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Abstract. In Wireless Rechargeable Sensor Networks, one or more spe-
cial mobile entities (called the Mobile Chargers) traverse the network
and wirelessly replenish the energy of sensor nodes, using wireless power
transfer technology. In this paper, we present some state of the art algo-
rithms that apply to characteristic problems in such networks, namely
efficient use of wireless power transfer using i) one Mobile Charger, ii)
multiple Mobile Chargers, iii) collaborative mobile charging.
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1 Introduction and Model

Wireless Rechargeable Sensor Networks have recently attracted much research
interest (e.g. [2], [3], [4], [6]). In this paper, we review some state of the art
algorithms that apply to characteristic problems in Wireless Rechargeable Sensor
Networks: (a) how can we use a single Mobile Charger efficiently ([1]), (b) how
can we use multiple Mobile Chargers efficiently ([5]) and (c) how can we use
multiple Mobile Chargers, capable of charging each other, efficiently.

Our model features three types of devices: stationary sensors, Mobile Charg-
ers and one stationary Sink. We assume that there are N sensors of wireless
communication range r distributed at random in a circular area of radius R.
We virtually divide the network into Slices, the number of which is equal to the
number of the Mobile Chargers. K Mobile Chargers initially deployed at coor-
dinates (x, y) = (R

2 cos( π
K (2j − 1)), R

2 sin( π
K (2j − 1))) of the circular area, where
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j = 1, 2, ...,K − 1 (one Mobile Charger per Slice). In the case where K = 1, the
Mobile Charger is initially deployed at the centre of the circular area. The Sink
lies at the centre of the circular area. In our model we assume that the Mobile
Chargers do not perform any data gathering process.

We denote by Etotal the total available energy in the network. Initially,
Etotal = Esensors + EMC(tinit) where Esensors is the amount of energy shared
among the sensor nodes and EMC(tinit) is the total amount of energy that
the Mobile Chargers have and may deliver to the network by charging sensor
nodes. The maximum amount of energy that a single node and a single charger
may store is Emax

sensor and Emax
MC respectively. Energy is split among the sensor

nodes and the chargers as follows: Emax
sensor = Esensors

N and Emax
MC = EMC(tinit)

K .
We denote as Ei and Ej the residual energy of sensor node i and Mobile Charger
j respectively.

In our model the charging is performed point-to-point, i.e. only one sensor
may be charged at a time from a Mobile Charger by approaching it at a very
close distance so that the charging process has maximum efficiency. The time that
elapses while the Mobile Charger moves from one sensor to another is considered
to be very small when compared to the charging time; still the trajectory followed
(and particularly its length) is of interest to us, since it may capture diverse cost
aspects, like gas or electric power needed for charger movement. We assume that
the charging time is equal for every sensor and independent of its battery status.

We assume a quite heterogeneous data generation model. Each sensor node
chooses independently a relative data generation rate λi ∈ [a, b] (where a, b con-
stant values) according to the uniform distribution U [a, b]. Values of λi close to a
imply low data generation rate and values close to b imply high data generation
rate. The routing protocol operates at the network layer, so we are assuming
appropriate underlying data-link, MAC and physical layers.

1.1 Energy/Flow Criticality

In order to develop efficient algorithms for the Mobile Charger and address
the corresponding trade-offs, we introduce an attribute that captures a node’s
“importance” in the network, under any given routing protocol. This attribute
relies on two factors, (a) the traffic served by the node and (b) the energy
consumed by the node.

The need for combining these two factors emerges from the fact that the
traffic served by a node captures different aspects than its energy consumption
rate. A node may consume a large amount of energy either because it serves a
high network flow, or because its transmissions have high cost (e.g. long ranged
transmissions) (or both). The purpose of the attribute is to indirectly prioritize
the nodes according to their flow rate and energy consumption; a node serving
high traffic and/or having low residual energy should be charged at higher energy
level.

We denote as ci(t) the energy/flow criticality (also referred as criticality for
simplicity) of node vi at time t, with ci(t) = fi(t) · ρi(t). Given the time tMC
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when the last charging of the node occurred,

fi(t) = 1 − generation rate of node vi

traffic rate of vi since tMC
= 1 − λi

λi + mi(t)
t−tMC

is the normalized traffic flow served by node vi, where mi(t) is amount of traffic
(number of messages) that vi has processed (received and forwarded) towards the
Sink by time t since time tMC , and

ρi(t) =
energy consumed since last charging

max node energy since tMC
=

Ei(tMC) − Ei(t)

Ei(tMC)
= 1 − Ei(t)

Ei(tMC)

is the normalized energy consumption by time t, since the last charging. The
criticality is thus a number in [0, 1] which captures the importance of a given
node by taking into account its flow rate, its energy consumption, its possible
special role in the network and its influence to the routing protocol; nodes serving
high traffic (large mi(t)) and/or having consumed a lot of energy (low Ei(t)) have
high criticality ci(t) at time t and are “prioritized” by the Mobile Charger.

2 Algorithms Using a Single Mobile Charger

2.1 Global Knowledge Algorithm GK

The global-knowledge charger we suggest is an on-line method that uses crit-
icality as a ranking function. In each round, the charger moves to the sensor
that minimizes the product of the negation of each node’s criticality times its
distance from the current position of the Mobile Charger. More specifically, in
each moving step the GK minimizes the product

min
i

{
(2 − ci(t)) ·

(
1 +

disti
2R

)}

where disti is the distance of each sensor from the Mobile Charger and D is the
network radius, with the minimum taken over all sensors in the network (or at
least a large part of it). In other words, this algorithm prioritizes nodes with high
criticality and small distance to the Mobile Charger. Since this algorithm requires
a global knowledge of the state of the network, it is expected to outperform all
other strategies that use only local or limited network information, thus somehow
representing an on-line centralized performance upper bound. However, it would
not be suitable for large scale networks as it introduces great communication
overhead (i.e. every node has to propagate its criticality to the Mobile Charger)
and does not scale well with network size.

2.2 Limited Reporting Algorithm LR

The Sink is informed about the status of some representative nodes scattered
throughout the network and is able to provide the Mobile Charger with some
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guidance. In other words, this algorithm distributively and efficiently “simu-
lates” the global knowledge algorithm. We assume that the Sink can transmit
to the Mobile Charger wherever in the network the latter might be. The algo-
rithm follows a limited reporting strategy, since it exploits information from the
whole network area but from a limited number of nodes. The nodes of each
Slice periodically run a small computation overhead algorithm in order to elect
some special nodes, the reporters of the Slice; in particular, each node becomes
a reporter independently with some appropriate probability (thus, the number
of reporters is binomially distributed). The reporters act as the representatives
of their Slice and their task is the briefing of the Sink about their criticality.

The percentage of the nodes that will act as reporters brings off a trade-off
between the representation granularity of the network and the communication
overhead on each message propagated in the network. If we set a large percent-
age of reporters, the Sink will have a more detailed knowledge of each Slice’s
overall criticality but the message overhead will highly increase, since each mes-
sage should carry the Slice reporter’s current criticality. On the contrary, if we
set a small percentage of reporters, the overhead will be tolerable, but the rep-
resentation of a Slice will be less detailed.

In order to maintain a small set of reporters for each Slice (for communication
overhead purposes) we propose that Slice i which contains ni nodes elects κi =
ni

N · κtotal reporters, with the global number of reporters being

κtotal = h
R

r
log N, where h = 1 − a

b

is a network density heterogeneity parameter. Clearly, a highly heterogeneous
deployment (large b compared to a) will necessitate a higher number κtotal of
reporters. Also, κtotal must be large in large networks with many sensors. Each
node periodically with probability pi becomes a reporter. In order to have an
expected number of κi reporters in Slice i we need:

κi = ni · pi ⇒ pi =
ni

N · κtotal

ni
⇒ pi =

κtotal

N

The reporter selection is meant to happen in a local and distributed manner,
i.e. each node becomes a reporter with the above suitably, independently chosen
probability. This random independent generation of reporters is captured by
Bernoulli trials (one per node) i.e. a binomial distribution. In order to figure out
possible good values for κtotal that maximize the LR performance we carry out
a comparison operating the protocol between several reporter numbers (Fig. 1).

2.3 Reactive Trajectory Algorithm RT

In this algorithm, a node vi is propagating an alert message to its neighbours
each time its energy drops below a set of some crucial limits. The messages are
propagated for some hops and are stored at every node passed, in order for a tree
structure rooted at vi to be formed that can be detected by the Mobile Charger
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(a) Alive nodes.
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(b) Overhead.

Fig. 1. Alive nodes and communication overhead for various κtotal values in LR, after
6000 generated events

when passing through some tree node. Every node can root a tree and the strategy
followed (towards a small tree management overhead) is the maintenance of a
small tree degree with a larger tree depth.

The tree that is formed for each node is gradually growing, in an analogous
way to the criticality of the root node, as the gradual increase of a node’s crit-
icality is an indication of either high traffic or high energy consumption. We
use criticality as a measure of the gradual expansion of the tree, since its value
depicts both the importance of the node in the network and its energy consump-
tion rate. We propose a strategy of message propagations that aims at covering
a relatively large area of the network, while keeping energy consumption due to
communication overhead low.

More specifically, each node vi can alter among
⌈
log

(
N R

r

)⌉
alert levels which

determine the characteristics of the vi’s rooted tree. We denote as ali the current
alert level of node vi. The tree rooted at vi is formed in a way that the degree =
ali − 1 and the depth = 2ali−1 − 1. The duration of each successive alert level is
increased by a constant ratio from the previous level:

ali =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if 0 ≤ ci(t) < 0.5
2 if 0.5 ≤ ci(t) < 0.75
...

...⌈
log

(
N R

r

)⌉
if 1 − 1

2�log(N R
r )�−1

≤ ci(t) < 1

=
{

μ | μ ∈
[
1, 2, ...,

⌈
log

(
N

R

r

)⌉]}

with 1 − 1
2μ−1

≤ ci(t) < 1 − 1
2μ

where 1 − 1
2μ−1

=
μ−1∑
j=1

1
2j

, 1 − 1
2μ

=
μ∑

j=1

1
2j

.
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The tree management procedure aims at providing a high level information
about the local trees’ state and at the same time at maintaining the node memory
reservation at relatively low levels. For this reason, nodes store information solely
about their parent nodes in emerging tree structures (i.e. one record per parent).
Node vi which is already a tree member, may receive alert messages coming from
nodes that belong to other trees. In this case, vi stores the received alert messages
from surrounding parents, the number of which is at most equal to the number
of vi’s neighbors (since a parent node of vi can only be in its transmission range).
Nodes that participate in multiple trees, propagate messages concerning solely
the highest alert level and redirect the Mobile charger (when the latter is near the
current node) to follow the highest alert level tree links. In short, each node can
participate in multiple trees, reserves memory at most equal to the number of
its neighbors, propagates messages about the highest priority tree and redirects
the Mobile Charger to it.

The Mobile Charger alters its state between a patrol mode and a charging
mode. When in patrol mode, it follows a spiral patrol trajectory centred at the
Sink and does not charge any nodes until notified that the area traversed is low
on energy. When so notified by a node in such an area, it pauses the patrol mode
and enters the charging mode, in which it follows a different trajectory in order
to accomplish the charging process in this area. If the Mobile Charger detects
simultaneously different trees, then by a check on the depth of each structure
it can decide which is the most critical. After the completion of the charging
process the Mobile Charger resumes the patrol mode.

3 Algorithms Using Multiple Mobile Chargers

3.1 Centralized Coordination Algorithm CC

The CC protocol performs centralized coordination among the chargers and
assumes no knowledge on the network. In particular, the coordination process is
able to use information from all Mobile Chargers (energy status, position etc),
but is agnostic of the underlying network and sensor nodes attributes (energy
status, position etc.). This approach virtually partitions the network elements in
two completely separate levels, the Mobile Chargers level and the sensor nodes
level.
Coordination phase. Each Mobile Charger is assigned to a network region.
Since the initial charger deployment coordinates are (x, y) = (R

2 cos( π
K (2j −

1)), R
2 sin( π

K (2j − 1))), where j = 1, 2, ...,K, we can split the network area in
Slices, with one charger assigned to each Slice. When the coordination process
is initialized, the region of each charger is computed. Each charger should be
assigned to a region of size analogous to its current energy level, so that the
energy dissipation among the chargers is balanced. In order to compute the size of
the region of charger j, it suffices to compute the central angle φj corresponding
to the charger’s Slice. In particular
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φj = 2π · Ej∑K
j=1 Ej

, where
K∑

j=1

φj = 2π.

Charging phase. During this phase, charger j traverses the network region it
is assigned to (Slice defined by angle φj) and charges the corresponding sensor
nodes. The CC algorithm assumes no knowledge on the network. For this reason
the path followed by the Mobile Charger is restricted to several naive alterna-
tives. In our approach we use a “blind” scanning of the region where the Mobile
Charger starts form the Sink and traverses an exhaustive path until it reaches
the boundaries of the network area. The advantage of this movement is that
due to its space filling attributes, the Mobile Charger covers the whole Slice and
almost every node is charged, until the energy of the Mobile Charger is totally
depleted. On the other hand, due to lack of knowledge, this movement is not
adaptive, i.e. it does not take into account differences of the energy depletion
rates of the network area caused by the underlying message propagation.

3.2 Distributed Coordination Algorithm DC

Coordination phase. The DC algorithm performs distributed coordination
among chargers and assumes no network knowledge. We split the network area
in Slices and assign one Slice per charger. Angle φj corresponds to the central
angle of jth charger’s Slice. The chargers distributively define their Slice limits
(i.e. the two radii that define the Slice), according to the size of the region each
one can handle, w.r.t. their energy status. Each charger can shift their right and
left Slice limits resulting in either a widening or a shrinkage of the region of
interest. This task is performed distributively and each region limit movement
is determined through a cooperation of the two adjacent Mobile Chargers. A
limit movement of j’s region is expressed as a change of φj . The coordination
process uses two critical charger parameters for definition the region of interest,
the charger’s current energy level Ej and the charger’s energy consumption rate
since the last coordination ρj . The change Δφl

j of φj for the left Slice limit and
the change Δφr

j of φj for the right are defined by the following computations:

if min{Ej , Ej−1} = Ej then
Δφl

j = −φj · |ρj−1−ρj |
max{ρj−1,ρj}

else
Δφl

j = φj−1 · |ρj−1−ρj |
max{ρj−1,ρj}

end if

if min{Ej , Ej+1} = Ej then
Δφr

j = −φj · |ρj−ρj+1|
max{ρj ,ρj+1}

else
Δφr

j = φj+1 · |ρj−ρj+1|
max{ρj ,ρj+1}

end if

The new angle (denoted by φ′
j) is computed as φ′

j = φj + Δφl
j + Δφr

j . Note
that, between two adjacent chargers j1 and j2, the change of their common slice
limit is Δφr

j1
= −Δφl

j2
so that the charger with the lower energy level provides

its neighbor with a portion of its region of interest. Also, it is their energy
level that determines which charger should reduce its region of interest and the
energy consumption rate that determines the size of the reduced area. The size
of the angle change is not computed by considering the energy levels of the two
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chargers because energy consumption rate shows how quickly will this energy
level be reduced. For example, if ρj is high then j’s Slice is critical, causing a
rapid reduction of Ej , independently of its current level.
Charging phase. Since this algorithm operates under the no knowledge assump-
tion, the charging phase follows the same pattern with the CC algorithm (Slice
scanning).

3.3 Centralized Coordination Global Knowledge Algorithm CCGK

The CCGK algorithm, similarly to the CC algorithm, performs centralized coor-
dination. However, the assumption of global knowledge on the network fur-
ther extends the Mobile Chargers’ abilities. For this reason, it is expected to
outperform all other strategies that use only local information, thus somehow
representing a performance bound. The global knowledge assumption would be
unrealistic for real large-scale networks, as it introduces large communication
overhead (i.e. nodes and chargers have to propagate their status over large dis-
tances).
Coordination phase. Instead of using the same coordination process with the
CC algorithm, we integrate the global knowledge assumption in the coordination
phase. As a result, the network is not partitioned in two separate levels (Mobile
Chargers, sensor nodes) and the Mobile Chargers are allowed to use network
information during this phase. Each Mobile Charger is assigned to a network
region. The region of interest of charger j is a cluster of nodes. Node i belongs
to the cluster of charger

j′ = arg min
j

{(
1 +

distij
2R

)
·
(

2 − Ej

Emax
MC

)}

where distij is the distance between node i and charger j. In other words, a
node selects a charger which is close and with high amount of energy. Note
that the centralized computation of the charger region in the CCGK algorithm is
more powerful compared to other methods, since it uses information about the
distance among every charger with every node.
Charging phase. The global knowledge charging phase we suggest uses energy
and distance in a ranking function. In each round the charger moves to the
sensor in the corresponding cluster, that minimizes the product of each node’s
energy times its distance from the current position of the Mobile Charger. More
specifically, in each moving step the charger j charges node

i′ = arg min
i∈Cj

{(
1 +

distij
2R

)
·
(

1 +
Ei

Emax
sensor

)}
.

In other words, this algorithm prioritizes nodes with low energy and small dis-
tance to the Mobile Charger.
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3.4 Distributed Coordination Local Knowledge Algorithm DCLK

Coordination phase. The coordination phase follows the same pattern with
the coordination phase of DC algorithm (distributed φj angle computation).
Charging phase. The DCLK algorithm operates with local knowledge assump-
tion. The Slice corresponding to charger j is divided into k Sectors Sjk of the same
width. Charger j prioritizes its Sectors w.r.t. high number of sensor nodes with low
level of residual energy.

Definition 1. Emin
jk is the lowest nodal residual energy level in the Sector Sjk.

Definition 2. Emin+Δ
jk is an energy level close to Emin

jk :

Emin+Δ
jk = Emin

jk + δ · Emax
sensor

Emin
jk

, δ ∈ (0, 1).

Definition 3. N(Sjk) is the number of nodes in Sector Sjk with residual energy
between Emin

jk and Ejk
min+Δ:

N(Sjk) =
Emin+Δ

jk∑
e=Emin

jk

N(e)

where N(e) is the number of nodes with energy level e.

Charger j charges Sector Sjk which maximizes the product max
Sjk

{N(Sjk) ·
(Emax

sensor − Emin
jk )}. The intuition behind this charging process is the grouping

of nodes in each Slice and the selection of a critical group. A critical group is a
Sector containing a large number of sensor nodes that require more energy than
other nodes throughout the network.

4 Algorithms Using Hierarchical Collaborative Mobile
Charging

4.1 Model Variation

In this case, Mobile Chargers can either charge nodes or charge other Mobile
Chargers. Initially, Etotal = Esensors + EMC(tinit) + ESC(tinit), where Esensors

is the total amount of energy shared among the sensor nodes, EMC(tinit) is
the total amount of energy shared among the Mobile Chargers and ESC(tinit)
is the total amount of energy shared among the Special Chargers. The maxi-
mum amount of energy that a single node, a single Mobile Charger and a single
Special Charger may store is Emax

sensor, Emax
MC and Emax

SC respectively. Energy is
uniformly split among the sensor nodes and the chargers as follows: Emax

sensor =
Esensors

N , Emax
MC = EMC(tinit)

M and Emax
SC = ESC(tinit)

S .
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At first, we deploy the sensor nodes uniformly in the circular network. Then,
we divide our network into M equal sized Slices, one for each Mobile Charger.
Thus, every Mobile Charger is responsible for charging nodes that belong to its
Slice. We denote by Dj the set of sensor nodes that belong to Slice j, i.e. to
the jth Mobile Charger’s group. Finally, we divide the Mobile Chargers into S
groups, one for each Special Charger. Thus, each Special Charger is responsible
for charging the Mobile Chargers that belong to its group, denoted as Ck (for
SCk). Initially, these S groups are equally sized, i.e. |Ck| = M

S (1 ≤ k ≤ S)
and the Mobile Chargers that belong to each group are given by the following
formula: Ck =

{
j : j ∈ [

(k − 1)M
S + 1 , k M

S

]}
, (1 ≤ k ≤ S)

These groups may change during the algorithm’s coordination phase. More
specifically, the Special Chargers communicate with each other and decide, accord-
ing to their energy status, if they are still able to be in charge of the Mobile Charg-
ers that belong to their group or they should delegate some of them to other
Special Chargers.

4.2 1-Level Knowledge Distributed Coordination 1KDC

The 1KDC algorithm performs a distributed coordination among Special Charg-
ers, i.e. every Special Charger can communicate with adjacent neighbors. Also, it
assumes 1-level network knowledge, i.e. it can use information only about Mobile
Chargers’ energy status (and not about the sensors’ which lie one level lower).
Coordination phase: In distributed coordination, we assume that a Special
Charger knows which are the adjacent Mobile Chargers on the boundaries of its
region. We call next the first Mobile Charger that belongs to the SCk+1 and
previous the last Mobile Charger that belongs to SCk−1. More specifically,
nk = min

j∈Ck+1
{j}: next Mobile Charger (belongs to SCk+1) pk = max

j∈Ck−1
{j}: pre-

vious Mobile Charger (belongs to SCk−1)
The Special Charger SCk, in order to coordinate with each of its neighbors

(SCk−1 and SCk+1), calculates which of them has the highest energy supplies so
as to charge the Mobile Chargers in its group and the additional Mobile Charger
of its left or right neighbor. Thus, every Special Charger k estimates the residual
energy in both cases (including a Mobile Charger of its left and right neighbor)
by the following equations:

ep
k = ESCk

−
∑
j∈Ck

Elack
MCj

− Elack
MCpk

, en
k = ESCk

−
∑
j∈Ck

Elack
MCj

− Elack
MCnk

where Elack
MCj

= Emax
MC − EMCj

is the amount of energy that MCj can receive
until it is fully charged.

Between two adjacent Special Chargers the one with the higher energy sup-
plies takes the other’s boundary Mobile Charger in its group. Thus, the Special
Charger with lower energy supplies is responsible for a smaller area. In the case
that their energy supplies are the same they do not exchange any Mobile Charg-
ers. More precisely, the coordination algorithm is the following:
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(SCk, SCk−1)

if (ep
k > en

k−1) then
Ck = Ck

⋃{MCpk
}

Ck−1 = Ck−1 \ {MCpk
}

else if (ep
k < en

k−1) then
Ck−1 = Ck−1

⋃{MCnk−1}
Ck = Ck \ {MCnk−1}

else
No Mobile Chargers exchange

end if

(SCk, SCk+1)

if (en
k > ep

k+1) then
Ck = Ck

⋃{MCnk
}

Ck+1 = Ck+1 \ {MCnk
}

else if (en
k < ep

k+1) then
Ck+1 = Ck+1

⋃{MCpk+1}
Ck = Ck \ {MCpk+1}

else
No Mobile Chargers exchange

end if

Trajectory: Special Charger k should determine which Mobile Charger will be
the next that will be charged prioritizing a Mobile Charger based on minimum
energy and minimum distance. Considering this, SCk chooses to charge MCm

where

m = arg min
j∈Ck

{(
1 +

EMCj

Emax
MC

)
·
(

1 +
dkj

2R

)}
.

Charging phase: A Special Charger charges a Mobile Charger j according
to its energy consumption rate rMCj

. More specifically, a Mobile Charger with
higher consumption rate (compared to the rest Mobile Chargers that belong
to the Special Charger’s group) should be charged with a higher amount of
energy. Motivated by that, if by MCm we denote the Mobile Charger that Special
Charger k chose to charge, then the amount of energy that the Special Charger
will give to it is e = cm · (

min{Elack
MCm

, ESCk
})

where cm = rMCm∑
j∈Ck

rMCj
.

4.3 2-Level Knowledge Centralized Coordination 2KCC

The 2KCC algorithm performs centralized coordination and assumes 2-level net-
work knowledge, i.e. it can use information both about Mobile Chargers’ and
about the sensors’ energy status. It assigns to each Special Charger an amount
of Mobile Chargers according to their residual energy. More precisely:
Coordination: |Ck| = Ek · M where Ek = ESCk∑S

i=1 ESCi

, (1 ≤ k ≤ S).
Trajectory: Since each Special Charger assumes 2-level network knowledge, it
takes into account information from both Mobile Chargers and sensor nodes in
order to find good trajectories. Thus, SCk prioritizes MCm where

m = arg min
j∈Ck

{
α · EMCj

Emax
MC

+ (1 − α) ·
∑

i∈Dj
Ei

|Dj | · Emax
sensors

}

with α ∈ (0, 1) a constant allowing to select the weight of each term in the
sum. We use network lifetime (one of the most indicative performance metrics)
to decide which is the appropriate value of parameter α in 2KCC protocol that
achieves the best performance. As shown in Fig. 2 the most suitable value is
α = 1, which is explained by the fact that when a Special Charger charges a
Mobile Charger, it should take into account its energy status only.
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Fig. 2. Alive nodes over time (Varying α)

Charging phase: Each Special Charger computes the percentage of energy
to transfer, according to the lack of energy in the Slice of the selected Mobile
Charger compared to the total energy lack in all Slices that this Special Charger
is responsible for. More precisely, Special Charger k transfers to MCm an amount
of energy e = cm · (

min{Elack
MCm

, ESCk
})

where

cm =

∑
i∈Dm

Elack
i∑

j∈Ck

∑
i∈Dj

Elack
i

∈ (0, 1)

where Elack
i = Emax

sensor − Ei is the amount of energy that sensor i can receive
until it is fully charged.
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