Forensic Decryption of FAT
BitLocker Volumes

P. Shabana Subair, C. Balan™®, S. Dija, and K.L. Thomas

Centre for Development of Advanced Computing, PO Box 6520,
Vellayambalam, Thiruvananthapuram 695033, Kerala, India
{shabana, cbalan, dija, thomaskldija}@cdac. in

Abstract. New versions of Windows come equipped with mechanisms, such as
EFS and BitLocker, which are capable of encrypting data to an industrial
standard on a Personal Computer. This creates problems if the computer in
question contains electronic evidence. BitLocker, for instance, provides a secure
way for an individual to hide the contents of their entire disk, but as with most
technologies, there are bound to be weaknesses and threats to the security of the
encrypted data. It is conceivable that this technology, while appearing robust
and secure, may contain flaws, which would jeopardize the integrity of the
whole system. As more people encrypt their hard drives, it will become harder
and harder for forensic investigators to recover data from Personal Computers.
This paper documents the Bitlocker Drive Encryption System (version 2) in
Windows 7. In particular it describes how to forensically decrypt and load a
FAT disk or image which is bitlocked, if the keys are provided.

Keywords: Bitlocker To Go - Bitlocker keys - Full volume encryption key -
Volume master key + AES-CCM - Elephant diffuser + AES-CBC

1 Introduction

Volumes encrypted with BitLocker will have a different signature than the standard
NTEFS header. Instead, they have in their volume header (first sector): 2D 46 56 45 2D
46 53 2D or, in ASCII, -FVE-FS-.

These volumes can be identified by the BitLocker GUID/UUID: 4967d63b-2e29-
4ad8-8399-f6a339e3d00.

The actual data on the encrypted volume is protected with either 128-bit or 256-bit
AES or optionally diffused using an algorithm called Elephant. The key used to do the
encryption, the Full Volume Encryption Key (FVEK) and/or TWEAK key, is stored in
the BitLocker metadata on the protected volume. The FVEK and/or TWEAK keys are
encrypted using another key, namely the Volume Master Key (VMK). Several copies
of the VMK are also stored in the metadata. Each copy of the VMK is encrypted using
another key; also know as key-protector key. Some of the key-protectors are:

o TPM (Trusted Platform Module)
e Smart card
e recovery password

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014
P. Gladyshev et al. (Eds.): ICDF2C 2013, LNICST 132, pp. 17-29, 2014.
DOI: 10.1007/978-3-319-14289-0_2

18 P. Shabana Subair et al.

start-up key
clear key; this key-protector provides no protection
e user password

BitLocker has support for partial encrypted volumes.

1.1 BitLocker To Go

BitLocker To Go is a full-disk encryption protection technology for removable storage
devices. Though it is based on BitLocker technology, BitLocker To Go significantly
enhances the technical capabilities of BitLocker. For example, it is compatible with all
FAT (FAT32, exFAT, etc.) file systems in addition to NTFS, dramatically increasing
its compatibility with existing devices.

Volumes encrypted with BitLocker To Go will have a hybrid encrypted volume,
meaning that part of the volume is unencrypted and contains applications to unlock the
volume and the other part of the volume is encrypted. The “discovery drive” volume
contains BitLocker To Go Reader to read from encrypted volumes on versions of
Microsoft Windows without BitLocker support.

BitLocker To Go is designed primarily for enterprises, where there is serious risk of
a user bringing an unprotected storage device into the environment, copying important
corporate information (inadvertently or not) to it, and then losing the device outside of
the workplace. USB memory keys, in particular, are small and convenient, and quite
popular, but they’re also easily lost. With BitLocker To Go enabled on the device, one
can help protect sensitive corporate—or, for that matter, personal—data in the event of
loss or theft.

BitLocker To Go works completely independently of BitLocker, so you do not
need to enable BitLocker on the PC, or utilize any TPM hardware, in order to use
BitLocker To Go. In use, however, it is similar to BitLocker, and can also be enabled
via a simple right-click menu choice.

This paper contains the details necessary to access Bitlocker protected FAT vol-
umes. It describes the Bitlocker recovery information like the BitLocker keys, the
encryption methods, the details of volume header, the metadata block and about the
metadata header and metadata entries. Finally this paper presents the steps to unlock a
BitLocker FAT32 volume.

2 Bitlocker Recovery Information

2.1 Bitlocker Keys

The BitLocker key management system uses a series of keys to protect the data at rest.
This section describes the various keys that are used in the BitLocker encryption
process as they have been documented by Microsoft.

2.1.1 Full Volume Encryption Key (FVEK)
The key used to protect the data i.e. the sector data is the Full Volume Encryption Key.
It is stored on the protected volume and is stored encrypted. To prevent unauthorized

Forensic Decryption of FAT BitLocker Volumes 19

access the FVEK is encrypted with the Volume Master Key (VMK). The size of the
FVEK is dependent on the encryption method used i.e. FVEK is 128-bit of size for
AES 128-bit and FVEK is 256-bit for AES 256-bit.

2.1.2 Volume Master Key (VMK)
The key used to encrypt the FVEK is the Volume Master Key (VMK). It is also stored
on the protected volume. The VMK is 256-bit. In fact several copies of the VMK are
stored on the protected volume. Each copy of the VMK is encrypted using a different
key such as the recovery key, external key, or the TPM. If the volume is bitlocked
using both external key as well as the recovery password, then there will be two
metadata entries for VMK where each metadata entry stores the VMK encrypted with
recovery key and the external key respectively. When decrypted, both the VMK will be
the same. If the VMK differ then it means that the decryption has failed.

It is also possible that the VMK is stored unencrypted which is referred to as clear
key.

2.1.3 TWEAK Key

The TWEAK is part of the FVEK stored encrypted with the Volume Master Key
(VMK). The size of the TWEAK key depends on the encryption method used. The key
is 128-bit for AES 128-bit and the key is 256-bit for AES 256-bit.

The TWEAK key is present only when the Elephant Diffuser is enabled. The
TWEAK key is stored in the metadata entry that holds the FVEK which is always 512-
bit. The first 256-bits are reserved for the FVEK and the other 256-bits are reserved for
the TWEAK key. Only 128-bit of the 256-bits are used when the encryption method is
AES 128-bit i.e. when the Elephant Diffuser is disabled.

2.1.4 Recovery Key
BitLocker stores a recovery (or numerical) password to unlock the VMK. This
recovery password is stored in a {%GUID %} .txt file.

Example recovery password: 471207-278498-422125-177177-561902-537405-4680
06-693451.

The recovery password is valid only if it consists of 48 digits where every 6
numbers are grouped into a block thus consisting of 8 blocks. Here each block should
be divisible by 11 yielding a remainder 0. The result of a division by 11 of a block is a
16-bit value. The individual 16-bit values make up a 128-bit key.

2.1.5 External Key
The External key is stored in a file named {%GUID %} .BEK. The GUID in the
filename equals the key identifier in the BitLocker metadata entry. The BEK file
contains the external key identifier and a 32 byte external key.

The different keys allow different mechanisms to be used to access the stored data.
Each access mechanism can be used to decrypt a copy of the VMK which in turn is
used to decrypt the FVEK which in turn is used to decrypt the protected data.

20 P. Shabana Subair et al.

2.2 Encryption Methods

BitLocker uses two encryption methods to encrypt the data. First it uses the AES-CBC
with or without Elephant Diffuser to encrypt the sector data i.e. the main data. Second it
uses the AES-CCM to encrypt the keys like the VMK and FVEK.

2.3 Unencrypted Sector(s)
In BitLocker the sectors that are stored as unencrypted sectors are

e The unencrypted volume header
e The BitLocker metadata

Both BitLocker Windows 7 and To Go store an encrypted version of the first sectors in
a specific location. This location is found in the FVE metadata block header. It is the
location where the original boot sector starts.

At this point we shall describe the important offsets that are of interest to a forensic
examiner in the volume header, metadata block header, metadata header and the
content of the metadata entries. Specifically the paper explains how to decrypt a bit-
locked drive.

We’ll begin with the Bitlocker Volume Header, and then explain the details of the
metadata block, the metadata header and the metadata entries. Finally the last section
explains the steps to decrypt the sectors of the bitlocked volume and replace them so
that the original volume is recovered.

2.4 Volume Header

The BitLocker Windows To Go volume header for a FAT volume is similar to FAT32
boot sector. Let us refer this duplicate boot sector as the volume header from now on.
This volume header is 512 bytes of size. If a FAT volume (i.e. it is either FAT12 or
FAT16 or FAT32 or exFAT) is bitlocked, the volume header is same as that of the
FAT32 boot sector. The important information that the volume header consists of is the
offsets of the three FVE metadata blocks [4].

From the volume header we get the offsets of the three FVE metadata blocks which
contain the offset of the original boot sector which is stored encrypted in some location.

2.5 FVE Metadata Block

A Bitlocker protected volume contains three identical metadata blocks for redundancy.
Even though the first metadata block gets damaged, the second and third metadata
block can be used to get the original boot sector offset. As shown in the Fig. 1, the
volume header contains the offsets of the three metadata blocks.

To find metadata blocks on a damaged volume, the examiner can search the volume
for the metadata signature -FVE-FS-. Because each metadata block can only begin at
offsets that are a multiple of the bytes per sector and sectors per cluster, the examiner
could speed up the search by only searching for the string at these offsets. To be safe,

Forensic Decryption of FAT BitLocker Volumes 21

424 16 BitLocker identifier
contains a GUID
440 8 FVE metadata block 1 offset

Contains an offset relative to the start of the
volume

448 8 FVE metadata block 2 offset
Contains an offset relative to the start of the
volume

456 8 FVE metadata block 3 offset
Contains an offset relative to the start of the
volume

Fig. 1. The data showing the metadata block offsets in the Volume header [4]

the examiner should assume the smallest legal values and thus search for the BitLocker
signature at multiples of 512 bytes.
Each FVE metadata block consists of:

1. A FVE metadata block header
2. A FVE metadata header.
3. An array of FVE metadata entries

2.6 FVE Metadata Block Header

The FVE metadata block header consists of the signature “-FVE-FS”. The metadata
block is valid only if the signature is present. The size field indicates the size of the
metadata block:

Offset Size Value Description

16 8 Encrypted volume size
Contains the number of bytes

24

28 4 Number of volume header sectors
Contains the number of sectors

32 8 FVE metadata block 1 offset
Contains an offset relative to the start of the
volume

40 8 FVE metadata block 2 offset
Contains an offset relative to the start of the
volume

48 8 FVE metadata block 3 offset
Contains an offset relative to the start of the
volume

56 8 Volume header offset
Contains an offset relative to the start of the
volume

Fig. 2. Structure of FVE metadata block header [4]

22 P. Shabana Subair et al.

Each Bitlocker metadata block begins with a variation length header followed by a
variable number of entries. The FVE metadata block header contains the offset of the
original boot sector. When decrypting, BitLocker will decrypt from the back to
the front. The encrypted volume size at offset 16 contains the number of bytes of the
volume that are encrypted or need to be decrypted (Fig. 2).

2.7 FVE Metadata Header

The FVE metadata header is 48 bytes. There are several pieces of forensically valuable
data in the metadata header. First, the volume’s Global unique Identifier (GUID) is
stored at offset 16. This GUID should be included on any access device that unlocks
this device such as USB sticks. Examiners can search for this GUID on USB devices to
find possible Bitlocker access devices. The date and time Bitlocker was enabled is
recorded at the offset 40. Finally the next counter value to be used for key encryption
nonce is stored at the offset 32. As mentioned earlier, this could be useful in deter-
mining how many access devices have been created for a volume. Also, the encryption
method at offset 36 describes the type of encryption that has been used to encrypt the
volume.

2.8 FVE Metadata Entry

There is an array of FVE metadata entries and each metadata entry is variable size and
consists of entry size, entry type and so on. If the volume is bitlocked using both
recovery password and external key, then there will be metadata entries for both the
recovery key and the external key. The Fig. 3 shows the FVE metadata entry structure
as taken from [4].

Offset Size Value Description
0 2 Entry size

2 2 Entry type
4 2 Value type
6 2 1 Version

8 Data

Fig. 3. FVE metadata entry values

2.9 FVE Metadata Entry Types

Each value in the entry type filed indicates which type of key the metadata entry stores.

2.10 FVE Metadata Value Types

The metadata value types indicate whether the key is erased, or whether it is a stretch
key, or volume master key.

Forensic Decryption of FAT BitLocker Volumes 23

The Bitlocker metadata header is followed by a series of metadata entries. These
entries contain the encrypted FVEK and several copies of the VMK. Each copy of the
VMK is encrypted with a different key. If for example a volume is bitlocked using only
the recovery key then the VMK will be encrypted using the recovery key whereas if the
volume is bitlocked using both recovery key and external key then the VMK will be
encrypted with the two keys and stored separately.

Each metadata entry consists of data concerning where the key in question is stored
and has at least two encrypted key protectors. The first key protector structure contains
a copy of the VMK encrypted with the key and the second key protector structure
contains a copy of the key encrypted using the VMK. The timestamps are identical in
both the key protectors. The same is applicable for VMK and FVEK. The first key
protector contains a copy of the FVEK encrypted using the VMK and the second key
protector contains a copy of the VMK encrypted using FVEK. Now as all the details
are explained, the next section deals with the steps of decrypting and loading a FAT
Bitlocker volume.

3 Loading a Bitlocked Volume

In this section we describe the steps needed to decrypt and load a FAT bitlocked
volume. Here an evidence file that has two partitions has been taken where one is
FAT32 volume that is bitlocked. The.txt file having the recovery password and a.bek
file having the external key which is generated are stored on some external drive. Both
these files are used for the recovery process and using these keys, the VMK and FVEK
are derived. The process is same for all the other FAT file systems.

3.1 Derivation of Keys

Here the first sector of the bitlocked volume does not contain the original boot sector.
Instead it contains the bitlocked volume header which is similar to the FAT32 boot
sector. Though it is similar some values are changed and provide other valuable
information as shown in the Table 1. The important information that the volume header
contains is the offsets of the three metadata blocks. So by getting the offset of the first
metadata block, the metadata block header is read and the signature —FVE-FS is
checked so that a valid metadata block is read.

The metadata block consists of two important information. One is the original boot
sector starting sector information and the second is the encrypted volume size. There
are important while recovering the bitlocked volume.

Next the metadata header and metadata entries are read and the key protector
structures are stored. The key protector structures contain the encrypted keys which
have to be decrypted, the protection type, GUID and the last modification time.

3.1.1 Decryption of the VMK Using Recovery Password
The recovery password is the 48-digit key that is taken from the.txt file. The Fig. 4
shows the text file containing the 48-digit recovery key and the GUID highlighted.

24 P. Shabana Subair et al.

BitLocker Drive Encryption Recovery Key
The recovery key is used to recover the data on a BitLocker protected drive.

To verify that this is the correct recovery key compare the identification with whatis presented on the
recovery screen.

Recovery key identification: BC4E1623-B045-48
Full recovery key identification: BC4E1623-B045-48F0-AC28-3A24871FD7C6

BitLocker RecoveryKey:

Fig. 4. The .txt file showing the GUID and the 48 digit recovery key

As described in Sect. 2, the individual 16-bit values make up a 128-bit key. The
corresponding recovery key is calculated using the following approach:

Initialize a structure consisting of:
uint8 t last sha256 [32];

uint8 t initial sha256 [32];

uint8 t salt[16];

uint64_ t count;

Initialize both the last SHA256 and the count to 0. Calculate the SHA256 of the 128-bit
key and update the initial SHA256 value. The salt is stored on disk in the stretch key
which is stored in the recovery key protected Volume Master Key (VMK). Loop for
1048576 (0 x 100000) times:

e calculate the SHA256 of the structure and update the last SHA256 value
e increment the count by 1

The last SHA256 value contains the 256-bit key which is recovery key that can unlock
the recovery key protected Volume Master Key (VMK).

3.1.2 Decryption of the VMK Using Startup Key
The generated .bek file is used along with the metadata entry. Both the bek file and the
metadata entry contain the same Globally Unique Identifier (GUID). This allows for the
correct matching of the BEK with the metadata entry and also for checking the validity
of the BEK file.

The external key from the.bek file is extracted and the data from the key protector
structure is decrypted using this external key which unlocks the VMK. The Fig. 5
shows the external key highlighted in the BEK file.

3.1.3 Decryption of FVEK
The encrypted FVEK is stored in the key protector structure of the metadata entry
which is highlighted as shown in the Fig. 6.

Forensic Decryption of FAT BitLocker Volumes

. ,
HEX WinHex - [0B7AB6D2-FF8A-4EDS-BESA-FCASAD49AZF4 8eK] I

25

E5X WinHex - [fat32bek.000]

§8X File Edit Search Position View Tools Specialist Options Window Help
DeEHEFE oBREBH A/ LEA | »RES SFe@mO
Igg.OOO[‘" dowsXP vmdk I |M,AGE1,000]y_000 [fa32bak.000] 0B7A86D2-FFBA-4ED5-BESA-FCABAD49A2F4 BEK
Of fset 01 2 3 4 5 6 7?7 8 9 A B C D E F 10
00000000 9C 00 [} 00 01 00 00 00 30 00 00 00 9C 00 00 00 D2 1 M 0 1 0
00000011 86 74 OB 8A FF DS 4E BE GSA FC A8 AD 49 A2 F4 01 00 1z 150N%Zi -Ied
00000022 00 00 00 00 0O 00 40 42 4C 3B Cé 05 CE 01 6C 00 06 @BL:E 11
00000033 00 09 00 01 00 D2 86 74 OB 8A FF D5 4E BE 5S4 FC A8 O1z 150N%zZi"
00000044 AD 49 A2 F4 B0 25 2B 3B C6 05 CE 01 20 00 00 00 02 -Ieo*%+:E 1
00000055 00 01 00 45 00 78 00 74 00 65 00 72 00 6E 00 61 0O Externa
00000066 6C 00 4B 00 65 00 79 00 00 00 2C 00 00 00 01 00 01 1 Key
00000077 00 02 20 00 00 33 F1 F3 69 76 B0 19 7B OF F8 E7 24 3fdiv’ { eg$
00000088 6A 35 7E C6 B9 A9 OC 54 57 AC 2B 3F OB CE C9 47 F7 jS~E!'@ ZW-+? 1EG:
00000099 | 83 BS Ea 1.2
Fig. 5. The BEK file of the Bitlocker volume

DELHEEE

HEX “bE HEX

ﬁ File Edit Search Position View Tools Spe&alist Options Window Help

© B @ Oa 5

AR A2

fat32bek 000 |

- REs | F @O

Offset 0 1
0038863513
0038863530
0038863547
0038863564
0038863581
0038863598
0038863615
0038863632
0038863649
0038863666
0038863683
0038863700
0038863717
0038863734
0038863751
0038863768
0038863785
0038863802
0038863819
0038863836
0038863853
0038863870
0038863887
0038863904
0038863921
0038863938
0038863955
0038863972

Ex.2 1" |cUsI@)
v-Ox-E ITI"®,. &

“ly)Ble SHESIE E

TriH ai2el-[Gag
Yl qUuOvZ1ES
O1z 1¥0N%Zi " -I¢
&%+ E 1
Externa
lKey X\
B E)
gl Ea 11 1
"EATI U nCU G/
yaqll 8W+b 8 di@
I'n zi(cb#sc No
P E):E 1
ol ,Ex60cuGE®
i @) X-8ind"~Ix¥]
%12JN n 9E,0H2 {«
&MAj —21EK14"
i -1 IP
JI+:E 1 8
09,gi&2¢0 *wok: {’
N Ezeé & iEY¥<hd[Vd
0 1~ ¢11essa01 o0
Pl9isSyi

metadata entry showing the external key

26 P. Shabana Subair et al.

The encrypted data is decrypted using the VMK and the type of algorithm as
specified in the metadata entry. Finally the FVEK has been derived which is used to
decrypt the data at rest.

3.2 Replacement of the Original Sectors

Though the bitlocked volume contains a volume header it is not the correct boot sector.
The original boot sector is stored encrypted somewhere in the volume. So we have to
find the original boot sector, decrypt it and then replace the volume header with the
original boot sector. In the previous section it has been explained that the metadata
block header contains the original boot sector starting offset. So by getting the offset
and by having the sector, the steps for decrypting the sector are explained.

Here the data has to be decrypted sector by sector. The steps in decrypting a sector
of data are:

1: Decrypt the data with FVEK in AES-CBC mode
2: Run Diffuser B in decryption direction 3 times
3: Run Diffuser A in decryption direction 5 times
4: Calculate Sector key from the TWEAK key

5: XOR data obtained in step 3 with Sector Key

6: Plaintext

3.2.1 Correct Intake of Sector Number

For successful decryption, one of the important things that should be considered is the
sector number. In the first step, we have to calculate the Initialization Vector. To
calculate the Initialization Vector, the sector number is used. The sector number is very
important because if we give the wrong sector number, the data will not be decrypted
correctly and we get the wrong data. So the sector number is of very much importance.
The decryption might fail due to the wrong intake of the sector number.

For the evidence file explained above, the original boot sector starts at the sector
number 1404 and the partition starts at 63. So if we take the sector number of the boot
sector as 1404 and decrypt it, we do not get a valid boot sector but some junk data. So
here the sector number should be taken as:

Sector number of the boot sector to be taken = original sector number of the boot
sector — partition start sector.

Hence in the above case in order to get the correct boot sector we have to take the
sector number 1341(1404-63) instead of 1404. In this way the valid boot sector is
placed at the front. The remaining sectors are also decrypted in the same way and
rearranged accordingly.

The Figs. 7 and 8 show the encrypted boot sector and the decrypted boot sector of
the bitlocked volume.

3.2.2 Decryption of Sectors After Encrypted Volume Size is Reached
The next important issue to be considered is the decryption of the sectors after the
encrypted volume size is reached. Starting from the encrypted boot sector offset, all the

Forensic Decryption of FAT BitLocker Volumes 27

0748498848 50 ES 98 B1 75 9E 28 E4 82 36 1A 4D 51 36 4C 87 3C rapztul(alb MUbLIK
0748498865 GA 9B 67 D6 32 19 29 62 24 90 83 C6 C1 1A B9 7D 1B Z1g02)b* 1EA '}

0748498882 C6 6D CC AD D7 A9 50 B9 26 75 0A 2B 13 EF EC F9 8E AEnI-x@Pléu + iiul
0748498899 7B 2B A0 B4 C5 F3 CB 6C 63 4F 3F F9 F5 C5 8C E0 76 {+ 'AoElcO?udhlav
0748498916 FC DS F4 23 7B A2 A1 ES 01 03 C4 AD 96 4D F0 59 CF ilo#{ecid A& IMBYI
0748498933 3C 6B 1E AD 4B FA B4 9C GSA Cé 85 05 SF EC 52 EB 7F <k -Ka'IZEl _iRe

0748498950 D4 07 4A 9B SE 04 9D CC 68 A7 87 DE D9 F? 50 FD E4 O J1° IhSi1p0-Pys
0748498967 6C A8 4C 64 A9 B7 32 E0 EO 87 30 SA OF ES DE 68 E? 1 1d®.2aal0Z &bhg
0748498984 10 82 41 CF C0 28 BC 3E 58 BB E3 AC 49 FB E7 92 C5 JAIA(%>X»&-I4g'3
0748499001 00 4C 0D 55 91 A4 F4 C7 A6 8E CB 24 BS E6 07 B2 05 L U'HAG|IE*p2 ?

0748499018 2E 13 94 44 67 43 BE 5C 80 64 9B CF 2E 8B B? 15 2E . IDgCxnidil.n- .
0748499035 EB A9 E9 0C D7 C6 E6 9B FE 32 45 B8 CA F? F8 91 F9 &£0é xEzIb2E,Eze'u
0748499052 B9 2B 93 BS 31 SA EE 11 CC 52 C6 C5 46 7F 91 DD DF ‘'+l1p1Zi IREA) ‘¥B
0748499069 0A 6B 7D 1B 99 C9 9D 83 05 2E 5B 9E 09 F3 2D 85 94 k} IE 1 .[1 &-11
0748499086 13 8C 79 5C D5 40 44 D? E7 BA 4B 06 7C B? EA EE 00 1y\0@Dxg2K | -é&i

0748499103 D? 9D AD BD 52 DO BD 18 9F DC 7B 22 03 3F 1B 81 8B x -¥RPX% 1U{" ? 1
0748499120 D7 20 OF FC B7 37 23 64 37 F3 53 8B 73 8A SA 65 FF x - 7#d76SIslZey
0748499137 C7 59 FF 3B 9F D1 75 E8 80 F9 75 1C 11 3B 82 DB 80 ¢V 1Nuetuu ;101
0748499154 G5A 73 98 A3 18 FO DF 74 57 93 E9 64 A7 7C 56 3F CO0 Zslt 3BtW1&dS|V73
0748499171 D6 D5 87 24 84 1B B5 CA 8E B3 2E FF 53 17 05 E2 C5 OU1$1 pE1®.4S &k
0748499188 2A 27 88 BA 20 77 8E 7E 09 1D A1 36 E7 29 1F 48 74 ='|2 wI~ i6g) Ht
0748499205 6C 31 55 4A 45 CO EE 0D C4 3A 2E 4E CD 3A 58 68 AA 11UJEAL A: .NI:Xh2
0748499222 52 11 5C 67 2A F6 EA D4 6C 25 19 D6 6E 65 4F 44 95 R \g*3&01% OneOJI
0748499239 8E 24 9E 96 1C 77 A9 1E EC BD BS 72 BE 88 87 93 64 1811 w® iXpr%ll1j
0748499256 A9 C9 74 55 90 2E 24 DA 6C 51 40 ED 97 65 21 A0 CF QEtU .»(lQ@ile! I
0748499273 BF 22 EA 3D 15 CD 3B AC 29 88 CD 72 C2 9C 87 FA 7B ¢"é= 1;-)ifxdnng{
0748499290 35 58 99 24 87 7E 08 60 62 SD 00 94 BS 25 85 95 46 SXI*1~ "b] I1p%1IF
0748499307 9B C1 16 75 4A 1D 94 FB 48 A4 96 82 E0 OE F8 F5 F6 14 uJ IGHHE11A 085
0748499324 37 Al 20 F3 DO 24 70 08 61 3C 99 63 95 44 4E 19 FE 7i &P$p a<IcIDN b
0748499341 5D 73 CO 8D 43 24 BA 45 AB D7 44 F6 74 BD 5C 1C 22]sh C*QE«xDSt¥\ "
0748499358 18 C5 CO 11 3E 9D 4E 1D BA OE 7F SE 4A 88 E0 BO DA A4 > N 21 1J1a‘0
0748499375 DF 26 94 CD D6 34 15 51 6F C7? 14 E6 81 54 3D A3 4F R&1104 Qo¢ & Z=£0
0748499392 CD 6F 97 ES F? 95 24 48 (OE FB C5 D8 OF 49 8C FD 86 Iold=1$" 4i@ Iyl
0748499409 F? 58 F1 A4 22 1C 1E F4 EA 22 OE BS AC F9 D1 2E E5 =XfH" o&&" p-uN.&
0748499426 E3 07 88 2B 37 FF 46 65 4C 7F 3C D4 F7? 24 70 C4 24 & 1+7§Fel <O=xpis$
0748499443 F6 DA B2 CE DF 1E 1A 8E D1 AF C2 B7 DB FC BD 6C 1F o0218 N4kl

Fig. 7. Boot sector before decryption

sectors are decrypted and written in the same order starting from the boot sector until
the encrypted size limit is reached. If the total number of sector is less than the
encrypted volume size then there will be no problem. But if the total number of sectors
is greater than the encrypted volume size, then the next corresponding sector should be
the corresponding sector from the start of the volume header and so on.

For example, for the above evidence, if the volume header starts at sector 63, the
original sector starts at sector 1404, the total number of sectors as 2506 and
the encrypted volume size is 1009 sectors. Then while decrypting the sector 1404 (the
original boot sector becomes the 63 sector), sector 1405 becomes sector 64 and so on
up to sector 2413 since the encrypted volume size has reached. Then to get the sector
2414, we start at sector 63 and add up to the number of sectors covered (i.e. 1009). So
the sector 1072 becomes the 2414 sector (63 (volume header sector) + 1009 (encrypted
volume size)). In this manner, the sectors are decrypted and arranged to get the un-
bitlocked drive.

28 P. Shabana Subair et al.

00000000
00000017
00000034
00000051
00000068
00000085
00000102
00000119
00000136
00000153
00000170
00000187
00000204
00000221
00000238
00000255
00000272
00000289
00000306
00000323
00000340
00000357
00000374
00000391
00000408
00000425
00000442
00000459
00000476
00000493
00000510

[ofeset

4 Conclusion

Fig. 8. Boot sector after decryption

&XHMSDOSS . 0
2 ?2¥1 &
)

1)Z
¥.NO NAME FAT
32 3EIN%a{1410%
|IN 1V@ A»2UL »
WU2u 84 t bF &-1
ve' I s 'yyIRE MK
@f MN1a?-an1tdi Af
-Efaf IF21™ u8l
~x w2fIF £14 » 1?

e+ é, u}'}s-1
At <yt * » 1 &i
ayea wysant 1 £
TS ETEESTR

‘BIveral £XEXf
XEXS83f :For us*£30
f -N f=RbAIEfI1Df4
& v 101Ivereds I
, I fa uy 3 fe@
IulZBOOTHGR

Remove disks

or other media.y

Disk errory Pr

ess any key to re
start -Eo

U21@0%1 ,Qdh KE:"

BitLocker To Go is a full-disk encryption protection technology for removable storage
devices. Though it is based on BitLocker technology, BitLocker To Go significantly
enhances the technical capabilities of BitLocker. A forensic examiner can use the
recovery key or start key to access the FVEK and thus the protected data. These can
be used to decrypt the series of keys protecting the FVEK like VMK. Some pieces of the
metadata surrounding these keys could be useful to a forensic examiner, including the
order in which keys were generated, the number of keys generated, and the types of
those keys. Additionally, some features of the key management system allow access to
all of the access devices protecting a volume provided the user has a valid access device.

References

1. Kumar, N., Kumar, V.: Bitlocker and Windows Vista, May 2008. http://www.nvlabs.in/

node/9

2. Microsoft Corporation. Bitlocker drive encryption technical overview. Technical report,
Microsoft Corporation, May 2008. http://technet2microsoft.com/Windows Vista/en/library/
ceddSa2e-59a5-4742-89cc-ef9f5908b4731033. mspx ?mfr=true

http://www.nvlabs.in/node/9
http://www.nvlabs.in/node/9
http://technet2microsoft.com/WindowsVista/en/library/ce4d5a2e-59a5-4742-89cc-ef9f5908b4731033.mspx?mfr=true
http://technet2microsoft.com/WindowsVista/en/library/ce4d5a2e-59a5-4742-89cc-ef9f5908b4731033.mspx?mfr=true

Forensic Decryption of FAT BitLocker Volumes 29

. Kornblum, J.D.: Implementing Bitlocker Drive Encryption For Forensic Analysis, ManTech
International Corporation. jessekornblum.com/publications/di09.pdf
. Metz, J.: Bitlocker Drive Encryption (BDE) format specification: Analysis of the BitLocker

Drive Encryption (BDE) volume
. Kornblum, J.D.: Bitlocker To Go, ManTech International Corporation. http://jessekornblum.

com/presentations/dodcc10-1.pdf

http://jessekornblum.com/publications/di09.pdf
http://jessekornblum.com/presentations/dodcc10-1.pdf
http://jessekornblum.com/presentations/dodcc10-1.pdf

	Forensic Decryption of FAT BitLocker Volumes
	Abstract
	1 Introduction
	1.1 BitLocker To Go

	2 Bitlocker Recovery Information
	2.1 Bitlocker Keys
	2.1.1 Full Volume Encryption Key (FVEK)
	2.1.2 Volume Master Key (VMK)
	2.1.3 TWEAK Key
	2.1.4 Recovery Key
	2.1.5 External Key

	2.2 Encryption Methods
	2.3 Unencrypted Sector(s)
	2.4 Volume Header
	2.5 FVE Metadata Block
	2.6 FVE Metadata Block Header
	2.7 FVE Metadata Header
	2.8 FVE Metadata Entry
	2.9 FVE Metadata Entry Types
	2.10 FVE Metadata Value Types

	3 Loading a Bitlocked Volume
	3.1 Derivation of Keys
	3.1.1 Decryption of the VMK Using Recovery Password
	3.1.2 Decryption of the VMK Using Startup Key
	3.1.3 Decryption of FVEK

	3.2 Replacement of the Original Sectors
	3.2.1 Correct Intake of Sector Number
	3.2.2 Decryption of Sectors After Encrypted Volume Size is Reached

	4 Conclusion
	References

