adaptive components should be able to adapt both,
their local behaviour and the behaviour of the overall network. This, however,
makes these systems very complex to design and analyse.

In this paper, we present a generic design pattern for distributed adaptive
real-time systems. Its aim is threefold. First, it describes an architecture, which
helps formally designing adaptive systems. Second, it enables a strict separa-
tion of functional and adaptation behaviour. Third, due to this separation, it
allows for modular refinement of adaptive systems and thereby facilitates formal
verification of possibly crucial properties.

As in our previous work [3], we enable the refinement-based verification
of adaptation and functional behaviour. However, in this work we focus on a
strict distinction between functional data and control data following [4]. This
enables the separate verification of functional and adaptive properties. A func-
tional component manipulates its functional data but may be controlled by pos-
sibly dynamic control data that can only be changed by some corresponding
adaptation component. The adaptation component gathers information of the

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
P.C. Vinh et al. (Eds.): ICTCC 2014, LNICST 144, pp. 3-12, 2015.
DOI: 10.1007/978-3-319-15392-6_1

4 T. Gothel and B. Bartels

functional component, which it uses for an analysis concerning whether or not
adaptation is necessary. Then, a plan is created that results in new control data,
which is finally set in the functional component or sent to another distributed
adaptive component. The separation of functional and control data allows for
the clear separation of functional and adaptation components, which allows for
modular verification. We show how this idea can be modelled and verified with
Timed CSP in a modular and stepwise manner using automatic tool support.

The rest of this paper is structured as follows. In Section 2, we briefly intro-
duce the process calculus Timed CSP and then discuss related work in Section 3.
In Section 4, we introduce our timed adaptive specification pattern and discuss
its refinement and verification capabilities. We illustrate the benefits of our app-
roach using an example in Section 5. Finally, we conclude the paper in Section 6
and give pointers to future work.

2 Timed CSP

Timed CSP is a timed extension of the CSP (Communicating Sequential Processes)
process calculus [9]. It enables the description and the compositional refinement-
based verification of possibly infinite-state real-time systems. To this end, process
operators like Prefiz (a => P), Sequential Composition (P ; Q), External Choice (P
(1 Q), Internal Choice (P |~ Q), Parallel Composition (P [IAl1] Q), Hiding (P \
A), and special timed operators like WAIT(t) are used. A discretely-timed dialect
of Timed CSP that is amenable to automatic model checking techniques is tock-
CSP. Here, the passage of time is explicitly modelled using a distinguished event
tock. In FDR3 [5], which is the standard tool for CSP, tock-CSP is supported via
timed operators and the prioritise operator with the internal 7 event and other
events can be given priority over tock. This is necessary to inherit the notion of
refinement and its compositional features from Timed CSP. Refinement is usually
considered in the semantical traces or failures model. This means, for example, that
the refinement P Cp @ expresses that traces(Q) C traces(P) where traces(.)
denotes all finite traces of a process.

3 Related Work

Dynamic reconfiguration of systems is supported by the architecture description
language (ADL) Dynamic Wright presented in [2]. Reconfiguration of interact-
ing components is modelled separately from steady-state behaviour in a central
specification. Our work aims to support the stepwise construction of distributed
adaptive systems in which adaptation is realised in a decentralised way.

The work in [1] provides a development approach for adaptive embedded
systems starting with model-based designs in which adaptation behaviour is
strictly separated from functional behaviour. Verification is based on transition
systems which are connected by input and output channels. Our approach aims
to support development processes for adaptive systems with the powerful notion
of CSP refinement and the mature proof tools for automatic refinement checking.

Modular Design and Verification of Distributed Adaptive Real-Time Systems 5

In [7], CSP is used to model self-adaptive applications where nodes in a network
learn from the behaviour of other nodes. Behavioural rules of nodes are described
by CSP processes, which are communicated between the nodes and used to adapt
the individual behaviour. Our work focusses on modelling entire adaptive systems
and verifying properties of the modelled systems.

Timed automata are used in [6] for modelling and verifying a decentralised
adaptive system. Verification of crucial properties is done using the Uppaal model
checker. In contrast, we focus on the stepwise development of and modular ver-
ification of distributed timed adaptive systems.

In [8], a UML-based modelling language for untimed adaptive systems is
presented. Based on its formal semantics, deadlock freedom and stability can
be verified. Our work enables the stepwise development and furthermore the
verification of general functional and adaptation properties in a timed setting.

In [3], we have presented an approach for the specification and verification of
untimed distributed adaptive systems in CSP. A main goal of this work was the
separation of functional behaviour from adaptation behaviour. The application
of this framework in [10] has shown that the high level of abstraction becomes
problematic when supplementing the adaptive system model with functional
behaviours. While functional and adaptation events and also their respective
parts of the system variables are separated, it remains rather unclear how the
interface between them can be modelled in a systematic manner. This drawback
is addressed in this paper. Furthermore, we introduce mechanisms to specify and
verify timed adaptive behaviour.

4 Timed Adaptive System Pattern

In this section, we introduce an abstract pattern for timed adaptive systems.
It describes a general structure of timed adaptive systems, which is amenable
to modular refinement-based verification. In Figure 1, the overall architecture is
illustrated. We consider adaptive systems that consist of a network of adaptive
components (AC(i)) that communicate using channels. Communication chan-
nels are categorised, depending on their origin, as either functional channels
(FE) or adaptation channels (EA). A single component can perform some com-
putation (also depicted by FE) or adapt its internal behaviour (IA) due to the
violation of some (local) invariant. Internal adaptation can also be triggered by
an internal timeout (TO). Timeouts can, for example, be used to indicate that
during a certain amount of time, functional events of a certain class have not
been communicated. When some internal adaptation takes place, other compo-
nents can be triggered to adapt their behaviour accordingly using EA events
as introduced above. The environment interacts with the adaptive system using
functional events only. As it might be necessary to restrict the behaviour of the
environment, it can be constrained using the process ENV.

In a model-driven development process, an abstract design is continuously
refined until an implementation model is reached. To start with more abstract
models offers the advantage that properties can be verified, whose verifica-
tion would be too complex on more concrete levels. Below, we sketch how the

6 T. Gothel and B. Bartels

Fig. 1. Architecture of our Adaptive Pattern

described pattern can be formally defined on an abstract level in Timed CSP
and how it can be refined in a stepwise way so that the verification of properties
can be performed in a modular manner. The primary focus of the models lies
on the separation of functional behaviour and adaptation behaviour. The refine-
ment calculus of Timed CSP allows us to verify both of these aspects separately
while leaving out concrete details of the respective other part. In addition to
functional and adaptive behaviour, also timing behaviour can be specified and
verified. To this end, we use the real-time capabilities of Timed CSP and FDR3.

4.1 Abstract Model

The overall adaptive system consists of a set of (distributed) adaptive compo-
nents. Each such component consists of an adaptation component, a functional
component, and, if necessary, a timer.

AdaptiveComponent (i) = (AC(i) [|{timeout}|] TIMER(i))
[| union (FE(i), {|getData,setControlData|})|] FC(i)

The adaptation component checks whether adaptation of the functional com-
ponent is necessary every t (i) time units. As the adaptation component has no
direct access on the functional or control data, it has to explicitly fetch the
data from the functional component using the getData event, analyse it, plan
adaptation and execute the plan by setting the control data and possibly notify-
ing other adaptive components, thereby implementing IBM’s MAPE (monitor,
analyse, plan, execute) approach. This is captured in the CHECKADAPT and ADAPT
processes described below. The adaptation component can also be triggered by
some external adaptation event or be notified that the timeout has elapsed. The
timeout can for example be used to denote that during the last timer (i) time
units no functional event took place (see TIMER below).

AC(i) = AIT(t (1)) ; CHECKADAPT(i)

[] W
[T ([] x:EA(i) @ x —> getData?d?cd —> ADAPT(i,x))
[] timeout —> getData?d?cd —> ADAPT(i,timeout)

To check whether adaptation is necessary, the current (necessary) functional
data and control data is fetched from the functional component. According to

Modular Design and Verification of Distributed Adaptive Real-Time Systems 7

local violations of the invariant, actual adaptation of control data takes place.
On this level of abstraction, the invariant is not explicitly captured but possible
violations are modelled via internal choices.

CHECKADAPT(i) = getData?d?cd —>
(7] x:IA(i) @ x —> ADAPT(i ,x)
|71 AC(1))

Adaptation takes some time ta(i,x), depending on the component in which
adaptation takes i place and depending on the cause of adaptation x. After the
plan is created, the corresponding control data is set in the functional compo-
nent and further adaptive components are notified using external adaptation EA
events. Notification is realised in NotifyACs process.

ADAPT(i ,x) = WAIT(ta(i,x)) ;
|| ¢d : CD @ setControlData.cd —>
(NotifyACs(i,x) ; AC(i))

The timer keeps track of whether some functional event took place within
the last timer(i) time units.

TIMER(i) = [] x:FE(i) —> TIMER(i)
[] WAIT(timer (i)) ; timeout —> TIMER(i)

The functional component provides information about the internal data to
the adaptation component and the control data can be set by the adaptation
component. On this abstract level, we abstract away state information using
constructions based on internal choices. The functional component can also com-
municate with other functional components or manipulate its functional data.

FC(i) = |7] (d,cd):{(d,cd) | d <— D , cd <— CD}
@ getData.d.cd —> FC(1i)
[] setControlData?ced’ —> FC(i)
[1 |7 x:FE(i) @ x —> FC(i)

The abstract components have a far smaller state space than the refined
components that we introduce in the following subsection. Only by this, the
verification on the abstract level is possible in reasonable time. The relatively
complicated construction for coping with state information based on internal
choices (e.g. getData in the functional component) is necessary to allow for
later refinements in the failures model of CSP. It is certainly a radical way to
leave out all of the state information here. However, it would be possible to keep
at least a part of the state information.

4.2 Refined Model

In the abstract model, state information of the components is not present. A
refined model needs to make clear when the actions actually take place. To do
this in the context of CSP, non-determinism is usually reduced by replacing

8 T. Gothel and B. Bartels

internal choices (| ~|) with guarded deterministic choices ([]). For the adapta-
tion component, the adaptation logic is refined by reducing non-determinism in
CHECKADAPT and ADAPT. In the CHECKADAPT’ subcomponent, the invariant is now
explicitly modelled by the g(i,d,cd,ia) predicate. Note that CHECKADAPT’ and
ADAPT’ now depend on the functional (d) and control data (cd).

AC’ (i) = WAIT(t) ; CHECKADAPT (i)
[T ([] x:EA @ x —> getData?d?cd —> ADAPT’(i,d,cd,x))
[] timeout —> getData?d?cd —> ADAPT’(i,d,cd,timeout)

CHECKADAPT’ (i) = getData?d?cd —>
([] ia:IA(i) @ g(i,d,cd,ia) & ia —> ADAPT’(i,d,cd,ia)
[] else & none —> AC’(1i))

ADAPT’ (i,d,cd,x) = WAIT(ta(i,x)) ;
setControlData.f(i,d,cd,x) —>
NotifyACs’(i,d,cd,x) ; AC’ (1)

The functional component no longer abstracts from the data, but makes use
of it to implement the actual functional logic using, e.g., guards (gf(...)).

FC’(i,d,cd) = getData.d.cd —> FC’(i,d,cd)
[] setControlData?cd’ —> FC’(i,d,cd’)
[1 ([] fe:FE(i) @ gf(i,d,cd,fe) & fe —> FC’(i,h(d,x),cd))

In the next section, we explain the refinement and verification process in the
context of the presented adaptive system pattern. This makes it also clearer why
it is beneficial for a designer to provide models on different abstraction levels.

4.3 Proving Refinement

The aim of the described pattern is to facilitate the modular refinement and ver-
ification of adaptive real-time systems. By separating functional from adaptive
behaviour, we are able to verify the respective properties separately.

The most abstract system model leaves out most of the details concerning
adaptation and functional behaviour. When adaptation takes place, it has no
direct influence on the functional behaviour of the components. Thus, the most
abstract model is suited to verify properties, which focus neither on the adapta-
tion behaviour nor the functional behaviour. By introducing detailed adaptation
or functional behaviour, we refine the abstract model to a refined model that
fulfils more required properties w.r.t. adaptation behaviour or w.r.t. functional
behaviour due to the preservation of properties. The key point is that for many
properties only the functional behaviour or the adaptation behaviour needs to
be refined, not necessarily both at the same time.

A refinement-based verification approach has two major advantages. First, we
can verify functional correctness and adaptation correctness separately. On the
most abstract level, we have a system that is composed of a functional component
FC and an adaptation component AC. Both of these abstract components leave
out most of the details. By refining the functional component to F'C’ and the

Modular Design and Verification of Distributed Adaptive Real-Time Systems 9

adaptive component to AC’, we can verify functional properties and adaptation
properties while leaving out details of the respective component, which is not of
interest for the respective property. Formally, we have FC ® AC Crp FC'® AC
and FCRAC Crpp FC®AC'. Furthermore, we have that F'C'® AC Crpp FC'®
AC" and FC®AC' Cpp FC'®AC’. This means that all properties that are valid
on the partly refined models FC'® AC and FC ® AC’ remain valid in the refined
model F'C’ ® AC’. The second advantage is related to the environment model. In
CSP, a model is more abstract than another when it contains fewer constraints.
This means that a refined system has fewer behaviours than an abstract one.
Ideally, we would like to verify an adaptive system with a most abstract or most
unconstrained environment. However, this is almost never possible especially
in the context of adaptive systems. Refinement allows us to include necessary
constraints to the environment to prove the overall system correct.

5 Example

In this section, we present a simple adaptive system with which we illustrate the
main ideas of the adaptive system pattern from the previous section. It consists
of two adaptive components: a light dimmer and a daylight sensor. When the
daylight sensor recognises a change in light intensity that stays stable for a
certain amount of time, the dimmer is notified that it possibly should adapt to
the new situation by changing the dim intensity. Furthermore, the dimmer can
be adjusted manually, which represents the actual functional behaviour of the
dimmer. On the abstract level, we omit details concerning the state information
in the components. This means that all choices, which should depend on the
state information are realised by internal choices.

The dimmer is adjusted manually using the higher and lower events. Fur-
thermore, the dim intensity can be set using the setGoal event leading to an
automatic adjustment phase thereafter. Finally, the current dim value can be
queried. The obs event is used as an observation event for later verification only.

DimmerFC.0(y) = higher —> obs?x —> DimmerFC_0(y)
[] lower —> obs?x —> DimmerFC_0(y)
[] setGoal?ny —> DimmerFC_.0(9)
[] (y>0 & (adjust —> DimmerFC_0(y—1)
| 7| DimmerFC.0(0)))
[] y==0 & obs?x —> DimmerFC_0(—1)
[] getCurrent?x —> DimmerFC_0(y)

The corresponding adaptation component can be notified that the intensity of
the surrounding light has changed such that it subsequently adapts the behaviour
of the functional component.

DimmerAC_0 = newlIntensity?y —>
getCurrent?x —> (DimmerAC_.0
| 7| setGoal?x —> DimmerAC.0)

10 T. Gothel and B. Bartels

AdaptiveComponent1_00
DimmerAC0 [| {| getCurrent, setGoal |} |] DimmerFC.0(—1)

The light sensor recognises the daylight intensity. If it remains stable for 5
time units, the dimmer is possibly notified using the newIntensity event. On
this abstraction level, details of the check are hidden through an internal choice.

LightSensorTimer = WAIT(5) ; timeout —> LightSensorTimer
[] light?y —> LightSensorTimer

LightSensorAC_0 = timeout —>
getIntensity?y —> (newlntensity?x —> LightSensorAC_0
| 7] LightSensorAC_0)

LightSensorFC_0 = light?x —> LightSensorFC_0
[] getIntensity?x —> LightSensorFC_0

AdaptiveComponent2_00 =
((LightSensorAC_0 [| {timeout} |] LightSensorTimer) \{timeout})
[| {| getIntensity |} |] LightSensorFC_0

The environment model formalises the restriction that at most once a second
the system is interacted with. This is a severe restriction but eases presentation.
Finally, the system model assembles the adaptive components and the environ-
ment model according to the architecture given by our adaptive pattern.

ENV = WAIT(1) ; (light?y—>ENV [] higher—>ENV [] lower—>ENV)

System_abs = ((AdaptiveComponentl1_00 [|{|newIntensity|} |]
AdaptiveComponent2_00)
[| {|light , higher, lower|}|]
ENV) \{| newlntensity , getCurrent, getIntensity |}

We have modelled three safety properties as CSP processes. Thus, trace
refinement is sufficient to express that a system fulfils them. Due to the lack
of space, we omit their CSP definitions here. The first property states that two
consecutive setGoal events always occur with different values. The second one
states that there is a delay of at least 4 time units between consecutive setGoal
events. Finally, the third property states that there are only small jumps in the
dimmer. The dim value before and after setting it can differ by two at most.

These properties are not valid in the abstract model presented above. We
first need to refine the model to be able to show them. All three properties are
concerned with the adaptation behaviour of the two components. So we need to
refine the adaptation mechanisms accordingly.

DimmerAC_1 =
newlntensity?y —>
getCurrent?x —> if (x—y < 0) or (x—y > 9) then DimmerAC_1
else setGoal.(x—y) —> DimmerAC_1

Modular Design and Verification of Distributed Adaptive Real-Time Systems 11

LightSensorAC_1(x) =
timeout —> getlntensity?y —>
if (y!=x) then newlIntensity.lDiff(x,y) —> LightSensorAC_1(y)

else LightSensorAC_1(x)

The adaptation components above are updated with these refined parts
accordingly (taking 0 as the initial value for x). The corresponding new sys-
tem description System_abs2 is sufficiently refined to show the second property
using FDR3. Note that we need to prioritise internal events over tock and have
to specify that the setGoal and obs events are urgent but visible.

assert P2 [T= prio(System_abs2,<{|setGoal,obs|} ,{tock}>)

The first and the third property do not hold on this model, because they
depend on the functional behaviour of the dimmer. So, we also refine DimmerFC.

DimmerFC_1(x,y) =

x<9 & higher —> obs.(x+1) —> DimmerFC_1(x+1,—-1)
x>0 & lower —> obs.(x—1) —> DimmerFC_1(x—1,-1)
setGoal?ny —> DimmerFC_1(x,ny)

y>=0 and y>x & adjust —> DimmerFC_1(x+1,y)
y>=0 and x>y & adjust —> DimmerFC_1(x—1,y)
y>=0 and x=y & obs.x —> DimmerFC_1(x,—1)
getCurrent .x —> DimmerFC_1(x,y)

— e e

With this refined version, we can finally show the first and the third property.

assert P1/P3 [T= prio(System_abs3,<{|setGoal,obs|} ,{tock}>)

Note that the last property is not as obvious as it appears at first glance. If we
did not have the environmental assumptions that there is a delay of at least one
time unit between external events, a setGoal event could be arbitrarily delayed
while higher and lower events have an effect on the dimmer.

For completeness, we also give the refined version of the functional component
of the light sensor. Here, the last intensity value that has been recognised is
memorised and can be given to the adaptation component accordingly.

LightSensorFC_1(x) = light?y —> LightSensorFC_1(y)
[] getIntensity.x —> LightSensorFC_1(x)

In summary, we have shown that it is possible to verify the example above in
a modular way by focussing especially on adaptation behaviour while abstract-
ing from functional behaviour as much as possible. Although being a relatively
simple example, we are confident that we benefit from applying our approach to
more complex systems as described in the next section.

6 Conclusion and Future Work

In this paper, we have presented a design pattern that supports the modular
design and verification of distributed adaptive real-time systems. It clarifies how

12 T. Gothel and B. Bartels

functional and control data is processed and communicated within the individ-
ual components of a distributed adaptive system. Adaptation is achieved in a
decentralised fashion. Moreover, we have demonstrated how timing dependen-
cies of adaptation behaviours can be modelled and analysed. Using an example,
we have shown how the approach facilitates the stepwise development of dis-
tributed adaptive real-time systems and helps to cope with the complexity of
such systems by using automated verification methods.

In future work, we plan to apply our approach to an adaptive multicore
system, which was previously only incompletely verified [10], because of lim-
ited scalability due to not separating functional from adaptation behaviour. As
another piece of work, we want to analyse whether we can exploit the composi-
tional structure of systems in our approach to enable runtime verification. This
would especially enable the integration of more flexible adaptation strategies at
design time such that the system could apply the correct strategies at runtime
while preserving functional and adaptation correctness.

References

1. Adler, R., Schaefer, 1., Schuele, T., Vecchié, E.: From model-based design to for-
mal verification of adaptive embedded systems. In: Butler, M., Hinchey, M.G.,
Larrondo-Petrie, M.M. (eds.) ICFEM 2007. LNCS, vol. 4789, pp. 76-95. Springer,
Heidelberg (2007)

2. Allen, R.B., Douence, R., Garlan, D.: Specifying and analyzing dynamic software
architectures. In: Astesiano, E. (ed.) ETAPS 1998 and FASE 1998. LNCS, vol.
1382, pp. 21-37. Springer, Heidelberg (1998)

3. Bartels, B., Kleine, M.: A CSP-based framework for the specification, verification
and implemenation of adaptive systems. In: 6th Int. Symp. on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS 2011). ACM (2011)

4. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: A con-
ceptual framework for adaptation. In: de Lara, J., Zisman, A. (eds.) Fundamen-
tal Approaches to Software Engineering. LNCS, vol. 7212, pp. 240-254. Springer,
Heidelberg (2012)

5. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — A
modern refinement checker for CSP. In: Abrahém, E., Havelund, K. (eds.) TACAS
2014 (ETAPS). LNCS, vol. 8413, pp. 187-201. Springer, Heidelberg (2014)

6. Iftikhar, M.U., Weyns, D.: A case study on formal verification of self-adaptive
behaviors in a decentralized system. In: Kokash, N., Ravara, A. (eds.) FOCLASA.
EPTCS, vol. 91, pp. 45-62 (2012)

7. Jaské, S., Simon, G., Tarnay, K., Dulai, T., Muhi, D.: CSP-based modelling for
self-adaptive applications. Infocommunications Journal LVIV (2009)

8. Luckey, M., Engels, G.: High-quality specification of self-adaptive software sys-
tems. In: 8th Int. Symp. on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS 2013). ACM (2013)

9. Schneider, S.: Concurrent and Real Time Systems: The CSP Approach. John Wiley
& Sons Inc., New York (1999)

10. Schwarze, M.: Modeling and verification of adaptive systems using Timed CSP.
Master thesis, Technische Universitat Berlin (2013)

	Modular Design and Verification of Distributed Adaptive Real-Time Systems
	1 Introduction
	2 Timed CSP
	3 Related Work
	4 Timed Adaptive System Pattern
	4.1 Abstract Model
	4.2 Refined Model
	4.3 Proving Refinement

	5 Example
	6 Conclusion and Future Work
	References

