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Abstract. The recovery of deleted files is an important task frequently
carried out by professionals in digital forensics and data recovery. When
carried out without information from the file system, this process is called
file carving. The techniques implemented in today’s file carvers are mostly
sufficient for non-fragmented files. Fragmented files, on the contrary, are
not well supported. In this paper we present a general process model for
the recovery of fragmented files. This model is then applied to the JPEG
file format which is the de facto standard for digital photographs. More-
over, we evaluate popular open source carvers and compare them with our
proposed approach.
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1 Introduction

The discipline of digital forensics provides techniques to find evidence on digital
devices. One task carried out to find digital evidence is the recovery of deleted
data. When a file is deleted, the actual data making up this file is usually not
removed from the storage device. Instead, only the corresponding entries in the
file system metadata are removed or modified. This effectively marks the area
that was occupied by the file as free. Therefore, deleted files are still present
until overwritten by other data.

In most cases techniques used in traditional data recovery might suffice to
restore the deleted files. These methods usually rely on information provided
by the file system metadata. However, in cybercrime you often have a different
situation. If no information from the file system is available, either because it
is missing or corrupt, e.g. because a suspect tried to destroy evidence, those
methods will most likely not be able to restore deleted files.

In such scenarios the files have to be restored by investigating their structure
and contents rather than investigating the file system metadata. This process is
called file carving or just carving. This gets even more difficult if the files are
stored fragmented on a storage medium. Without file system information it is
very hard to determine where the fragments of such a file begin and end. Thus,
file carving can be a very time consuming process. Moreover, it possibly generates
a large amount of data to be sifted by a forensic examiner. However, when dealing
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with cybercrime, not all of this data is of interest during an investigation. For
instance, files belonging to the operating system, when untampered with, are
usually non-relevant. In most cases files generated by the user such as e-mails,
text documents, pictures or videos are more important. On the one hand those
files itself may prove or disprove a criminal act (e.g. when possession of a specific
file is illicit). On the other hand the contents of a file may give important hints
to the solution of a crime.

One type of user generated data are pictures in general and digital pho-
tographs in particular. Photographs can play central roles when investigating
criminal acts. Consider cases of child pornography for example. Finding explicit
photographs on the computer of a suspect may help the authorities to convict
the suspect. Other crimes that possibly involve photographs are blackmailing,
cyber-bullying, harassment, and falsification of documents.

The de facto standard algorithm for compressing digital photographs has
been defined by the Joint Photographic Experts Group in [1] and is commonly
known as the JPEG standard. Nowadays, most of the digital cameras produce
JPEG-compressed images. This holds for low-end consumer cameras and cam-
eras integrated into mobile phones as well as for high-end digital cameras.

Current file carvers are able to restore deleted files when they are stored
contiguously on the storage medium. However, only very few carvers support the
reconstruction of fragmented files and, if so, in a rudimentary manner only. To
our knowledge the only product available with advanced support for fragmented
images is Adroit Photo Forensics [2] developed by Digital Assembly. However,
this product is proprietary and cannot be easily used by researchers for their
own work.

Although modern file systems try to minimize fragmentation, it cannot
always be avoided completely. In [3] Garfinkel presents detailed fragmentation
statistics collected from more than 300 hard disks. An important conclusion that
can be drawn from these statistics is that files of interest during a forensic inves-
tigation tend to fragment more likely than less interesting files. For instance,
16 % of the JPEG files were fragmented, 20 % of the AVI files, and 58 % of the
PST files. These numbers may not sound very large, however, we think that they
are too large for not considering fragmented files at all.

The rest of this paper is organized as follows: Sect. 2 presents related work
and Sect. 3 formulates requirements for modern file carvers. In Sect. 4 we present
our approach for carving fragmented JPEG files. Finally, in Sect. 5 we compare
our carving approach with popular open source carvers and conclude this paper
in Sect. 6.

A Note on Terminology. Throughout the rest of this paper we use the term block
to denote the smallest unit of data that is processed by a file carver. This may
be the smallest addressable unit of a storage medium such as a sector of a hard
disk drive or a cluster of the file system.
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2 Related Work

There exist various file carving approaches. In this section we introduce selected
proposed techniques which our work is partially based on. Starting with app-
roaches that do not consider fragmented files, we present fundamental works
addressing fragmented files as well.

One of the most simple carving approaches is called header-to-footer carving.
Using this technique a carver searches a given disk image for occurrences of
certain byte sequences indicating the beginning (header) and end (footer) of a
file. Afterwards the data between those signatures is restored. While being very
fast, this approach is limited to contiguously stored files only. Nevertheless, it is
one of the most widely used strategies in current file carvers such as Foremost [15]
and Scalpel [16].

Motivated by his study on fragmented files, Garfinkel was one of the first
to address the recovery of fragmented files. In [3] he introduces a technique
called bifragment gap carving. This approach makes use of object validation,
which means that a file candidate is validated before it is actually recovered.
Depending on the file type a validation includes a verification of headers and
footers, a verification of the file structure, and, if applicable, the decoding of
the file. In case of a successful validation the file is recovered; otherwise, the file
is deemed fragmented. Fragmented files are recovered by successively removing
data between a found header and footer of a file and afterwards trying to validate
the file. Starting with a gap size of one block, all possible positions of this gap
are tested. If the file still does not validate, the gap size is increased by one block
and again all possible positions of the gap are tested. This process is carried out
for all gap sizes until the file is successfully validated or all combinations are
exhausted. As the name implies this approach is limited to files split into two
fragments; files split into more fragments are not recoverable.

In [4,5] a general process model for the reconstruction of fragmented files is
proposed consisting of three steps: preprocessing, collation, and reassembly. In
the preprocessing step encryption or compression possibly applied to the disk
image is removed. The collation step is responsible for classifying the blocks of the
disk image as belonging to one or more file types. Finally, in the reassembly step
the files are reconstructed. Depending on the file type different reconstruction
algorithms have to be applied in this step.

Moreover, the authors formulate the reassembly of fragmented files as a
graph-theoretic problem where the blocks of a disk image form the set of nodes
of a graph. The edges indicate the probability that two blocks are adjacent in
the original file. The authors use different algorithms to approximate optimal
paths within the resulting graph. This idea was subsequently refined in [6,7].
A problem with graph-theoretic carving is scalability. For large storage media
the number of blocks to consider may exceed current computing and memory
capabilities.
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3 Requirements for File Carvers

The ever increasing capacities of today’s storage media present a formidable
challenge to file carving tools. Modern hard disk drives are capable of storing
terabytes of data and even USB flash drives and mobile phones have capacities
of several gigabytes. In order to be able to keep up with this trend a file carver
should behave efficiently in terms of processing speed as well as in memory
requirements.

Considering that a file carver is often part of a digital forensics investigation
an even more important requirement is a correct and traceable functioning. If this
cannot be granted, results produced by the file carver might not be usable as
evidence in court.

Based on the aforementioned considerations we formulated three basic
requirements for file carving tools. Moreover, we prioritized the requirements
by their importance during a forensics investigation.

1. Correctness: A carver should be able to correctly recover as many files as pos-
sible. Moreover, it should not generate corrupted files that cannot be opened
using a standard program for the corresponding file types.

2. Scalability: A carver should be able to handle today’s and future high-capacity
storage volumes.

3. Performance: A carver should be reasonably fast.

4 Fragmented JPEG Carving

Based on the general process model introduced in [4] and the requirements pre-
sented in the previous section we derived the file carving process model depicted
in Fig. 1. We varied from the original process model because of the fragmenta-
tion statistics in [3] which imply that a large fraction of the files on a storage
medium are stored contiguously. Such files can be restored comparatively easily
and fast. Therefore, we restore the non-fragmented files first. On the one hand
this approach can drastically reduce the amount of data to be considered in the
more complex reconstruction of fragmented files. On the other hand there will
already be a large number of recovered files for an examiner to sift.

4.1 Preprocessing Phase

As in [4], the preprocessing phase is responsible for converting the input into
a format the file carver is able to process. This means that any encryption
or compression has to be removed so that the following steps can operate on
raw data. Moreover, if the storage medium under investigation contains a valid
file system, the information stored in the file system metadata may be used to
reduce the overall data the carver has to consider. This, however, requires the
investigator to trust this information, which cannot always be assumed.
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Fig. 1. Proposed carving model.

4.2 Contiguous File Carving Phase

As mentioned earlier, the first carving phase is used to restore non-fragmented
files. Moreover, it is responsible for generating candidates for the reconstruction.

Header Search. In this step the storage medium is searched for occurrences
of strings indicating the start of a JPEG file, thus generating candidates of
files to be carved. Note that the results of this step will be used in all of the
remaining carving steps, not only in this phase but also in the fragmented file
carving phase. That is, only candidates generated in this step will be considered
during the following carving processes.

Table 1. Byte sequences identifying JPEG headers. The question marks (?) represent
wildcard characters representing one byte value each.

Header type Byte sequence

JPEG/JFIF 0xFF 0xD8 0xFF 0xE0 ? ? 0x4A 0x46 0x49 0x46 0x00

JPEG/Exif 0xFF 0xD8 0xFF 0xE1 ? ? 0x45 0x78 0x69 0x66 0x00

Table 1 lists the byte sequences identifying the JPEG/JFIF and JPEG/Exif
file formats. Whenever such a byte sequence is found, its starting position is
stored in a sequence H which represents the candidates to be carved. We focus
on these two formats here, as they are the predominant file formats for storing



56 M. Lambertz et al.

JPEG-compressed files. However, support for further JPEG or even completely
different file types may be added very easily.

Thumbnail and Contiguous JPEG Carving. We differentiate between reg-
ular JPEG files and thumbnails. Many JPEG file formats store a down-scaled
version of the original image in the JPEG file. Moreover, a lot of digital cameras
generate and store these thumbnails automatically in the photographs.

Thumbnails are interesting for several reasons. For one thing the forensic
examiner can use them to get a rough overview of what images to expect.
Depending on the contents of the thumbnail images the examiner may be in
a better position to judge if more time-consuming techniques are worth being
applied. For another thing the thumbnails themselves may already contain com-
promising material that can be used in the course of the investigation.

Thumbnails may appear in certain segments of a JPEG file only, located
within a limited range after the header signature. We scan this area for possibly
existent thumbnails and whenever a thumbnail is found, it is immediately carved.

After all thumbnails are restored, we carve the contiguously stored JPEG
files. Based on Garfinkel’s statistics provided in [3] these files will make up about
84 % of the JPEGs. Therefore, it is worthwhile to use appropriate carving strate-
gies. That is, carving strategies that are simple and, more importantly, fast.

The obvious carving strategy would be header-to-footer carving. However,
since correctness is our primary requirement, we have to make sure that only
valid files are carved during this step. Header-to-footer carving alone provides no
means to ensure the validity of the carved files. Hence, a second step to validate
the files would be necessary.

In order to avoid having to first carve and afterward validate a file, we chose
not to use the classical header-to-footer carving. Instead, we start decoding the
JPEG from the header on until the JPEG is either completely decoded or until
the decoder detects errors, such as an invalid file structure, invalid Huffman
symbols or a premature end of the file for instance. Only files that are decod-
able without errors are finally carved and their headers are removed from the
sequence H. Moreover, blocks that have been used to carve the non-fragmented
files are marked as used and are not considered in the following carving phase
anymore.

4.3 Fragmented File Carving Phase

In the second carving phase we try to restore the remaining JPEG files in set H,
i.e. files that have not been restored in the first phase. At this point H contains
candidates only that could not be carved using sequential decoding.

Collation. In the original process model the collation step is used to classify a
given block as belonging to one or more file types. Especially for encoded data
this multiclass classification problem is very hard and, in fact, not required at
all. Since we focus on the recovery of JPEG files, we do not classify the blocks.
Instead, in our case it is sufficient to determine if a data block belongs to a
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JPEG file or not. This reformulation turns the multiclass classification problem
into a binary classification problem, allowing the usage of more specialized meth-
ods, which are easier to compute and more accurate than general classification
techniques most of the time.

Our preliminary assumption is that every block belongs to a JPEG file. Then,
we subsequently perform tests on each block that may refute this assumption.
As soon as one of these tests yields a negative result, we discard the block and
do not consider it any further.

The first test exploits what is called byte stuffing in [1]. In a JPEG file
a 0xFF byte introduces a marker. In order to distinguish markers from 0xFF
bytes occurring in the encoded image data, each 0xFF that does not introduce a
marker has to be masked with a 0x00 byte. Blocks without correct byte stuffing
can easily be identified and do not have to be considered anymore.

In the next test we determine the frequency of printable ASCII characters
contained in a block. We count the number of bytes from the interval [0x20,0x7E]
as well as the bytes 0x09 (horizontal tab), 0x0A (line feed), and 0x0D (carriage
return). If the percentage of these characters exceeds a certain threshold, then
we assume the block to belong to some kind of text file rather than to a JPEG.
We evaluated various thresholds and found 70 % to yield the best results which
are presented in Table 3.

Finally, we check whether a block consists of 0x00 bytes only. If this applies,
then we assume that the block has not been used to store any data yet or has
been sanitized. Such blocks are discarded as well.

A block that passes all of the tests outlined above will be inserted into a set D.
Along with the headers H, only these blocks are considered in the reassembly
of fragmented JPEGs following the collation step. Therefore, it is important not
to separate out blocks that actually belong to JPEG files.

Note that we considered implementing more tests in this step, for instance
by using the information entropy or byte frequency distribution of a block. How-
ever, based on [8], where the authors assessed the probability of being able to
distinguish a non-JPEG block from a JPEG block by checking the correctness
of the byte stuffing, we know that with increasing block size this test alone is
sufficient to eliminate more than 90 % of the non-JPEG blocks. For a block size
of 4096 bytes, which is a common block size in many file systems, the probability
to find an invalid byte sequence is even larger than 99 %. Therefore, we chose to
omit further test, especially because tests based on entropy and byte frequency
distribution are computationally more expensive.

Fragmented JPEG Carving. At this point we have completely classified
every block of the disk image that has not yet been used to restore a JPEG.
That is, each of the available blocks has either been included in H or D or
has been determined not to belong to a JPEG file. Based on the blocks in the
aforementioned sets the reassembly of fragmented JPEGs is performed in this
step.

In order for the carving algorithm to be functioning, an essential assumption
has to hold: the marker segments and the first few scanlines of the JPEG to
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be recovered have to be stored contiguously in the first fragment of the file.
This is because our approach does not yet include mechanisms to reassemble
fragmented marker segments and the first scanlines are required as a starting
point for the following reassembly steps. Although this requirement may sound
restricting, we believe that it is not in realistic scenarios. Since file systems try
to avoid fragmentation, it is unlikely that fragmentation occurs that early in a
file already.

The following pseudocode lists the basic steps of the recovery of a fragmented
JPEG file:

FUNCTION carve-fragmented-jpeg(h)
B, ba := initialize carving process
WHILE JPEG is recoverable and JPEG is not complete DO

bsafe := FastForwardStep(ba)
bz := FragmentationPointDetection(bsafe)
B := (B, ba, ba+1,..., bz)
ba := FindNextFragment(bz)

END WHILE
END FUNCTION

Given a header h ∈ H, the carving process is initialized by reading the meta-
data (i.e. the marker segments) of the JPEG. This provides us with important
information such as the number of pixels in vertical and horizontal direction
and the number of color components. These values are essential for the further
reconstruction steps. Moreover, the sequence of blocks B, which denotes the
data blocks of a JPEG under reconstruction, is initialized with the blocks used
to read the marker segments. The block ba denotes the last block that has been
used so far. This block serves as a starting point for the reassembly algorithm
and is added to B not until later in the reassembly.

Decoding data not belonging to a JPEG typically causes corrupted image
regions. These corruptions can visually be easily distinguished from valid image
regions as they form sharp edges to the valid image regions in most cases. Thus,
corrupted regions may be detected using edge detection algorithms known from
the field of computer vision. In the fast forward step we try to find the maximum
number of complete scanlines of an image that are not corrupted. We denote
these scanlines as safe scanlines.

Given the first block of a fragment, ba, we start to decode the image line
by line. In order to detect image corruptions we use a simple edge detection
technique similar to the one proposed by Cohen in [9]. This technique is based
on Laplacian zero-crossings and is a well known approach in the field of computer
vision. For every decoded scanline we compute an edge value according to Eq. 1:

e(y) =
1

X · C
·
X−1∑

x=0

C−1∑

c=0

|Ic(x, y − 1) − 2 · Ic(x, y) + Ic(x, y + 1)| . (1)
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Here, X denotes the number of pixels in horizontal direction and C denotes
the number of components per pixel. A grayscale image has only one component,
an RGB image three. Ic(x, y) denotes the cth component of pixel x in scanline y.

The edge value is subsequently compared to a dynamically computed thresh-
old Θ. Such a threshold has to adapt to changing image characteristics without
too much delay. Hence, we chose to compute the threshold based on a linear
weighted average which on the one hand reacts faster to changing image charac-
teristics than a median for example and on the other hand assigns higher weights
to more currently processed scanlines.

A JPEG-compressed image is decoded in terms of blocks called minumum
coded units (MCUs) of certain dimensions. Therefore, we do not have to check
every image line for corruptions. Instead, we only examine the scanlines on
the horizontal MCU block boundaries. Consider for example an MCU size of
8 x 8 pixels. Then we would check for image corruptions every 8 scanlines only.

The threshold Θ is computed by

Θ0 = α

Θi = 0.5 · (α + μ) + β · Θi−1

(2)

with α and β being predefined constants. μ is the linear weighted average of the
last n edge values values computed by

μ =
2

n · (n + 1)
·

n∑

j=1

j · sj (3)

where n denotes the number of edge values and s the ordered sequence of edge
values computed in the current instance of the fast forward step. That means,
s = s1, s2, . . . , sn = e(y1), e(y2), . . . , e(yn), where y1 is the first scanline read in
this fast forward step and yn the scanline just before the computation of μ.

Note that the weighted average and the threshold are computed only before
the threshold is used in a comparison with an edge value. That is, the com-
putations are carried out if the current scanline processed is at the boundary
of two MCU blocks. Moreover, Θ and μ are only valid for one instance of the
fast forward step. If the fast forward step is entered in the next round of the
reconstruction algorithm, the computation of the two values starts over again.

Besides detecting image corruptions, the fast forward step serves another
purpose. We do not only compute the linear weighted average, but also a long-
term model of the image consisting of the arithmetic mean of the edge values
and their standard deviation. This model is used in the following steps of the
reassembly algorithm.

The fast forward step only determines the approximate region of the fragmen-
tation point. The exact fragmentation point is identified in the fragmentation
point detection step. Here, we try to find the last block belonging to the current
file fragment.

The fragmentation point detection receives the last safe block, bsafe , as input
which serves as a starting point for this step. In order to find the exact frag-
mentation point, we append the blocks following bsafe one by one and check
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whether an image corruption is detected. The detection of a corruption is again
performed by using formula 1 and a threshold θ computed by

θ = κ · M + λ · σ . (4)

In formula 4, M is the arithmetic mean and σ the standard deviation of
the long-term model computed during the fast forward step. κ and λ are two
predefined constants.

If the edge value computed exceeds the threshold θ, an image corruption is
assumed and the block causing this corruption will be considered as the first
block not belonging to the current file fragment anymore.

Note that we only append blocks which are in D in this step. When a block
following bsafe is not in D, we assume a fragmentation point to be detected. This
is why we need a de facto perfect sensitivity of the block classifier used in the
collation step.

After the last block of the current fragment, bz, has been identified, we have
to find the first block of the next fragment belonging to the file under recon-
struction. This is accomplished in the find next fragment step.

Based on the fragmentation statistics provided in [3], we know that typi-
cally file fragments are not scattered randomly across the storage medium, but
are stored relatively closely to each other. This suggests that most of the time
the beginning of the next fragment can be found within a close range after the
block bz. In [3] Garfinkel lists the gap distribution for JPEG files split into two
fragments with the largest common gap size observed being 636 KiB. However,
we do not want to limit the search for the next fragment to a predefined range
in order to be able to carve files in more complicated fragmentation scenarios,
too. Therefore, this step is further subdivided. First, we check the blocks within
a predefined range after bz. If we already find a good candidate within this
range, we stop here and return this block. If we do not find such a candidate,
we exhaustively search the remaining blocks in D for a candidate.

To grade a candidate block, we append the block to the blocks already consid-
ered as belonging to the JPEG and decode a complete set of scanlines. Note that
we might have to read further blocks in order to completely decode these scan-
lines. After the decoding, once again we use formula 1 to compute an edge value
between the scanlines that have been determined to belong to the file earlier and
the newly decoded ones. The grade of a block is then calculated by

ω =

{
1, if e(ybi) = 0
1/e(ybi), else

(5)

where ybi is the first of the newly decoded scanlines after block bi has been
appended.

We compute the value ω for all blocks within a predefined range of 2500
blocks. If the best weight is larger than a threshold φ, the candidate is considered
as good and this block will be returned as the beginning of the new fragment.
If no block yields a weight larger than the threshold, we exhaustively check all
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remaining blocks in D. We start right after the predefined range and proceed
until the end of the disk image. Afterwards we start from the beginning of the
disk image until we reach the header of the current file. Finally, we return the
block with the best ω as the beginning of the next fragment and start another
round of the algorithm until the JPEG is completely recovered or we detect that
it is not recoverable at all.

5 Evaluation

To evaluate our proposed carving approach we implemented a prototypic carver
and compared its capabilities with available open source carvers. The evaluation
was performed on a machine with an Intel Core i7-3930K hexa-core CPU clocked
at 3.2 GHz with 12 logical cores.

Table 2. Summary of the test sets.

Test set Size in MiB Non-fragmented Fragmented Thumbnails

JPEGs JPEGs

Simple#1 ≈50 2 0 3

Simple#2 ≈50 1 1 3

Simple#3 ≈50 0 2 3

Simple#1-notn ≈50 2 0 0

Simple#2-notn ≈50 1 1 0

Simple#3-notn ≈50 0 2 0

DFTT#8 ≈10 6 0 0

DFTT#11 ≈62 3 0 3

DFTT#12 ≈124 1 2 1

DFRWS-2006 ≈48 7 7 5

DFRWS-2007 ≈331 1 13 13

nps-2009-canon2-gen6 ≈32 30 6 38

Table 2 lists the test sets we used in our evaluation. The Simple#n test sets
have been created by us to evaluate basic carving capabilities of the carvers.
They consist of 50 MiB of random data and two JPEG files implementing frag-
mentation scenarios of different levels of difficulty. The Simple#n-notn test sets
are the same as the Simple#n test sets but with the thumbnails removed from
the JPEGs. The remaining test sets are publicly available standard test sets
for file carvers frequently used in the literature. The DFTT test sets have been
created by Carrier and Mikus specifically for the evaluation of file carvers. The
test sets themselves and detailed descriptions are available at [10]. The DFRWS
test sets were taken from the DFRWS challenges from the years 2006 and 2007
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which were dedicated to file carving with a focus on fragmented files. Again, the
test sets and detailed descriptions are publicly available [11,12]. Finally, we used
the nps-2009-canon2-gen6 test set which is the image of a memory card used in
a digital camera [13,14].

We used the test sets of the DFRWS challenges to evaluate our tests to differ-
entiate between JPEG and non-JPEG blocks. Both test sets were processed with
a block size of 512 bytes. The classification results with regard to sensitivity and
specificity are presented in Table 3. Sensitivity and specificity are two standard
metrics when measuring the quality of a classifier. In our case the former denotes
the fraction of JPEG blocks which have been correctly classified as such and the
latter denotes the fraction of non-JPEG blocks which have not been classified
as JPEG blocks.

Table 3. Classification results for the DFRWS test sets.

DFRWS’06 DFRWS’07

JPEG headers Sensitivity 1.00 1.00

Specificity 1.00 1.00

JPEG data blocks Sensitivity 1.00 1.00

Specificity 0.82 0.86

The first thing standing out is the perfect sensitivity of our classifier. For
JPEG header blocks the specificity is perfect as well. For JPEG data blocks
the specificity is notably lower. In the DFRWS-2006 test set the false positive
rate is 18 %, in the DFRWS-2007 test set 14 %. These results correspond to
the results of [8] mentioned in Sect. 4.3. Hence, we can expect the specificity of
our classifier to become better with larger block sizes.

We evaluated various different combinations of the constant values α, β, κ, λ,
and φ. We found that the carver achieved the best results with the values set to
α = 1000, β = 0.32, κ = 1.9, λ = 4, and φ = 0.001. Therefore, we present the
results for these values in our evaluation.

As already mentioned, we did not only evaluate our carver but also popular
open source carvers. We included Foremost [15], Scalpel [16], and PhotoRec [17]
in our evaluation each in at least two different configurations.

Figure 2 presents the results of the carvers with regard to the number of recon-
structed files. The plot is tripartite: the top part shows the ratio of carved non-
fragmented JPEGs, the part in the middle the ratio of carved fragmented JPEGs,
and the bottom part the ratio of carved thumbnails. Each bar is divided into
correctly carved files, partially carved files, and files not carved at all. In our
evaluation a file is rated as correctly carved if it completely corresponds to the
original file. A file is graded as partially carved if the file is not complete but
the subject depicted is still identifiable. Finally, files are rated as not carved if
the file is either missing completely or the subject is not identifiable.
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Fig. 2. Correctness of the file carvers.

Looking at the top part reveals that two configurations of Scalpel, PhotoRec,
and our carver achieve very good reconstruction rates of more than 96 %, with
our carver and one configuration of Scalpel being able to restore all files correctly.

When it comes to fragmented JPEGs, the number of correctly carved files sig-
nificantly drops for all carvers evaluated. Especially Foremost and Scalpel, which
have no dedicated support for carving fragmented files, are not able to completely
recover a single fragmented JPEG. An exception is Foremost (built-in), which
implements a heuristic to restore certain fragmented files from ext2/ext3 file
systems [15].

PhotoRec implements basic mechanisms to carve fragmented files which is
also reflected in our evaluation. Depending on the carving mode, PhotoRec is
able to correctly restore about 12 % and 26 % respectively.

Finally, our carver is able to recover approximately 56 % of the fragmented
JPEGs correctly which clearly outperforms the other carvers tested.

If we include the partially carved files, PhotoRec achieves slightly better
results than our carver. The heuristic for carving fragmented files implemented
by PhotoRec is comparatively simple and of minor computational complexity.
Hence, it might be beneficial to adapt it to our carver as well.

Finally, the lower part shows that our carver is capable of restoring more
thumbnails than every other carver tested. Only one thumbnail is not recovered
because the header of the actual JPEG had already been overwritten. PhotoRec
also differentiates between thumbnails and regular JPEGs and consequently
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achieves good results as well. The other carvers do not make this differentia-
tion and do not perform as well as our carver or PhotoRec.

Moreover, thumbnails were often the cause for corrupted files. Figure 3 depicts
the absolute number of corrupted files generated by the carvers. Scalpel and Fore-
most (conf-based) generate a large amount of corrupted files mainly caused by
JPEGs containing thumbnails. Foremost using the built-in carving heuristics,
PhotoRec and our carver, on the contrary, do not generate such files. This is
because all of these carvers perform some kind of validation during the carving
process.
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Fig. 3. Corrupted files generated by the file carvers.

Figure 4 illustrates the time the carvers took to process the individual test
sets. The data points represent the arithmetic mean of 50 replications. The cor-
responding standard deviation is also plotted, but hardly visible due to virtually
no variance in the results. In order to keep the plot clear, we only present a
subset of the carvers, which generated the best results in terms of correctness.

The x-axis depicts the test sets sorted ascending by their size. The y-axis
depicts the time the carvers took to process the test sets in seconds. Please note
that this axis is scaled logarithmically in order to render all results visible.

The first thing to observe is that Foremost and Scalpel take less than two
seconds for each of the test sets. Moreover, the time these two carver take seems
to depend mainly on the size of the given input data.

PhotoRec exhibits a different behavior. Here, the input size is not the main
factor influencing the runtime but rather the number of JPEGs and the com-
plexity of the fragmentation scenarios contained in the test sets. In the paranoid
mode, PhotoRec is nearly as fast as Foremost and Scalpel. All test sets have been
processed in less than five seconds. The paranoid bf mode is able to process half
of the test sets in less than one second. The test sets DFRWS-2006 and nps-
2009-canon2-gen6 took less than one minute. However, the time required for
the test sets Simple#3 (>2.5 h), Simple#3-notn (12 min.), and DFRWS-2007
(25 min.) are significantly higher. Another thing to notice is the missing result
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Fig. 4. Runtimes of the file carvers.

for PhotoRec (paranoid bf) for the Simple#2-notn test set. Here, we stopped
the execution after a time frame of more than 40 hours.

The trends of our carver is comparable to the execution times of PhotoRec.
Again, the input size does not impact the runtime as much as the complexity of
the fragmentation scenarios. Our carver is able to process all but the DFRWS-
2007 test set in less than two minutes, some of them in less than one second.
The DFRWS-2007 test set takes about 42 min to complete.

6 Summary and Future Work

In this paper we presented a carving approach for fragmented JPEG files. After
formulating three key requirements for modern file carvers, we subsequently
derived a process model for such a carver. Although we focused on fragmented
JPEGs here, the general approach is suitable for different file types as well.

Afterwards we presented an algorithm to recover fragmented JPEG files fol-
lowing our process model. The evaluation revealed that our approach is capa-
ble of carving more files correctly than popular open source carvers, while still
retaining good runtimes.

We are currently investigating techniques to further increase the correctness
of our approach. For instance, exploiting features of the encoded image data
might lead to better detection of corruptions and might as well increase the
performance of our carver. Furthermore, a reconstruction of JPEG files which
have no valid header anymore is on our agenda.
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Moreover, we are evaluating the impact of parallelizing our carver. A paral-
lelized prototype implementing our carving approach already yields promising
results gaining a speedup of a factor greater than seven. In the course of this, we
also consider modern graphics cards which allow massively parallel processing.

Finally, we are planning to extend our approach to further file types. Besides
more image formats, the reconstruction of fragmented videos, PST files, and
SQLite databases would be valuable for instance.
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