
Forensic Artifacts of the flareGet
Download Manager

Prachi Goel1 and Babu M. Mehtre2(&)

1 School of Computer and Information Sciences, University of Hyderabad,
Hyderabad, India

prachi_8dec@rediffmail.com
2 Institute for Development and Research in Banking Technology (IDRBT)

Established by Reserve Bank of India, Hyderabad, India
bmmehtre@idrbt.ac.in

Abstract. There is an increasing interest in finding artifacts (digital evidence)
created by various software tools. flareGet is an advanced multi-threaded and
multi-segment download manager for Linux. This is the only download manager
for Linux that integrates with almost all the browsers. In this paper, we examine
(from a digital forensics angle) the artifacts created by flareGet for Linux,
specifically on Ubuntu 12.04 distribution. The flareGet artifacts include down-
load path, URL address, settings of flareGet, date and time of the activity per-
formed, the encryption technique used by flareGet, etc. This is useful for the
digital forensic investigator to search and interpret the artifacts created or left in
the process of using flareGet.

Keywords: Artifacts � Digital forensics � Investigation � flareGet

1 Introduction

There is an increasing interest in finding artifacts (digital evidence) created by various
software tools. There are a number of software tools which have been examined for
artifacts on Windows and Linux platform. Relatively, the number of such tools
examined for artifacts on Windows platform is more than those on Linux platform.
flareGet is a native Linux application written in C++, using the Qt framework. For
installing flareGet, the system should meet the following minimum dependencies:

1. Qt libraries with version >=4.8.1
2. glibc (C library) with version >=2.13.

flareGet is a full featured, advanced, multi-threaded, multi-segment download
manager and accelerator on Linux [1]. It supports all 32 and 64 bit ‘Debian’ and ‘Red
Hat Package Manager’-based Linux distributions. flareGet is proprietary software
however; it is also available freely with limited features. The following features are not
present in the freely available flareGet version 1.4-7:

1. Up to 16 parallel connections per download.
2. Browser Integration with all the browsers.

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014
P. Gladyshev et al. (Eds.): ICDF2C 2013, LNICST 132, pp. 30–38, 2014.
DOI: 10.1007/978-3-319-14289-0_3

3. Support for download speed limits.
4. Support for auto-refreshing of URL and cookies.

Freely available, flareGet can support up-to 8 parallel connections per download
and provides the integration with Mozilla Firefox via FlashGot (a third party add-on).
flareGet supports HTTP, HTTPS and FTP for downloading the files from Internet.
It also supports Meta links. It uses a robust dynamic file segmentation algorithm which
splits the download into segments to accelerate the process of downloading. In addition
to dynamic file segmentation, it uses HTTP-pipelining in which multiple requests are
sent on a single TCP connection without waiting for the corresponding responses. This
further accelerates each segment up to six times. It uses intelligent file management to
automatically categorize the downloaded files based on their extensions. The down-
loaded files are grouped into different folders as per their categories.

This paper focuses on the artifacts created in the process of using flareGet (freely
available version 1.4-7) on Linux (Ubuntu 12.04 distribution). Even though the
examination is done by using the free version of flareGet, the same type of artifacts are
applicable to professional flareGet (because the features which are not available in
the free version would not affect the artifacts created by flareGet). It is found that
flareGet creates the artifacts in the location: ‘/home/< user >/.config’ with different
folder names. The important folders created by flareGet from the forensics point of
view are discussed in the following sections. All the traces created by flareGet are
traced by using Strace (a debugging utility for Linux).

The GUI of the flareGet download manager is shown in Fig. 1. The Left Panel of
flareGet contains two main tabs: ‘All Downloads’ and ‘Finished’. Under the ‘All
Downloads’ tab there are various status tabs which include Completed, Running,
Paused, Failed and Cancelled. Under the ‘Finished’ tab there are various categories tab
which include Compressed, Application, Documents, Videos, Audio, Images and
Others. The Right Panel displays the information of the corresponding tab on the left
panel when clicked by the user. For example, in Fig. 1, the right panel shows the
information of all the files including their states like completed, running, paused, failed
and cancelled, shown when the ‘All Downloads’ tab on left panel gets clicked.

Fig. 1. The GUI of flareGet.

Forensic Artifacts of the flareGet Download Manager 31

This paper is organized into 5 sections. The first section gives a brief introduction
of the flareGet. The second section discusses the related work done by others. The third
section details the artifacts of flareGet in five sub-sections. Sections 3.1, 3.2 and 3.3
describe from where the forensic investigator can find the downloaded/downloading
files, proxy settings and paused file information. Section 3.4 describes from where the
forensic investigator can find the information about websites requiring authentication
during the download process, and it also describes the encryption technique used by
flareGet to store the user’s passwords for these websites. Section 3.5 shows the
installation and un-installation artifacts of the flareGet. The summary of flareGet arti-
facts is given in Sect. 4. Finally the paper concludes in Sect. 5.

2 Related Work

Numerous researchers have worked to find the artifacts left behind by different software
applications from the digital forensics perspective. In the literature there are many
papers for detecting software application artifacts on the Windows platform but less
research has been done to find software application artifacts on the various Linux
platforms. The Windows Registry provides essential information from forensics point
of view [2]. Vivienne Mee et al. [3] examined the use of the Windows Registry as a
source of forensic evidence in digital investigations, especially related to Internet usage.

Bit Torrent is a peer-to-peer file sharing protocol used for distributing large
amounts of data. It has been seen that usage of Bit Torrent client application leaves
the traces in the registry [4]. Increase of the Gnutella network (peer-peer network)
usage lead researchers to find the artifacts left behind after the use of Limewire [5] and
FrostWire [6] software tools.

Geoffrey Fellows [7] presented WinRAR temporary folder artifacts which provide
the essential evidence to the investigator to prove which files were viewed or extracted
using WinRAR program. Muhammad Yasin et al. [8, 9, 10] analyzed the ‘Download
Accelerator Plus’, ‘Free Download Manager’ and ‘Internet Download Manager’ for
collection of digital forensic artifacts.

Many Instant messenger software applications have been examined which provide
exchange of text messages in real-time. These include Yahoo Messenger 7.0 [11],
Trillian basic 3.x [12], MSN Messenger 7.5 [13], AOL Instant Messenger 5.5 [14],
Windows Live Messenger 8.0 [15] and Pidgin Messenger 2.0 [16].

Steganography, whole disk encryption and private browsing are some of the
challenging areas for forensics investigators. Rachel Zax et al. [17] presented the traces
left behind after a number of freely available steganography tools were installed, run,
and uninstalled. Sungsu Lim et al. [18] investigated the installation, runtime, and
deletion behaviors of virtual disk encryption tools in a Windows XP SP3 environment.
Huwida Said et al. [19] examined the artifacts left by conducting Web browsing
privacy mode sessions in three widely used Web browsers (Firefox, Google Chrome
and Internet Explorer), and analyzed the effectiveness of this tool in each Web browser.

32 P. Goel and B.M. Mehtre

3 flareGet Artifacts

3.1 Downloaded Files Information

The important question during investigation of a download manger is what are the files that
were downloaded or are still being downloaded by the user. There are two ways to find this
information. The first way is to look at flareGet.conf file which is located in the directory
‘/home/<user>/.config/flareGet_ALLDOWN’. This file contains the entire downloaded
and downloading file information. Figure 2 is showing the portion offlareGet.conffile. The
CurrLength in this file indicates the total number offiles which is the count of downloaded,
downloading, cancelled, failed, paused and queued, provided the user has selected to
remember the finished, cancelled and failed downloads in settings page of flareGet. If the
user has not selected to remember the finished, cancelled and failed downloads then the
CurrLength indicates the total number offiles which are paused or queued. Even if the user
has unchecked to remember the finished, cancelled and failed downloads then the inves-
tigator can also find this information in the file ‘flareGet.conf’, provided it is not over-
written by another file information because flareGet overwrites the whole flareGet.conffile
at the time of exit. The same is applicable to the files which get deleted by the user from
flareGet, i.e., the file information remains until overwritten by the flareGet. Each down-
loaded file information record starts with an integer. For example, in Fig. 2 the file having
the name ‘TrueBackLin.zip’ indicated by ‘fname’ started with integer ‘0’. All the attributes
of this file start with integer ‘0’. Similarly the next file attribute starts with integer ‘1’ and so
on. The important attributes from the forensic point of view are explained below:

furl: shows where the downloaded file is stored.
fsize: shows the size of the downloaded file in string format.
durl: shows the web address from where the file gets downloaded.
flocation: shows where the downloaded file gets stored.
fdownloaded: shows how much file gets downloaded.
filesize: shows the size of the downloaded file in bytes.
referrer: holds the website from which the download started (required for auto
refreshing of URL).
hash: holds the hash value given by the user
hashType: whether the hash is MD5 or SHA1.
cstatus: an integer which takes different values for different states of the file which
is shown in Table 1.
dateStarted: stores the date and time when the downloading process started in plain
text.
dateFinished: stores the date and time when the downloading process gets finished
in plain text. If the downloading process was not finished then it would not show
any value.

The second way is to look at folder ‘flareGet_FINDOWN’ which is located at
‘/home/<user>/.config/’. This folder contains the file ‘flareGet.conf’ which stores all the
file information whose downloading gets completed. This file contains the same attri-
butes as explained for the file located at folder ‘home/<user>/.config/flareGet_ALL-
DOWN’. Even if the user has unchecked to remember the finished downloads then also

Forensic Artifacts of the flareGet Download Manager 33

the investigator can find this information in file ‘flareGet.conf’, provided it is not
overwritten because flareGet overwrites the whole ‘flareGet.conf’ file at the time of exit.

3.2 Proxy Settings Information

The investigator can find the proxy setting by looking at the folder ‘flareGet Settings’
which is located at ‘/home/<user>/.config/’. If the manual proxy is set by the user then
‘proxy_addr’ and ‘port_num’ contain the address and port number respectively. The
‘username’ and ‘pwd’ holds the user name and password if required for the proxy

Table 1. Different cstatus values for different states of file.

cstatus States of the file

0 Downloading of file gets finished
2 File is downloading
3 Downloading file is in paused state
4 Downloading of file gets failed
5 Downloading file gets cancelled by the user
6 file is queued by the flareGet
8 file is queued by the user
9 Downloading of file gets failed and paused by the

user
11 File downloaded using Metalink

Fig. 2. The portion of ‘flareGet.conf file’ located at ‘/home/<user>/.config/flareGet_
ALLDOWN’.

34 P. Goel and B.M. Mehtre

setting respectively. The password is stored in plain text which accelerates the process
of investigation. For manual proxy setting it provides 3 options:

1. HTTP/HTTPS
2. SOCKS v5
3. FTP.

The ‘proxyType’ can takes three values, i.e., 0, 1 and 2 for HTTP/HTTPS, SOCKS
v5 and FTP respectively. Since this file contains the universal settings of flareGet, it can
also give the following information:

1. Where are the files stored by default?
2. Which browsers are integrated with flareGet?
3. Scheduled activities which are configured by the user etc.

3.3 Information of Paused Files

The paused file information is present in two folders. The investigator can look at the
folder ‘flareGet_ALLDOWN’ (explained in Sect. 3.1) or ‘flareGet’. The ‘flareGet’
folder is located at ‘/home/<user>/.config/’. The file ‘datasegment.conf’ in this folder is
essentially used to provide resume capabilities for file downloads if the download
is paused by the user or the Internet connection is not available. flareGet also provides
resume capabilities for downloading files after closing flareGet or shutting down the
PC. The ‘datasegment.conf’ file keeps the name of the paused file with a record of how
many bytes have been downloaded by each thread of the download. Records of threads
of each download are also located at this location. If the paused file is subsequently
downloaded or deleted by the user then the ‘datasegment.conf’ file would not contain
any information about that file, and the thread records created by flareGet get deleted.

3.4 Information About Websites that Require Authentication
During Download

There is a facility given by flareget to store the username and password for websites
which require authentication during the download in the ‘site manager’ setting page.
The website name with the corresponding username and password provided by the user
in the ‘site manager’ setting page is stored in file ‘flareGet.conf’, which is located at
‘/home/<user>/.config/flareSBase’. All the passwords are stored in encrypted form.
Figure 3 shows the content of this file. The fields ‘sites’, ‘small’ and ‘good’ store the
website name, username and password respectively. The site names, usernames and
passwords are separated by commas. For example, for the website ‘www.premium.com’,
the user name is ‘prachi’ and password is ‘mmmnnnooo’, which is in encrypted form.

To find the encryption technique used by flareGet, the following experiment is
performed by taking 3 types of password samples which are described below:

1. Sequence of repeated letters.
2. Combination of letters with numbers.
3. Alphanumeric characters.

Forensic Artifacts of the flareGet Download Manager 35

http://www.premium.com

Table 2 shows the three different samples of passwords with the corresponding
encrypted password stored by flareGet. It is clear from Table 2 that flareGet uses a
simple additive cipher technique whose key is equal to 3. flareGet first converts the
characters entered by the user as a password into ASCII code and then adds 3 to the
corresponding ASCII code.

Since ASCII is defined for 128 (ASCII code from 0-127) characters, in boundary
cases, the addition of ‘3’ to the ASCII code exceeds the 126thASCII code (127 is
reserved for DEL). So to handle these boundary cases, flareGet uses the additive
modulo 94 (127 - 33). The first 32 ASCII characters are reserved for control characters
and the 33rd ASCII character is for space. flareGet uses the additive modulo 94 if the
resultant ASCII code of a character + 3 is greater than 126. Table 3 shows the cases
where modulo 94 comes into the picture. It is clear from the Table 3 that flareGet uses
the escape character ‘\’ for ‘''’.

3.5 Installation and Un-installation Artifacts

Ubuntu stores the installation and un-installation information in dpkg.log which is
located in ‘/var/log/’. Un-installing flareGet does not remove any directory created by
flareGet at location ‘/home/<user>/.config/’. This provides important evidence for the
investigator even if the flareGet application is un-installed.

Fig. 3. The content of ‘flareGet.conf’ file located at ‘/home/<user>/.config/flareSBase’.

Table 2. Analysis of encrypted password.

Password in
plain text

ASCII code Password in
encrypted form

ASCII code

jjjkkklll 106 106 106 107 107 107
108 108 108

mmmnnnooo 109 109 109 110 110 110
111 111 111

flare123Get 102 108 97 114 101 49 50
51 71 101 116

ioduh456Jhw 105 111 100 117 104 52
53 54 74 104 119

flare@!
$Get*

102 108 97 114 101 64 33
36 71 101 116 42

ioduhC$’Jhw- 105 111 100 117 104 67
36 39 74 104 119 45

36 P. Goel and B.M. Mehtre

4 flareGet Artifacts Summary

flareGet creates the artifacts at the location ‘/home/<user>/.config/’ which is summa-
rized as follows:

1. All the downloaded/downloading file information is stored in the folder
‘flareGet_ALLDOWN’.

2. All the finished/cancelled file information is stored in the folder
‘flareGet_FINDOWN’.

3. The universal setting information of flareGet is stored in the folder ‘flareGet
Settings’.

4. Data for resumption of paused files is stored in the folder ‘flareGet’.
5. Data for websites that require passwords for authentication is stored in the folder

‘flareSBase’.

Installation and un-installation artifacts of the flareGet application on Ubuntu are found
in the folder ‘/var/log/’ and the file name is dpkg.log.

5 Conclusion

All the folders created by flareGet are located in one single directory, i.e., ‘/home/
<user>/.config/’. This helps the investigator to collect the evidence easily from a single
location. The artifacts, like username and password for proxy settings, date and time,
etc., are found in the plain text (not encrypted) which accelerates the process of
investigation. Hence, this eases the task of the forensic investigator. flareGet uses
encryption only for storing the password of websites which require authentication for
downloading. The encryption technique is explained in Sect. 3.4 and is quite simple.
Even after the un-installation of the flareGet application on Ubuntu, the directory
‘/home/<user>/.config/uGet’ remains intact and contains valuable evidence for the
investigator.

References

1. Flareget. http://flareget.com/
2. Carvey, H.: The windows registry as a forensic resource. Digit. Invest. 2, 201–205 (2005)

Table 3. Analysis of boundary cases.

Password in
plain text

ASCII code Password in
encrypted form

ASCII code

pass|}rd 112 97 115 115 124
125 114 100

sdvv!\''ug 115 100 118 118 33 92
34 117 103

pass*ord 112 97 115 115 126
111 114 100

sdvv#rug 115 100 118 118 35 114
117 103

pass*}rd 112 97 115 115 126
125 114 100

sdvv#\''ug 115 100 118 118 35 92
34 117 103

Forensic Artifacts of the flareGet Download Manager 37

http://<LIG>fl</LIG>areget.com/

3. Mee, V., Tryfonas, T., Sutherland, I.: The windows registry as a forensic artefact: illustrating
evidence collection for internet usage. Digit. Invest. 3, 166–173 (2006)

4. Lallie, H.S., Briggs, P.J.: Windows 7 registry forensic evidence created by three popular
BitTorrent clients. Digit. Invest. 7, 127–134 (2011)

5. Lewthwaite, J., Smith, V.: Limewire examinations. Digit. Invest. 5, S96–S104 (2008)
6. Lewthwaite, J.: Frostwire P2P forensic examinations. Digit. Invest. 9, 211–221 (2013)
7. Fellows, Geoffrey: WinRAR temporary folder artefacts. Digit. Invest. 7, 9–13 (2010)
8. Yasin, M., Wahla, MA., Kausar, F.: Analysis of download accelerator plus (DAP) for

forensic artefacts. In: 5th International Conference on IT Security Incident Management and
IT Forensics, pp. 235–238. Fraunhofer Gesellschaft Institutszentrum Stuttgart, Germany
(2009)

9. Yasin, M., Wahla, MA., Kausar, F.: Analysis of free download manager for forensic
artefacts. In: First International ICST Conference on Digital Forensics and Cyber Crime,
pp. 59–68. Albany, NY, USA (2009)

10. Yasin, M., Cheema, A.R., Kausar, F.: Analysis of internet download manager for collection
of digital forensic artefacts. Digit. Invest. 7, 90–94 (2010)

11. Dickson, M.: An examination into yahoo messenger 7.0 contact identification. Digit. Invest.
3, 159–165 (2006)

12. Dickson, M.: An examination into trillian basic 3.x contact identification. Digit. Invest. 4,
36–45 (2007)

13. Dickson, M.: An examination into MSN messenger 7.5 contact identification. Digit. Invest.
3, 79–83 (2006)

14. Dickson, M.: An examination into AOL instant messenger 5.5 contact identification. Digit.
Invest. 3, 227–237 (2006)

15. van Wouter, S.: Dongen, forensic artefacts left by windows live messenger 8.0. Digit. Invest.
4, 73–87 (2007)

16. van Wouter, S.: Dongen, forensic artefacts left by pidgin messenger 2.0. Digit. Invest. 4,
138–145 (2007)

17. Zax, R., Adelstein, F.: FAUST: forensic artifacts of uninstalled steganography. Digit. Invest.
6, 25–38 (2009)

18. Lim, S., Park, J., Lim, K., Lee, C., Sangjin, L.: Forensic artifacts left by virtual disk
encryption tools. In: 3rd International Conference on Human-Centric Computing
(HumanCom), pp. 1–6. Cebu, Philippines (2010)

19. Said, H., Al Mutawa, N., Al Awadhi, I., Guimaraes, M.: Forensic analysis of private
browsing artifacts. In: International Conferences on Innovations in Information Technology,
pp. 197–202. United Arab Emirates, Abu Dhabi (2011)

38 P. Goel and B.M. Mehtre

	Forensic Artifacts of the flareGet Download Manager
	Abstract
	1 Introduction
	2 Related Work
	3 flareGet Artifacts
	3.1 Downloaded Files Information
	3.2 Proxy Settings Information
	3.3 Information of Paused Files
	3.4 Information About Websites that Require Authentication During Download
	3.5 Installation and Un-installation Artifacts

	4 flareGet Artifacts Summary
	5 Conclusion
	References

