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Abstract. New versions of Windows come equipped with mechanisms, such as
EFS and BitLocker, which are capable of encrypting data to an industrial
standard on a Personal Computer. This creates problems if the computer in
question contains electronic evidence. BitLocker, for instance, provides a secure
way for an individual to hide the contents of their entire disk, but as with most
technologies, there are bound to be weaknesses and threats to the security of the
encrypted data. It is conceivable that this technology, while appearing robust
and secure, may contain flaws, which would jeopardize the integrity of the
whole system. As more people encrypt their hard drives, it will become harder
and harder for forensic investigators to recover data from Personal Computers.
This paper documents the Bitlocker Drive Encryption System (version 2) in
Windows 7. In particular it describes how to forensically decrypt and load a
FAT disk or image which is bitlocked, if the keys are provided.
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1 Introduction

Volumes encrypted with BitLocker will have a different signature than the standard
NTEFS header. Instead, they have in their volume header (first sector): 2D 46 56 45 2D
46 53 2D or, in ASCII, -FVE-FS-.

These volumes can be identified by the BitLocker GUID/UUID: 4967d63b-2e29-
4ad8-8399-f6a339e3d00.

The actual data on the encrypted volume is protected with either 128-bit or 256-bit
AES or optionally diffused using an algorithm called Elephant. The key used to do the
encryption, the Full Volume Encryption Key (FVEK) and/or TWEAK key, is stored in
the BitLocker metadata on the protected volume. The FVEK and/or TWEAK keys are
encrypted using another key, namely the Volume Master Key (VMK). Several copies
of the VMK are also stored in the metadata. Each copy of the VMK is encrypted using
another key; also know as key-protector key. Some of the key-protectors are:

o TPM (Trusted Platform Module)
e Smart card
e recovery password
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start-up key
clear key; this key-protector provides no protection
e user password

BitLocker has support for partial encrypted volumes.

1.1 BitLocker To Go

BitLocker To Go is a full-disk encryption protection technology for removable storage
devices. Though it is based on BitLocker technology, BitLocker To Go significantly
enhances the technical capabilities of BitLocker. For example, it is compatible with all
FAT (FAT32, exFAT, etc.) file systems in addition to NTFS, dramatically increasing
its compatibility with existing devices.

Volumes encrypted with BitLocker To Go will have a hybrid encrypted volume,
meaning that part of the volume is unencrypted and contains applications to unlock the
volume and the other part of the volume is encrypted. The “discovery drive” volume
contains BitLocker To Go Reader to read from encrypted volumes on versions of
Microsoft Windows without BitLocker support.

BitLocker To Go is designed primarily for enterprises, where there is serious risk of
a user bringing an unprotected storage device into the environment, copying important
corporate information (inadvertently or not) to it, and then losing the device outside of
the workplace. USB memory keys, in particular, are small and convenient, and quite
popular, but they’re also easily lost. With BitLocker To Go enabled on the device, one
can help protect sensitive corporate—or, for that matter, personal—data in the event of
loss or theft.

BitLocker To Go works completely independently of BitLocker, so you do not
need to enable BitLocker on the PC, or utilize any TPM hardware, in order to use
BitLocker To Go. In use, however, it is similar to BitLocker, and can also be enabled
via a simple right-click menu choice.

This paper contains the details necessary to access Bitlocker protected FAT vol-
umes. It describes the Bitlocker recovery information like the BitLocker keys, the
encryption methods, the details of volume header, the metadata block and about the
metadata header and metadata entries. Finally this paper presents the steps to unlock a
BitLocker FAT32 volume.

2 Bitlocker Recovery Information

2.1 Bitlocker Keys

The BitLocker key management system uses a series of keys to protect the data at rest.
This section describes the various keys that are used in the BitLocker encryption
process as they have been documented by Microsoft.

2.1.1 Full Volume Encryption Key (FVEK)
The key used to protect the data i.e. the sector data is the Full Volume Encryption Key.
It is stored on the protected volume and is stored encrypted. To prevent unauthorized
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access the FVEK is encrypted with the Volume Master Key (VMK). The size of the
FVEK is dependent on the encryption method used i.e. FVEK is 128-bit of size for
AES 128-bit and FVEK is 256-bit for AES 256-bit.

2.1.2 Volume Master Key (VMK)
The key used to encrypt the FVEK is the Volume Master Key (VMK). It is also stored
on the protected volume. The VMK is 256-bit. In fact several copies of the VMK are
stored on the protected volume. Each copy of the VMK is encrypted using a different
key such as the recovery key, external key, or the TPM. If the volume is bitlocked
using both external key as well as the recovery password, then there will be two
metadata entries for VMK where each metadata entry stores the VMK encrypted with
recovery key and the external key respectively. When decrypted, both the VMK will be
the same. If the VMK differ then it means that the decryption has failed.

It is also possible that the VMK is stored unencrypted which is referred to as clear
key.

2.1.3 TWEAK Key

The TWEAK is part of the FVEK stored encrypted with the Volume Master Key
(VMK). The size of the TWEAK key depends on the encryption method used. The key
is 128-bit for AES 128-bit and the key is 256-bit for AES 256-bit.

The TWEAK key is present only when the Elephant Diffuser is enabled. The
TWEAK key is stored in the metadata entry that holds the FVEK which is always 512-
bit. The first 256-bits are reserved for the FVEK and the other 256-bits are reserved for
the TWEAK key. Only 128-bit of the 256-bits are used when the encryption method is
AES 128-bit i.e. when the Elephant Diffuser is disabled.

2.1.4 Recovery Key
BitLocker stores a recovery (or numerical) password to unlock the VMK. This
recovery password is stored in a {%GUID %} .txt file.

Example recovery password: 471207-278498-422125-177177-561902-537405-4680
06-693451.

The recovery password is valid only if it consists of 48 digits where every 6
numbers are grouped into a block thus consisting of 8 blocks. Here each block should
be divisible by 11 yielding a remainder 0. The result of a division by 11 of a block is a
16-bit value. The individual 16-bit values make up a 128-bit key.

2.1.5 External Key
The External key is stored in a file named {%GUID %} .BEK. The GUID in the
filename equals the key identifier in the BitLocker metadata entry. The BEK file
contains the external key identifier and a 32 byte external key.

The different keys allow different mechanisms to be used to access the stored data.
Each access mechanism can be used to decrypt a copy of the VMK which in turn is
used to decrypt the FVEK which in turn is used to decrypt the protected data.



20 P. Shabana Subair et al.

2.2 Encryption Methods

BitLocker uses two encryption methods to encrypt the data. First it uses the AES-CBC
with or without Elephant Diffuser to encrypt the sector data i.e. the main data. Second it
uses the AES-CCM to encrypt the keys like the VMK and FVEK.

2.3 Unencrypted Sector(s)
In BitLocker the sectors that are stored as unencrypted sectors are

e The unencrypted volume header
e The BitLocker metadata

Both BitLocker Windows 7 and To Go store an encrypted version of the first sectors in
a specific location. This location is found in the FVE metadata block header. It is the
location where the original boot sector starts.

At this point we shall describe the important offsets that are of interest to a forensic
examiner in the volume header, metadata block header, metadata header and the
content of the metadata entries. Specifically the paper explains how to decrypt a bit-
locked drive.

We’ll begin with the Bitlocker Volume Header, and then explain the details of the
metadata block, the metadata header and the metadata entries. Finally the last section
explains the steps to decrypt the sectors of the bitlocked volume and replace them so
that the original volume is recovered.

2.4 Volume Header

The BitLocker Windows To Go volume header for a FAT volume is similar to FAT32
boot sector. Let us refer this duplicate boot sector as the volume header from now on.
This volume header is 512 bytes of size. If a FAT volume (i.e. it is either FAT12 or
FAT16 or FAT32 or exFAT) is bitlocked, the volume header is same as that of the
FAT32 boot sector. The important information that the volume header consists of is the
offsets of the three FVE metadata blocks [4].

From the volume header we get the offsets of the three FVE metadata blocks which
contain the offset of the original boot sector which is stored encrypted in some location.

2.5 FVE Metadata Block

A Bitlocker protected volume contains three identical metadata blocks for redundancy.
Even though the first metadata block gets damaged, the second and third metadata
block can be used to get the original boot sector offset. As shown in the Fig. 1, the
volume header contains the offsets of the three metadata blocks.

To find metadata blocks on a damaged volume, the examiner can search the volume
for the metadata signature -FVE-FS-. Because each metadata block can only begin at
offsets that are a multiple of the bytes per sector and sectors per cluster, the examiner
could speed up the search by only searching for the string at these offsets. To be safe,
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424 16 BitLocker identifier
contains a GUID
440 8 FVE metadata block 1 offset

Contains an offset relative to the start of the
volume

448 8 FVE metadata block 2 offset
Contains an offset relative to the start of the
volume

456 8 FVE metadata block 3 offset
Contains an offset relative to the start of the
volume

Fig. 1. The data showing the metadata block offsets in the Volume header [4]

the examiner should assume the smallest legal values and thus search for the BitLocker
signature at multiples of 512 bytes.
Each FVE metadata block consists of:

1. A FVE metadata block header
2. A FVE metadata header.
3. An array of FVE metadata entries

2.6 FVE Metadata Block Header

The FVE metadata block header consists of the signature “-FVE-FS”. The metadata
block is valid only if the signature is present. The size field indicates the size of the
metadata block:

Offset Size Value Description

16 8 Encrypted volume size
Contains the number of bytes

24

28 4 Number of volume header sectors
Contains the number of sectors

32 8 FVE metadata block 1 offset
Contains an offset relative to the start of the
volume

40 8 FVE metadata block 2 offset
Contains an offset relative to the start of the
volume

48 8 FVE metadata block 3 offset
Contains an offset relative to the start of the
volume

56 8 Volume header offset
Contains an offset relative to the start of the
volume

Fig. 2. Structure of FVE metadata block header [4]
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Each Bitlocker metadata block begins with a variation length header followed by a
variable number of entries. The FVE metadata block header contains the offset of the
original boot sector. When decrypting, BitLocker will decrypt from the back to
the front. The encrypted volume size at offset 16 contains the number of bytes of the
volume that are encrypted or need to be decrypted (Fig. 2).

2.7 FVE Metadata Header

The FVE metadata header is 48 bytes. There are several pieces of forensically valuable
data in the metadata header. First, the volume’s Global unique Identifier (GUID) is
stored at offset 16. This GUID should be included on any access device that unlocks
this device such as USB sticks. Examiners can search for this GUID on USB devices to
find possible Bitlocker access devices. The date and time Bitlocker was enabled is
recorded at the offset 40. Finally the next counter value to be used for key encryption
nonce is stored at the offset 32. As mentioned earlier, this could be useful in deter-
mining how many access devices have been created for a volume. Also, the encryption
method at offset 36 describes the type of encryption that has been used to encrypt the
volume.

2.8 FVE Metadata Entry

There is an array of FVE metadata entries and each metadata entry is variable size and
consists of entry size, entry type and so on. If the volume is bitlocked using both
recovery password and external key, then there will be metadata entries for both the
recovery key and the external key. The Fig. 3 shows the FVE metadata entry structure
as taken from [4].

Offset Size Value Description
0 2 Entry size

2 2 Entry type
4 2 Value type
6 2 1 Version

8 Data

Fig. 3. FVE metadata entry values

2.9 FVE Metadata Entry Types

Each value in the entry type filed indicates which type of key the metadata entry stores.

2.10 FVE Metadata Value Types

The metadata value types indicate whether the key is erased, or whether it is a stretch
key, or volume master key.
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The Bitlocker metadata header is followed by a series of metadata entries. These
entries contain the encrypted FVEK and several copies of the VMK. Each copy of the
VMK is encrypted with a different key. If for example a volume is bitlocked using only
the recovery key then the VMK will be encrypted using the recovery key whereas if the
volume is bitlocked using both recovery key and external key then the VMK will be
encrypted with the two keys and stored separately.

Each metadata entry consists of data concerning where the key in question is stored
and has at least two encrypted key protectors. The first key protector structure contains
a copy of the VMK encrypted with the key and the second key protector structure
contains a copy of the key encrypted using the VMK. The timestamps are identical in
both the key protectors. The same is applicable for VMK and FVEK. The first key
protector contains a copy of the FVEK encrypted using the VMK and the second key
protector contains a copy of the VMK encrypted using FVEK. Now as all the details
are explained, the next section deals with the steps of decrypting and loading a FAT
Bitlocker volume.

3 Loading a Bitlocked Volume

In this section we describe the steps needed to decrypt and load a FAT bitlocked
volume. Here an evidence file that has two partitions has been taken where one is
FAT32 volume that is bitlocked. The.txt file having the recovery password and a.bek
file having the external key which is generated are stored on some external drive. Both
these files are used for the recovery process and using these keys, the VMK and FVEK
are derived. The process is same for all the other FAT file systems.

3.1 Derivation of Keys

Here the first sector of the bitlocked volume does not contain the original boot sector.
Instead it contains the bitlocked volume header which is similar to the FAT32 boot
sector. Though it is similar some values are changed and provide other valuable
information as shown in the Table 1. The important information that the volume header
contains is the offsets of the three metadata blocks. So by getting the offset of the first
metadata block, the metadata block header is read and the signature —FVE-FS is
checked so that a valid metadata block is read.

The metadata block consists of two important information. One is the original boot
sector starting sector information and the second is the encrypted volume size. There
are important while recovering the bitlocked volume.

Next the metadata header and metadata entries are read and the key protector
structures are stored. The key protector structures contain the encrypted keys which
have to be decrypted, the protection type, GUID and the last modification time.

3.1.1 Decryption of the VMK Using Recovery Password
The recovery password is the 48-digit key that is taken from the.txt file. The Fig. 4
shows the text file containing the 48-digit recovery key and the GUID highlighted.
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BitLocker Drive Encryption Recovery Key
The recovery key is used to recover the data on a BitLocker protected drive.

To verify that this is the correct recovery key compare the identification with whatis presented on the
recovery screen.

Recovery key identification: BC4E1623-B045-48
Full recovery key identification: BC4E1623-B045-48F0-AC28-3A24871FD7C6

BitLocker RecoveryKey:

Fig. 4. The .txt file showing the GUID and the 48 digit recovery key

As described in Sect. 2, the individual 16-bit values make up a 128-bit key. The
corresponding recovery key is calculated using the following approach:

Initialize a structure consisting of:
uint8 t last sha256 [32 ];

uint8 t initial sha256 [32 ];

uint8 t salt[ 16 ];

uint64_ t count;

Initialize both the last SHA256 and the count to 0. Calculate the SHA256 of the 128-bit
key and update the initial SHA256 value. The salt is stored on disk in the stretch key
which is stored in the recovery key protected Volume Master Key (VMK). Loop for
1048576 (0 x 100000) times:

e calculate the SHA256 of the structure and update the last SHA256 value
e increment the count by 1

The last SHA256 value contains the 256-bit key which is recovery key that can unlock
the recovery key protected Volume Master Key (VMK).

3.1.2 Decryption of the VMK Using Startup Key
The generated .bek file is used along with the metadata entry. Both the bek file and the
metadata entry contain the same Globally Unique Identifier (GUID). This allows for the
correct matching of the BEK with the metadata entry and also for checking the validity
of the BEK file.

The external key from the.bek file is extracted and the data from the key protector
structure is decrypted using this external key which unlocks the VMK. The Fig. 5
shows the external key highlighted in the BEK file.

3.1.3 Decryption of FVEK
The encrypted FVEK is stored in the key protector structure of the metadata entry
which is highlighted as shown in the Fig. 6.
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The encrypted data is decrypted using the VMK and the type of algorithm as
specified in the metadata entry. Finally the FVEK has been derived which is used to
decrypt the data at rest.

3.2 Replacement of the Original Sectors

Though the bitlocked volume contains a volume header it is not the correct boot sector.
The original boot sector is stored encrypted somewhere in the volume. So we have to
find the original boot sector, decrypt it and then replace the volume header with the
original boot sector. In the previous section it has been explained that the metadata
block header contains the original boot sector starting offset. So by getting the offset
and by having the sector, the steps for decrypting the sector are explained.

Here the data has to be decrypted sector by sector. The steps in decrypting a sector
of data are:

1: Decrypt the data with FVEK in AES-CBC mode
2: Run Diffuser B in decryption direction 3 times
3: Run Diffuser A in decryption direction 5 times
4: Calculate Sector key from the TWEAK key

5: XOR data obtained in step 3 with Sector Key

6: Plaintext

3.2.1 Correct Intake of Sector Number

For successful decryption, one of the important things that should be considered is the
sector number. In the first step, we have to calculate the Initialization Vector. To
calculate the Initialization Vector, the sector number is used. The sector number is very
important because if we give the wrong sector number, the data will not be decrypted
correctly and we get the wrong data. So the sector number is of very much importance.
The decryption might fail due to the wrong intake of the sector number.

For the evidence file explained above, the original boot sector starts at the sector
number 1404 and the partition starts at 63. So if we take the sector number of the boot
sector as 1404 and decrypt it, we do not get a valid boot sector but some junk data. So
here the sector number should be taken as:

Sector number of the boot sector to be taken = original sector number of the boot
sector — partition start sector.

Hence in the above case in order to get the correct boot sector we have to take the
sector number 1341(1404-63) instead of 1404. In this way the valid boot sector is
placed at the front. The remaining sectors are also decrypted in the same way and
rearranged accordingly.

The Figs. 7 and 8 show the encrypted boot sector and the decrypted boot sector of
the bitlocked volume.

3.2.2 Decryption of Sectors After Encrypted Volume Size is Reached
The next important issue to be considered is the decryption of the sectors after the
encrypted volume size is reached. Starting from the encrypted boot sector offset, all the
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Fig. 7. Boot sector before decryption

sectors are decrypted and written in the same order starting from the boot sector until
the encrypted size limit is reached. If the total number of sector is less than the
encrypted volume size then there will be no problem. But if the total number of sectors
is greater than the encrypted volume size, then the next corresponding sector should be
the corresponding sector from the start of the volume header and so on.

For example, for the above evidence, if the volume header starts at sector 63, the
original sector starts at sector 1404, the total number of sectors as 2506 and
the encrypted volume size is 1009 sectors. Then while decrypting the sector 1404 (the
original boot sector becomes the 63 sector), sector 1405 becomes sector 64 and so on
up to sector 2413 since the encrypted volume size has reached. Then to get the sector
2414, we start at sector 63 and add up to the number of sectors covered (i.e. 1009). So
the sector 1072 becomes the 2414 sector (63 (volume header sector) + 1009 (encrypted
volume size)). In this manner, the sectors are decrypted and arranged to get the un-
bitlocked drive.
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Fig. 8. Boot sector after decryption
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BitLocker To Go is a full-disk encryption protection technology for removable storage
devices. Though it is based on BitLocker technology, BitLocker To Go significantly
enhances the technical capabilities of BitLocker. A forensic examiner can use the
recovery key or start key to access the FVEK and thus the protected data. These can
be used to decrypt the series of keys protecting the FVEK like VMK. Some pieces of the
metadata surrounding these keys could be useful to a forensic examiner, including the
order in which keys were generated, the number of keys generated, and the types of
those keys. Additionally, some features of the key management system allow access to
all of the access devices protecting a volume provided the user has a valid access device.
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