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Abstract. With the increasing popularity of digital media and the ubiq-
uitous availability of media editing software, innocuous multimedia are
easily tampered for malicious purposes. Copy-move forgery is one impor-
tant category of image forgery, in which a part of an image is dupli-
cated, and substitutes another part of the same image at a different
location. Many schemes have been proposed to detect and locate the
forged regions. However, these schemes fail when the copied region is
affected by post-processing operations before being pasted. To rectify
the problem and further improve the detection accuracy, we propose
a robust copy-move forgery detection method based on dual-transform
to detect such specific artifacts, in which a cascade of Radon transform
(RT) and Discrete Cosine Transform (DCT) is used. It will be shown that
the dual-transform coefficients well conform the efficient assumption and
therefore leads to more robust feature extraction results. Experimental
results demonstrate that our method is robust not only to noise conta-
mination, blurring, and JPEG compression, but also to region scaling,
rotation and flipping, respectively.

Keywords: Passive image forensics · Copy-move forgery · Dual-
transform · Duplicated region detection · Mixture Post-processing

1 Introduction

With the ever increasing diffusion of simple and powerful software tools for
digital source editing, image tampering is becoming more common, stimulating
an intense quest for algorithms, to be used in the forensics field, which help
deciding about the integrity of digital images. Furthermore, it is necessary for us
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to develop automatic methods to authenticate the images and indicate potential
forgeries.

In order to protect the integrity and reveal the manipulation of digital media,
two types of countermeasures, active and passive approaches, are extensively
investigated in previous studies. Active approach, including digital signature,
watermarking, and etc., relies on pre-processing before distribution, which
requires additional and shared information. However, there is no universally
recognized standard, and the complexity greatly restricts its application. On
the other hand, the passive approach only requires digital media without any
supplemental information.

Due to the variety of manipulations and the diversity of individual charac-
teristics of media, passive approach usually faces difficulties at a larger scope,
and suffers from complicated and time consuming problems [11].

One of the most common types of image forgeries is the copy-move forgery [12],
where a region from one part of an image is copied and pasted onto another part in
same image, thereby concealing the image content in the latter region. Such con-
cealment can be used to hide an undesired object or increase the number of objects
apparently present in the image. Although a simple translation may be sufficient
in many cases, additional operations are often performed in order to better hide
the tampering. These include rotation, scaling, lossy compression, noise contam-
ination, blurring, and among others. Also, the copied part comes from the same
image, all of its properties and statistic information are the same as the rest of the
image. Thus, it is difficult to detect forgeries by techniques that compare statistics
of different part of an image to each other. Hence, in order to be able to reliably
detect such forgeries, a several techniques have been recently proposed which try
to be robust to some of these transformations.

In the literature, researchers have developed various techniques. Huang
et al. [1] proposed improved robustness using a discrete cosine transform (DCT)
to noise addition, global blurring and lossy compression, but does not deal with
geometrical transformations of the tampered region. The method of Khan et al.
[2] reduces the time complexity of the PCA-based approach by using a discrete
wavelet transform (DWT), but also does not address geometrical transforma-
tions. In [3], Mahdian et al. took advantage of the blur invariant moments to
extract the block features. Though these methods can detect the copy-move
forgery in most cases, they may fail if the copied regions are rotated or flipped.
Ryu et al. [4] employed Zernike moments to extract the features for block match-
ing. This method achieved an average detection precision rate of 83.59% in the
case of region rotation. In [5], Liu et al. proposed a method using Hu moments
to extract the features of the blocks. This method is robust not only to noise
contamination, JPEG compression and blurring, but also to moderate rotation.

Our contributions. The aim of this paper is to demonstrate a robust copy-move
forgery detection method for passive image forensics through a construction of
the invariant features from dual-transform, such as Radon and discrete cosine
transforms. The key insight of our work is that the copied region concealed
with post-processing operations before being pasted in same image, the invariant
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image features are detectable by using the ability of such transform even if the
feature strength is weakened. When the position of the copied part is unknown,
we able to detect the exact pasted position that using the extracted invariant
features, under the assumption that the pasted regions will yield similar features
with the copied regions.

In the proposed method, Radon transform is utilized to project the image
onto directional projection space, and then 1-D DCT is used to extract signif-
icant frequency features from the Radon space. Dual-transform largely reduces
the influence of geometrical and image processing operations, and the invariant
feature of the dual-transform coefficients is found to be stable. Extensive com-
parative studies show the superiority and robustness of the proposed method.

The remainder of the paper is organized as follows. Section 2 introduces the
concept of the dual-transform, which includes Radon and DCT transforms. The
proposed method is presented in Sect. 3. The experimental results are provided
in Sect. 4. Conclusion is drawn in Sect. 5.

2 The Concept of the Dual-Transform

2.1 Radon Transform (RT)

Applying Radon transform on an image f(x, y) for a given set of angles can be
thought of as computing the projection of the image along the given angles [6].
The resulting projection is the sum of the intensities of the pixels in each direction,
i.e. a line integral. For an image f : R × R → [0, 255] containing an object, the
result g of Radon transform is a function R : R × [0, 2π] → R+ defined as:

g(s, ϑ) = R(f(x, y)) =
∫ ∞

−∞
f(s cos ϑ − t sin ϑ, s sin ϑ + t cos ϑ)dt (1)

[
s
t

]
=

[
cos ϑ

− sin ϑ
sin ϑ
cos ϑ

] [
x
y

]
(2)

Radon transform of the translated, rotated and scaled images exhibits interest-
ing properties, which can be employed to construct a method for invariant object
recognition. Therefore, the behavior of the transform for these three variations
in the input image should be defined. Any translation in spatial domain leads in
the Radon domain to translation in the s direction. The amount of the transla-
tion varies with the ϑ dimension. The scaling of the original image along both
axes results in the scaling along the s axis in the Radon domain. The value of the
transform is also scaled. The rotation in spatial domain leads to circular trans-
lation along the ϑ axis in the Radon domain. The behaviour of Radon transform
is summarized in Table 1, and depicted in Fig. 1.

2.2 Discrete Cosine Transform (DCT)

Discrete cosine transform is used to know frequency components present in a
image [7]. DCT mainly reduces the redundant information present in the image
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Table 1. Behavior of Radon transform for rotated, scaled and translated images.

Behavior Image function, f Radon transform, g = R(f).

Original f(x, y) g(s, ϑ)

Rotated fpolar(r, ϑ0 + ϕ) g(s, (ϑ + ϑ0)mod2π)

Scaled f(αx, αy) 1
|α|g(αs, ϑ)

Translated f(x − x0, y − y0) g(s − x0 cos ϑ − y0 sin ϑ, ϑ)

Fig. 1. Radon transform. (a) Image projection, (b) Test image, and (c) Its projection
on Radon space.

by omitting the undesired parts of the image. Orthogonality, symmetry, sepa-
rability, and decorrelation are important properties of DCT. The most common
DCT definition of a 1D sequence of length N is

C(u) = α(u)
N−1∑
x=0

f(x) cos
[
π(2x + 1)u

2N

]
, (3)

for u = 0, 1, ..., N − 1. In Eq. (3), α(u) is defined as

α(u) =

⎧⎨
⎩

√
1
N for u = 0√
2
N for u �= 0.

(4)

The DCT coefficients for the transformed output image C(u) with an input
image f(x) can be calculated by using the Eq. (3). N is the pixel dimensions of
the input image f(x). The intensity value of the pixel N of the image is given
by f(x) and C(u) is the DCT coefficients in u of the DCT matrix.

3 Robust Copy-Move Forgery Detection

In this section, we present the proposed robust copy-move forgery detection
method based on dual transform. At first, we describe a model for copy-move
forgery in digital images, and then introduce our proposed method to detect
such specific artifact.
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3.1 Model for Copy-Move Forgery

The task of finding the copy-move forgery is that of finding at least two large
similar regions. Given an image f(x, y), the tampered image f ′(x, y), must sub-
ject to: ∃ regions D1 and D2 are subsets of D and a shift vector d = (dx, dy),
(we assume that |D1| = |D2| > |D| ∗ 0.85% and |d| > L), f ′(x, y) = f(x, y) if
(x, y) /∈ D2 and f ′(x, y) = f(x−dx, y−dy) if (x, y) ∈ D2, where D1 is the source
and D2 is the target region, D2 = D1 + d. We consider that the similarity of the
target region is larger than 0.85% of the image size. It would be easy to detect
above forgery via exact match. However, to make the tampered image harder
to detect, the attacker may perform various processing on f ′(x, y). Then the
tampered image becomes f ′′(x, y) = ξ(f ′(x, y)), where ξ is the post-processing
operator, which includes geometrical and image processing operations. The post-
processing attack makes the task of detecting forgery significantly harder. In the
next section, we present an efficient method for detecting copy-move forgery
which is also robust against various forms of post-processing operations.

3.2 The Proposed Method

Our proposed method is based on dual-transform, which includes Radon and
discrete cosine transformations. This set of transformations were designed for an
efficient and robust approach. The main issue in directly applying these tools to
image forgery detection is that these tools were designed to find duplicate but
separate, images, whereas we are trying to find identical regions in same image.
We perform modifications in the feature extraction and matching processes to
efficiently detect such forgery. Firstly, we apply Radon transform on each divided
blocks to project the image into a directional projection space, then perform 1-D
DCT to derive the frequency features from the Radon space. Following we select
the DCT coefficients with low frequency by using a dimension reduction. Finally,
an invariant robust features are extracted. The details of the proposed method
is given as the following:

1. Pre-processing. Image is tiled by overlapping blocks of b × b pixels. Blocks
are horizontally slid by one pixel rightwards starting with upper left corner
and ending with the bottom right corner. The total number of overlapping
blocks for an image of M × N pixels is Sblocks = (M − b + 1) × (N − b + 1),
for each block Bl(l = 1, ..., Sblock). For instance, an image with the size of
640 × 480 with blocks of size 8 × 8 yields 299, 409 overlapping blocks.

2. Feature extraction. Each block is applied Radon transform, the space is
projected on the Radon space. The results of Radon transform are contained
in the columns of a matrix with the number of projections generated being
equal to the number of the defined angles, (ϑ1, ϑ2, ..., ϑn). Then, delete the
rows in projection matrix, which are composed of 0. This will remove the
redundancy data generated by Radon transform.

On each projection (represented by column of the projection matrix) accord-
ing to projection angles, we apply 1-D DCT to derive the frequency features
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from the Radon space. We quantize the coefficients according to the JPEG
quantization table using a predetermined quality factor Q. The quantized coef-
ficients can be denoted as ck = {c1, c2, ..., ck}. The dimension reduction can
make the sorting and matching faster. The frequency features are the nature
of 1-D DCT that the energy of transformed DCT coefficients will be focused on
the first several values (lower frequency values). Thus, those higher frequency
coefficients can be truncated. The truncation can be done by saving only a part
of vector components. Here, we define a factor p, (0 < p ≤ 1), that only first
�p × k	 DCT coefficients are saved for further processing. cr = {c1, c2, ..., cr},
(r = �p × k	, r < k), where p denotes a saved the percentage of DCT coeffi-
cients and k denotes the number of coefficients on the projections according to
angles ϑn. For example, we select the projection angle ϑ = 8, and derived the
1-D DCT coefficients (column matrix 15 × 1) from the projection space. Five
coefficients are deleted, which are composed of 0. The concentration of energy
in 80% is calculated as, �p ∗ k	 = �0.8 ∗ 10	 = 8 coefficients.

The truncated DCT coefficients in projection matrix are sorted by a lexi-
cographically order. Let the matrix C denote the sorted vectors, the size of
the matrix will be Cm

r .

C =

⎡
⎢⎢⎣

C1
1

C2
1

.
Cm

1

C1
2

C2
2

.
Cm

2

...

...

...

...

C1
r

C2
r

.
Cm

r

⎤
⎥⎥⎦
(M−b+1)(N−b+1)

(5)

By using a lexicographic sorting, similar features will locate at the neighboring
rows and the feature matching can be achieved in a small range.

3. Similarity matching. The feature matching is to find out the corresponding
similar rows from between m rows of the C matrix. In order to detect the
forged region correctly, the similarity threshold τs and the distance threshold
τd should be predetermined, respectively. In our method, we search for the
corresponding rows by estimating the Euclidean distance of feature vectors,
as follows:

D(Cm
r ,Cm+v

r ) =

√√√√ u∑
r=1

Cm
r − Cm+v

r )2 < τs (6)

If D(Cm
r ,Cm+v

r ) is smaller than a threshold τs, the corresponding features will
be regard as correctly matched. Then the locations of two features are stored.
The matching will be repeated for all rows of C. Since the feature vectors
of the rows are quite similar with each other which have the overlapping
pixels, only the rows with the actual distance between two similar features
are compared as follows:

L(Cm
r ,Cm+v

r ) =
√

(xi − xi+j)2 + (yi − yi+j)2 > τd (7)

where x and y are the coordinates of the corresponding features.
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Fig. 2. Image forgery detection. (a) Original image, (b) Forged image, (c) Detected
forgery with similar features, and (d) Results after filtering.

4. Detection. When all the matched feature pairs are saved, which is achieved
by marking the copied and forged regions, respectively. Generally speaking,
the regions are stamped on a binary image. That is to say, all the detected
features including the forged and un-forged features are marked to gener-
ate a detection map. Fig. 2 shows an example of the proposed method for
marking. In general, there are some falsely detected features marked on the
initial detection map in Fig. 2(c), and these falsely detected features should
be removed by filtering in Fig. 2(d). For the filtering, we generate a sliding
window with the size of 8 × 8 pixels, and move it from left to right and up to
bottom. Each time, the window moves forward by 8 pixels to make sure all
the pixels of the image will be filtered and each pixel will be filtered only
once. If the number of white pixels are less than 60 in the window, all pixels
of the window are marked as black. Otherwise, keep the number of the white
pixels and do nothing. After filtering, some small isolated false matches can be
removed. Figure 2(d) shows the detection result after the filtering operation.

4 Experimental Results

In this section, we present the experimental results of our proposed method.
We simulated our method under a PC with 3.2G Hz Core i5 CPU, 8G RAM,
and Windows 8 platform. The simulation was carried out using Matlab version
R2008a. We test our method on Benchmark data for image copy-move detection
dataset including 120 authentic and 124 forged color images of size 3888× 2592
pixels with different outdoor scenes, as shown in Fig. 3. The authentic images
were taken by different digital cameras. All tampered images in this dataset are
generated from the authentic images by crop-and-paste operation using Adobe
Photoshop CS3 version 10.0.1 on Windows XP. The tampered regions are from
the same authentic image.



10 M. Doyoddorj and K.-H. Rhee

Fig. 3. Examples of test images.

4.1 Robustness Test for Feature Vectors

We extracted the features, which expressed by DCT coefficients of 1-D DCT
based on the Radon space. These features will not change a lot after some
post-processing operations. We have defined the model for copy-move forgery
in Sect. 3.1. If an image is contaminated by additive Gaussian noise opera-
tion (AWGN), then the pixel value will be changed, for each pixel, we define
f(x, y) = 
f(x, y)�+ ξnoise, (0 < ξ < 1), where f(x, y) is the corresponding pixel
value that contaminated by signal noise, 
f(x, y)� is the nearest value less than
or equal to the original pixel value, ξnoise is the random noise which is inde-
pendent identically distributed. For instance, each noisy block B′

i = Bi + ξnoise,
and the extracted features c′

r = cr + ξ′
noise, since E(ξ′

noise) = 0, D(ξ′
noise) =∑b2

i=1 ξ′
noise/b2, generally

∑b2

i=1(ξ
′)2noise � b2. Since we get c′

r ≈ cr. For the
Gaussian blurring only affects in some high frequency components of each blocks,
but changes in the low frequency components are a little. The robustness against

Table 2. The correlation coefficients for the feature vectors, ϑ = 8, (8 × 8).

Vectors Extracted, cr Post-processed, cξ

AWGN AWGN Blurring Blurring JPEG JPEG

SNR SNR w, σ w, σ Q Q

25dB 50dB 3, 1 5, 0.5 5 10

c1 958.75 959.26 962.31 957.45 959.07 958.26 962.12

c2 886.37 893.63 896.25 884.16 886.36 884.69 887.02

c3 875.12 885.02 894.89 873.52 874.85 873.81 878.29

c4 801.50 820.75 828.20 799.21 802.80 798.68 796.93

c5 745.25 753.39 761.62 744.03 746.68 748.52 736.84

Correlation 0.9980 0.9804 1.0000 1.0000 1.0000 1.0000

coefficients
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the geometrical operations are provided by the property of Radon transform. In
order to show the robustness of the feature vectors, we chose a size of block
8 × 8, 16 × 16, and 32 × 32, respectively, from the natural images. Then we
applied some post-processing operations with different parameters. The results
of robustness test are presented in Table 2. cr and cξ are feature vectors that the
extracted and post-processed vectors, respectively. After some post-processing,
we calculate the correlation coefficients between them, if the result is close to 1,
which implies the feature vector is robust and the invariance is more stable. The
correlation coefficient is used as a measure of correlation, as it is invariant to
intensity change. (Here we note that the extracted feature vectors are reduced
by dimension reduction.)

4.2 The Evaluation of the Detection Performance

In order to quantify the accuracy of detection, the true positive ratio (TPR)
and the false positive ratio (FPR) are employed, as follows:

TPR =
|Ω1

⋂
Ω2| + |Ω1

⋂
Ω2|

|Ω1| + |Ω2|
, FPR =

|Ω1

⋃
Ω2| + |Ω1

⋃
Ω2|

|Ω1| + |Ω1|
− 1 (8)

where Ω1 and Ω2 are the original copied region and the detected copied region,
while Ω1 and Ω2 are the forged region and the detected forged region, respec-
tively. In order to set the threshold parameters, we randomly chose 50 images
from the dataset and then make a series of forgeries. After that, we use different
the projection angles ranging from 8 to 64 degree with 8 increment, then a set of
values for τs = 0.005 and τd = 4, respectively, from the number of testing results.
The threshold parameters are chosen by highest true positive ratio with corre-
sponding lowest false positive ratio. In order to decide the block size, we tested

Fig. 4. Detection results for varying block sizes.



12 M. Doyoddorj and K.-H. Rhee

the TPR and FPR curves for various block sizes with a selection of different
directional projection angles.

As shown in Fig. 4, we notice that smaller block size is resulted higher
detectability property. But, large block size is indicated lowest detection per-
formance. Therefore, we set the block size of 8 × 8 pixels in all our following
experiments.

Table 3. The feature matching accuracies with various post-processing operations.

Operations Compression Additive Gaussian noise

JPEG 30 JPEG 60 JPEG 90 SNR 10 SNR 20 SNR 30

Rotation 10o 0.979 0.982 0.987 0.969 0.971 0.975

30o 0.971 0.974 0.985 0.950 0.956 0.969

45o 0.963 0.966 0.976 0.936 0.938 0.948

Scaling 5 0.984 0.984 0.987 0.974 0.975 0.978

10 0.982 0.983 0.988 0.968 0.971 0.979

15 0.965 0.976 0.978 0.956 0.964 0.966

Blurring 3 × 3 0.970 0.972 0.976 0.931 0.948 0.951

5 × 5 0.962 0.968 0.971 0.920 0.927 0.939

7 × 7 0.927 0.931 0.935 0.901 0.917 0.919

Contrast 10 0.975 0.976 0.976 0.970 0.973 0.976

changing 30 0.973 0.970 0.974 0.960 0.966 0.968

45 0.967 0.966 0.966 0.947 0.956 0.957

Rot. + Flip 10o, Hor. 0.889 0.898 0.897 0.836 0.847 0.848

Sc. + Flip 10, Ver. 0.885 0.890 0.893 0.825 0.826 0.825

Rot. + Sc. 10o, 10 0.738 0.768 0.787 0.704 0.731 0.747

Fig. 5. Detection results with various mixture operations. (a) Object scaling with hor-
izontally flipping, (b) Object scaling with rotation, (c) Multi-copy with JPEG, and (d)
Blurring with scaling.
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Fig. 6. Detection results with various attacks. (a) Image processing operations, and
(b) Geometrical operations.

(a) The performance of the feature matching. We evaluated the feature
matching process that the copied regions have been subjected to various geomet-
rical operations (rotation, scaling and flipping) and image processing operations
(blurring and contrast changing). Additionally varying the levels of lossy com-
pression (JPEG) and the additive Gaussian noise (AWGN) were performed with
mixture operations. The purpose of this testing is to highlight the performance
of features that we have employed. The accuracies of the feature matching are
determined by proportion of true positives in the matching feature pairs. The
obtained results are reported in Table 3.

In Table 3, the mixture operations tend to have somewhat lower accuracy
than other operations, which is shown at low quality factors and signal noise ratio
(SNR). Especially, the accuracies for blurring and contrast changing indicate
lower layer among of individual operations, respectively. Nevertheless, TPR and
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Fig. 7. Detection results with TPR/FPR curves. The performance comparisons
(a–b) with different the SNR levels (5dB ≤ SNR ≤ 35dB), and (c–d) with Gaussian
blurring (w = 5, σ = 1 to 7).

FPR are quite acceptible even with low quality factors and signal noise ratio
(SNR).

(b) The robustness against post-processing operations. The advantage of
the proposed method is that it can resist against geometrical and image process-
ing operations. In order to test the efficiency and robustness of our method
further, we test all images from Benchmark dataset. For each image, a random
sized region was copied then pasted onto a non-overlapping position, while the
copied regions are distorted by different mixture post-processing operations. For
instance, as shown in Fig. 5, the copied region is distorted by scaling with hori-
zontal flipping, rotation with scaling, multi-copy with JPEG, and blurring with
scaling, respectively. From the results we show that the forged regions can be
detected accurately. Figure 6 presents the detection results of our method on
various kind of individual post-processing operations. As can be seen, we are
able to attain quite high accuracies at low false positive rates in selection of
higher rate values. In the case of blurring, it can be seen that the resistance of
such operation is lower than other post-processing operations.
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(c) The performance comparisons. The overall average performance com-
parisons of our method with other related work are performed more precisely in
this section. Some invariant feature extraction methods for copy-move forgery
are presented in Fridrich [8], Huang et al. [1], and Li et al. [9]. As shown in
Fig. 7(a–b), the forged images are contaminated with additive Gaussian noise
(5dB ≤ SNR ≤ 35dB). Fridrich’s method has the lowest TPR than other meth-
ods, when less than 10dB, the TPR is approximate to zero. Observation of TPR
in our method achieves higher TPR among other methods. For FPR, Fridrich’s
method has lower FPR value, that cannot detect any forged region, when the
FPR is less than 15dB. However, such method quickly leads to higher FPR
when the SNR level is higher, which indicates it is sensitive to noise adding.
Our method have a better performance with Li et al.’s method, however with
lower FPR.

In case of blurring, the forged regions are blurred by a Gaussian blurring
filter (w = 5, σ = 1 to 7). Figure 7(c–d) shows the TPR curve of our method
has better performance followed by Li et al.’s method, however, the TPR curves
of Fridrich and Huang et al. are drop significantly, when the blurring radius
increased. In FPR, our method has the lowest value, even increased the larger
blurring radius.

5 Conclusion

In this paper, we proposed a robust copy-move forgery detection method for a
suspicious image. To extract an invariant robust features of a given image, we
applied dual-transform. The extracted features are represented by lexicographi-
cally ordered DCT coefficients on the frequency domain from the Radon space,
that each overlapped image blocks are projected by the columns of a matrix with
the number of the defined angles ϑn on the Radon domain. Experimental results
supported that the proposed method was appropriated to identify and localize
the copy-move forgery even when though the forged region had been manip-
ulated intentionally. The main contribution of our work is a method capable
of easily detecting traces of various attacks. We concerned the geometrical and
image processing operations, and any of their arbitrary combinations. The detec-
tion performance of our method is satisfactory enough and meets the robustness
criteria.
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