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Abstract. Modeling malware spreading in wireless networks has
attracted significant interest lately, since this will increase the robustness
of such networks that constitute the lion’s share of Internet access nowa-
days. However, all of previous works have considered networks with fixed
number of devices. In this work, we focus on users that can dynamically
join and leave the network (node churn) as a result of the effects of mal-
ware, or their own operation, i.e. energy depletion. We adopt and adapt
a queuing-based model for malware spreading for the case of wireless
distributed networks with churn. The corresponding methodology cap-
tures the dynamics of SIS-type malware, where nodes are always prone
to receive new or already spreading infections over a long period. The
employed framework can be exploited for quantifying network reliability
and study network behavior, which can be further used for increasing
the robustness of the system against the most severe attacks.

Keywords: SIS malware - Network churn - Wireless multihop networks -
Product-form queuing networks -+ Network robustness

1 Introduction

The wireless communications market has expanded massively in the last decade,
constituting nowadays the most preferred way for Internet access by users around
the world. Following suit, wireless services and applications, software and wire-
less devices’ technologies have also proliferated, orders of magnitude compared
to the ones available ten years ago. Unfortunately, since the emergence of the
first computer virus and the corresponding malicious software (malware) target-
ing mobiles (cabir bluetooth virus in 2004 [1]), malware spreading in wireless
networks has exhibited exponential growth (see [2] and references therein).
Modeling accurately the dynamics of malware spreading is of high research
and practical importance with numerous associated benefits, especially for wire-
less networks where the impact of malware can be more severe. In this paper, we
focus on exactly this aspect of modeling malware dynamics and in fact, contrary
to the majority of other research works, we address this problem in dynamic
networks, where nodes join and leave the network (denoted as node churn).
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Such networks with “node churn” emerge in most of the applications of wireless
multihop topologies, e.g. ad hoc, sensor, vehicular, etc., and from this perspec-
tive, the contribution of this paper is of great interest for the aforementioned
applications of wireless distributed networks.

In the past, various attempts to model malware in general have emerged (see
[3] and references therein), each aiming at different objectives. Furthermore,
diverse modeling approaches have employed various analytical tools for their
purposes. These earliest attempts to model malware spreading in the Internet
and wireless networks were based on deterministic methodologies adopted from
epidemics [4], while the majority did not consider the possibility of network churn
at all. Lately, some notable effort has been devoted to the macroscopic dynam-
ics of malware propagation, especially in wireless decentralized networks [5,6].
Macroscopic modeling refers to the generic study of malware propagation for a
long time period, where different types of attacks spread and present recurring
behavior, i.e. users become infected repeatedly after their recoveries.

In this paper, we will extend the above direction and study the macroscopic
modeling of malware propagation for wireless distributed networks with churn.
Based on a closed queuing network model, the transitions of states of legitimate
nodes attacked by malicious users are evaluated, while legitimate nodes might
enter/leave the network due to exhausting their energy/recharging and/or the
impact of malware. We adopt a closed queuing network model, initially devel-
oped in [7], based on which a product-form solution is obtained through the
Norton equivalent methodology. We use this framework to study and analyze
the behavior of wireless distributed networks attacked by a single attacker. The
results can be used for assessing the robustness of the network, and can be further
exploited in increasing network reliability against the worst possible outbreaks.

The rest of this paper is organized as follows. Section 2 summarizes related
works and distinguishes our contribution from them, while Section 3 presents
concisely the employed queuing model along with relevant analysis. Section 4,
provides quantitative results for the networks of interest and finally, Section 5
concludes the letter.

2 Related Work

Malware can be broadly classified in two main types, i.e. direct and indirect,
where threats propagate via physical neighbors only [8], or via multihop infec-
tions, e.g. email viruses [9]. In this work, we will focus on the first, since the
second can be implicitly analysed as a case of direct malware spreading at a
higher protocol layer, e.g. users directly connected at the Application layer.
Furthermore, there are two main infection models', denoted by Suscepti-
ble - Infected - Removed (SIR) and Susceptible - Infected - Susceptible (SIS),
corresponding to the allowed state transition sequence [10]. The SIR is more
suitable for the short-term study of independent threats, e.g. CodeRed worm

! The term ‘infection model’ characterizes the discipline under which legitimate nodes
become infected and recover, if so, due to malware spreading and their operation.
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virus, while the SIS is more appropriate for the long-term (macroscopic) study,
where nodes oscillate between susceptibility and infection due to recurrent or
newly emerging malware. In this paper, we focus on the long-term and steady-
state behavior of distributed wireless networks, and thus, we adopt the SIS node
infection paradigm for legitimate nodes.

Traditionally, malware propagation modeling has employed epidemics math-
ematics [4,10], properly adapted to fit communications networks. The problem is
cast as a system of ordinary differential equations with respect to the number of
infected and the number of removed nodes, if applicable. Epidemics are threat-
specific, i.e. more suitable for SIR infection paradigms. However, even in case
of advanced epidemic models, e.g. epidemics combined with Kalman estimation
[11]), the proposed models cannot describe the evolution of malware propagation
in networks with dynamic node churn, such as sensor or ad hoc topologies for
example.

As the attack rate increases, in accord with the importance of wireless infras-
tructures, more generic approaches analyzing malware propagation are required
to secure commercial and critical networks. Various models have emerged towards
this direction, most of which attempt to analyze malware propagation in more
general settings compared to traditional epidemics techniques. Contrary to the
differential equations based approach of epidemics, probabilistic tools have been
mostly employed for the latest and more generic approaches. In [12], probabilistic
models based on Interactive Markov Chains have been proposed, which attempt
to partially capture the inherently stochastic nature of attackers over arbitrary
topologies. In [13] the impact of topology on the dynamics of the propagation was
identified and exploited to design effective countermeasures.

A queuing-based framework has been proposed in [14] for wireless multi-
hop networks, and it was exploited in various capacities, e.g. study of attack
strategies. The proposed model describes the macroscopic behavior of malware
propagation in wireless multihop networks without churn. The approach pre-
sented in this work, adopts the same framework, but extends it in the more
general scenario of dynamic networks with node churn.

A stochastic optimization approach was introduced in [15,16], where the con-
cept of varying the transmission power in order to design effective defenses has
been jointly considered with epidemic dynamics. Optimal strategies have been
developed by exploiting Pontryagin Maximum Principle. However, the proposed
framework has been developed for specific energy-depleting attacks and does not
consider the possibility of new nodes entering the network (node churn).

Unfortunately, all previous works have not considered the most general behav-
ior of dynamic networks, where legitimate nodes enter/leave the network due to
their own operation (e.g. exhausting network energy) and/or the impact of mal-
ware. In this work, we will adopt from [7] a closed queuing-network-based method-
ology that extends the approach of [5] for networks with churn, and exploit it to
study the behavior of wireless networks with multihop topology attacked by a sin-
gle malicious user. Infected nodes can also infect their peers.
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Fig. 1. State transition diagram for legitimate nodes in a network with churn

3 Queuing Based Modeling for Malware Spreading in
Wireless Networks with Churn

3.1 System and Malware-Spreading Models

Considering the capabilities of state-of-the-art software and handheld devices
that enable recurring malware threats, we focus on the long-term network oper-
ation and employ the Susceptible-Infected-Susceptible (SIS) [10] infection model
to describe the steady-state behavior of users (legitimate nodes). We consider a
static network and also the more general scenario, where users enter and leave
the network (node churn [17]), which is often the case in wireless distributed
networks, e.g. sensor, vehicular, ad hoc and tactical networks.

In a network with churn, a legitimate node will start susceptible, free of any
malware piece, and the corresponding susceptible state is denoted by S (Fig. 1).
At some point, a susceptible node will become infected by some spreading threat,
e.g. virus, worm, etc., and within a long observation period, the node will even-
tually return to the susceptible state (by removing the malware). The infected
state is denoted by I. In the general case of networks with churn, but also for net-
works without churn, the short-term behavior of nodes and their corresponding
state transition may involve other intermediate states as well, as shown in Fig. 1.
These intermediate transitions may involve a recovery state (denoted by R) and
a state where nodes are considered dead (denoted by D). The dead state cumu-
latively represents nodes that cease operation due to exhausted energy or due to
malware operation. Nodes that complete their recovery, return to the suscepti-
ble state, and without loss of generality, we assume that new nodes entering the
network also begin their lifetime in the susceptible state. Dead nodes are com-
pletely removed from the network (potentially re-introduced in the network as
new susceptibles after a long time). Consequently, the overall system follows the
SIS paradigm, where it will be possible for susceptible nodes to become infected
and eventually recover again to the susceptible state.

Regarding the communication model, we assume that at each time the net-
work has n legitimate nodes, each with transmission radius R;. For simplicity, it
is also assumed that node pairs are formed only within the transmission range
of nodes, as in [5,6]. More general communication models can be incorporated
in a straightforward manner.
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Fig. 2. Queuing models for malware spreading in networks with churn

With respect to Fig. 1, it can be observed that each user spends an amount
of time in each node state that varies stochastically. Furthermore, given the
succession of state transitions depicted in Fig. 1, a node entering the network
at the susceptible state, might either deplete its energy and become dead with
probability p or could become infected by malware and transition to the infected
state. From the infected state the node might either deplete its energy as well,
cease opearation due to malware and become dead with probability g, or it could
transition to the recovery state. Finally, from the recovering state the user either
recovers to the susceptible state and the cycle begins again, or the node depletes
its energy while recovering and it is removed from the network to the dead state
with probability w.

Thus, the behavior of legitimate users can be segregated in two main modes,
susceptible and infected-recovering (non-operational). In the first mode, nodes
could be operational (some of which might exhaust their energy and leave the
network) or recharging. In the infected-recovering mode, nodes become infected
and either they move to recovery until they become susceptible again or they are
removed from the network. This behavior can be mapped to the operation of a
queuing network as shown in Fig. 2(a), where queuing and processing correspond
to the time spent by each node in each different state described before. In Fig.
2(a) the upper part corresponds to the normal operation of nodes (susceptible
operational - susceptible recharging) and the lower part to the infection-recovery
mode. The customers of the queuing network correspond to the nodes of the
network as they change states due to malware and node churn. It should be
noted that the queuing network is open due to node churn, allowing for new
customers to enter (corresponding to new susceptible nodes) and customers to
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leave (corresponding to nodes depleting their energy or becoming dead due to
malware). The depicted input/output and service rates of the queuing network
correspond to node churn rates and infection/recovery of the actual legitimate
network users under attack, respectively.

3.2 Analysis of Spreading in Multihop Networks with Churn

In order to analyze the generic network of Fig. 2(a), the Norton equivalent [18]
of the upper part with parallel queues may be employed, so that a single queue
substitutes that part of Fig. 2(a). This does not harm the analysis because in
the study of robustness we are not particularly interested in which nodes are
susceptible-operational and which are susceptible-recharging. We focus on the
number of susceptible nodes versus the number of infected and recovering. From
the Norton equivalent, the rates of the new queue will be us = p? + pi and
As = A2 + AL, where p regard service rates and A input rates in general. All
1, A depicted in Fig. 2(a) correspond to the cumulative queue service rates,
which in turn depend on the partial rates of the link infection rate in susceptible
state (Ae), service rate in the infected (u;) and recovering (u,) queues of each
individual node. Without loss of generality these partial rates are considered the
same for all users. It should be also noted that all initial input and services are
exponential with rates as shown in Fig. 2(a).

The Norton equivalent queuing network obtained from Fig. 2(a) can be ana-
lyzed in turn using Jackson’s Theorem for product form networks [19]. The
latter will have a product form steady-state distribution and it is equivalent to
a network of three cascade queues as shown in Fig. 2(b). The service rates of
the final cascade network are directly obtained from the Norton equivalent, as
U1 = s, M2 = pr, u3 = pr. The arrival rates in the product-form network
(Fig. 2(b)) can be obtained as:

1
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as functions of the external input of susceptible nodes A and the probabilities
for customers to leave the network p, ¢, w.
The steady-state distribution of the cascade product-form network will be:

p(n1,m2,n3) = p1(n1)pa(n2)ps(naz) (4)

where n1,no, ng is the number of users in the susceptible, infected and recovering
states respectively and at every time instant ni + no + ng = n, where n is the
instantaneous total number of network nodes. Even though the combined inputs
in Fig. 2(a) are not Poisson, thus nor are the outputs, Jackson’s theorem allows to
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treat each stage (queues in Fig. 2(b)) as independent M/M/r; queues with input
rate \; and total service rate u;, ¢« = 1,2,3, where r; is the number of parallel
servers in each stage (here r; = 2,79 = r3 = 1). An input policy regulating the
arrival of new susceptible nodes with respect to the death/removal rates should
be employed to ensure n < oo, since all practical networks have finite nodes.
Distribution p;(n;) provides the number of users in each stage, and since the
service rates of the two parallel queues in stage 1 are not the same, we consider
the first stage as an M/M/2 queue with different service rates for the two servers
and obtain its steady-state distribution as:

—1
C _
[1 + 7,)1(1_,)1)6] 1 =0

1(n1) = — e, =1 5
pr(m) A )
n—
P1 C ny > 2
1+ﬂ1(1—ﬂ1)7

where p; = A1/u1, C is a constant depending on Ay, py, given by:
_ A
2ugpy’

and for the second and third stage, the distributions are respectively:

n 1-
pa(ns) = pyz —2 (7)
P2

n 1-
p3(n3) = p3° P (8)
p3

where pa = Xo/po, p3 = A3/p3, p1, p2, p3 < 1 and ny,n2,n3 > 0.

The number of dead nodes is unimportant, since they do not participate in
malware dynamics and in addition, it is assumed that new nodes are always
available. The service rate of each queue in Fig. 2(b) is the equivalent service
rate from Fig. 2(a), which in turn depends on the infection model, malware
dynamics and the topology of a network.

The average number of users in the system is given by

3
Pi
L=Li+)» pr,—m (9)
2= g
where L; is the average number of users in each queue and p,, = ()“'/Ti’_‘f)”pi,o,i =

2,3. In this case, the average number of susceptible (operational) and infected
legitimate nodes are respectively:

__C-m) p1(2 —p1)
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Ly P2 Ls P3 (11)
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Using the customer distributions (5), (7) and (8), other quantities of interest
can be computed, e.g. the average throughput of stage 1 provides the average
infection rate of the system. Similarly, the average throughput of stage 3 provides
the average recovery rate of the system, while the average throughput of stage 2
the average healing rate of infected nodes. Weighting these throughput quantities
by the corresponding loss rates p, ¢, w, the corresponding cumulative node churn
loss rate is obtained.

Until this point the analysis is generic and applies to all types of networks
with churn. However, the framework developed in Fig. 2, allows more detailed
results to be obtained on a per network type case. For instance, apart from ny, no,
ng, one may obtain analytical expressions of the average ny with respect to net-
work parameters, such as the infection/recovery rates, node transmission radius
and node densities of an ad hoc network. Such task is network type/scenario
specific and depends on the topology type and operation. In the following, we
will explore from a more practical perspective some of these possible results for
multihop networks with churn.

4 Behavior Evaluation in Wireless Distributed Networks

4.1 Simulation Setting

In this section we present numerical and simulation results regarding the opera-
tion and behavior of wireless distributed networks with churn, when attacked by
a single attacker. Infected nodes are assumed to further propagate the infectious
malware they received, while recovering nodes are prevented from doing so. This
means that the spreading of malware is mainly due to the network, while the
attacker has a smaller role in spreading dynamics, mostly needed to generate
new infections in the event that a network manages to recover completely for an
instance. Thus, the network spreading dynamics will be studied in the following.

We developed a discrete event simulator in Matlab to study the behavior of
the attacked network. At each epoch (slot) of the simulator one event takes place,
according to the current state of the system {nq, no, n3}, the topology of the net-
work and the corresponding infection (S—I transition), recovering (I—R transi-
tion) and full-recovery rates (R—S$ transition). This is ensured by the nature of
the system in Fig. 2.

For the multihop networks we focus on, the link infection rate A\, of a suscep-
tible node represents the probability that this user will become infected from a
malicious neighbor. The multihop topology is considered in our case as a random
geometric graph. Combining this with the link infection, a detailed analysis of
the system in Fig. 2(a) yields the total infection rate, as the service rate of the
single queue of susceptible nodes in the Norton equivalent (which is equal to p;
in the product-form equivalent). This infection rate will be >/ | k;Ae, where k;
is the number of malicious neighbors of susceptible node i (counting both the
attacker and infected legitimate nodes). The total recovering (corresponding to
u2 in Fig. 2(b)) and full-recovery rates (corresponding to us in Fig. 2(b)) depend
on ns, n3, and may be computed as nop;, N3, respectively.
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Fig. 3. Percentages of susceptible-infected nodes as a function of infection to recovery
strength (numerical)

Due to space limitations we only provide some indicative results that can be
used for the assessment of network reliability and attack potentials. Regarding
node churn, we study the behavior of the system for positive churn, i.e. for a
A/ (p + ¢+ w) > 1, which means that the network will be growing on average.
This is preferable for the study, as a decreasing network could sometimes lead to
degenerate (disconnected) topologies, or even to the extinction of the network.

4.2 Numerical and Simulation Results

Fig. 3 presents some numerical results obtained from the analysis, valid for arbi-
trary networks, providing intuition on the behavior of the average number of
nodes in the states of the system. Churn strength is equal to 1.67, which trans-
lates to a growing network. Notice the different scales in the vertical axes in both
figures and for both y-axes of each figure, indicating how the expected number
of susceptible and infected nodes vary with respect to the time each node is
expected to spend in each of the three stages (service rates).

As expected, a decrease in susceptible nodes translates to an increase in the
infected nodes. By comparing Fig. 3(a) and Fig. 3(b), it can be also observed that
regarding the dependence on the infection/revocery strength, some symmetry
(Fig. 3(b)) should be expected when the recovery (u;) and full recovery (p,.) rates
are the same. These results, and many similar that can be obtained from the
expressions provided before, can be used to assess the robustness of the network.
Malware dynamics are represented via the infection and recovery rates, while the
full recovery rate represents the countermeasures’ efficiency. Thus, given these
parameters, the expected state of the system can be evaluated.

The following results have been obtained through simulations, in which a
square deployment region with size L = 1000m was employed and all devices
used a transmission radius R; = 150m. Fig. 4 presents the expected number
of nodes in each state of the system as a function of network density (we fixed
the deployment region and increased progressively network nodes). Fig. 4(a)
regards a network with uneven recovery-full recovery rates, u; — u, respectively.
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Fig. 5. Expected number of nodes in each state of the network with respect to infec-
tion/recovery rates

This means that the mean infection and recovery times will be uneven as well.
Fig. 4(b) shows the corresponding results for even rates.

It is observed that as the network density increases, so do the expected
number of nodes in each state, and such increase is almost linear. However, the
corresponding increase rates are different for uneven recovery-full recovery rates
and similar for even rates. In both cases, the infection to full recovery strength
is Ae/pr = 2. This also explains the fact that the number of infected nodes
is the smallest compared to infected and recovering nodes, revealing potential
vulnerabilities for the network with respect to the specific malware dynamics and
the network structure, as it was also possible to do with the numerical results
we presented before.

However, different trends emerge regarding the expected number of nodes in
each state with respect to the infection/recovery strength, as shown in Fig. 5. As
before, the expected number of susceptible nodes has a complementary behavior
to the expected number of infected and recovering nodes. The trend though is
not linear. In fact, the number of recovering nodes, especially in Fig. 5(b) seems
to saturate for increasing infection/recovery strength. Such results can be again
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used to evaluate the robustness of the network with respect to the expected
behavior under various attack-countermeasure parameters.

Finally, Fig. 6 shows the average percentage difference of network size for
equal/unequal infection/recovery strengths and with respect to node density
and the intensity of the infection/recovery strength. As expected, this difference
is positive (even though small in some cases, since the churn strength was set
slightly higher than 1 in all scenarios to ensure a proper topology). The first
two bars in Fig. 6 are the average node increase as the density of the network
increases, while the last two bars represent the average node count increase for
increasing infection/recovery strength. It can be observed that in general even
infection-recovery strengths yield higher increase than uneven ones. Equal infec-
tion/recovery rates corresponds to strategies providing countermeasures that
match the effect of malware at the same time scales, which in turn allow the
network to maintain more nodes on average by preventing some I—D transi-
tions (infected nodes becoming dead) due to malware.

5 Conclusions

In this work, we exploited and adapted a queuing framework for modeling
malware spreading in wireless multihop networks that exhibit node churn due
to malicious attacks and/or energy depletion/recharging. We obtained general
expressions for the number of infected nodes in the steady-state of such systems
and studied the potentials of the network behavior for possible varying attack
profiles. These outcomes can be exploited for enhancing network robustness and
security against a broad spectrum of attacks and for various network topologies.
Our future work will focus on obtaining spreading optimal controls for malware
non-propagative and propagative wireless distributed networks both from the
attackers’ and network’s perspectives.
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