
Reproducible Software Appliances
for Experimentation

Cristian Ruiz1(B), Olivier Richard1, and Joseph Emeras2

1 INRIA Grenoble, Grenoble, France
{cristian.ruiz,olivier.richard}@imag.fr

2 INRIA Nancy, Nancy, France
joseph.emeras@imag.fr

Abstract. Experiment reproducibility is a milestone of the scientific
method. Reproducibility of experiments in computer science would bring
several advantages such as code re-usability and technology transfer. The
reproducibility problem in computer science has been solved partially,
addressing particular class of applications or single machine setups. In
this paper we present our approach oriented to setup complex environ-
ments for experimentation, environments that require a lot of configura-
tion and the installation of several software packages. The main objective
of our approach is to enable the exact and independent reconstruction of
a given software environment and the reuse of code. We present a sim-
ple and small software appliance generator that helps an experimenter
to construct a specific software stack that can be deployed on different
available testbeds.

Keywords: Reproducible Research · Testbed · Virtual Appliances ·
Cloud Computing · Experiment Methodology

1 Introduction

In order to strengthen the results of a research it is important to carry out the
experimental part under real environments. In some cases, these real environ-
ments consist in a complex software stack that normally comprises a configured
operating system, kernel modules, run-time libraries, databases, special file sys-
tems, etc. The process of building those environments has two shortcomings: (a)
It is a very time consuming task for the experimenter that depends on his/her
expertise. (b) It is widely acknowledged that most of the time, it is hardly repro-
ducible. A good practice at experimenting is to assure the reproducibility. For
computational experiments this is a goal difficult to achieve and even a mere
replication of the experiment is a challenge [8]. This is due to the numerous
details that have to be taken into account. The process of repeating an exper-
iment was carefully studied in [7] and among the many conclusions drawn, the
difficulty of repeating published results was highly relevant.

c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014
V.C.M. Leung et al. (Eds.): TridentCom 2014, LNICST 137, pp. 33–42, 2014.
DOI: 10.1007/978-3-319-13326-3 4

34 C. Ruiz et al.

With the advent of testbeds such as Grid’5000 [5] and FutureGrid [15],
cloud-based testbeds like BonFIRE1, the ubiquity of Cloud computing infras-
tructures and the virtualization technology that is accessible to almost anyone
that has a computer with modest requirements. Now it is possible to deploy
virtual machines or operating system images, which makes interesting the app-
roach of software appliances for experimentation. In [12] the author gives 13 ways
that replicability is enhanced by using virtual appliances and virtual machine
snapshots. Another close approach is shown in [9] where snapshots of computer
systems are stored and shared in the cloud making computational analysis more
reproducible. A system to create executable papers is shown in [2], which relies
on the use of virtual machines and aims at improving the interactions between
authors, reviewers and readers with reproducilibity purposes.

Those approaches offer several advantages such as simplicity, portability, iso-
lation and more importantly an exact replication of the environment but they
incurred in high overheads in building, storing and transferring the final files
obtained. Additionally, it is not clear the composition of the software stack and
how it was configured. We lose the steps that let to their creation.

In this paper, we present our approach to reproduce a software environment
for experimentation. The approach is based on a software appliance generator
called Kameleon. We present the implementation of a persistent cache mecha-
nism that stores every piece of data (e.g., software packages, configuration files,
scripts, etc.) used to construct the software appliance. It presents a lightweight
approach which enables the construction and exact post reconstruction of a given
software appliance from text descriptions. Kameleon persistent cache mechanism
presents three main advantages: (1) it can be used as a format to distribute and
store individual and related software appliances (virtual cluster) incurring in
less storage requirements; (2) provenance of data, anyone can look at the steps
that led to the creation of a given experimental environment; (3) it helps to
overcome widespread problems occasioned by small changes in binary versions,
unavailability of software packages, changes in web addresses, etc.

This paper is structured as follows: In Section 2, some approaches to repro-
duce a given environment for experimentation are discussed. Then, our approach
to set up the environment required for experimentation is described in Section 3.
In Section 4, we show some experimental results and validation of our approach.
Finally the conclusions are presented in Section 5.

2 Related Works

Experimenters have different options to make the environment for experimenta-
tion more reproducible. They can capture the environment where the experiment
was run or they can use a more reproducible approach to set up the experiment
from the beginning.
1 http://www.bonfire-project.eu

http://www.bonfire-project.eu

Reproducible Software Appliances for Experimentation 35

2.1 Tools for Capturing the Environment of Experimentation

CDE [11] and ReproZip [6] are based on the capture of what it is necessary to run
the experiment. They capture automatically software dependencies through the
interception of Linux system calls. A package is created with all these dependen-
cies enabling it to be run on different Linux distributions and versions. ReproZip
unlike CDE allows the user to have more control over the final package created.
Both tools provide the capacity of repeating a given experiment. However, they
are aimed at single machine setups, they do not consider distributed environ-
ments and different environments that could interact between them.

2.2 Methods for Setting Up the Environment of Experimentation

Manual. The experimenter deploys a golden image that will be provisioned
manually. The image modifications have to be saved some way (e.g snapshots)
and several versions of the environment can be created with testing purposes.
Possibly, the experimenter has to deal with the contextualization of the images
or it could be done using the underlying testbed infrastructure. In terms of
reproducibility, the experimenter end up with a set of pre-configured software
appliances that can be deployed later on the platform by him/her or another
experimenter. This approach is relevant due to its simplicity and has been used
and mentioned in [9] and [2]. Despite its simplicity, the storing of software appli-
ances or snapshots incurs in high storage costs.

Script Automation. It is as well based on the deployment of golden images,
however, the provisioning part is automated using scripts. The experimenter
possibly has no need to save the image, because it can be reconstructed from the
golden image at each deployment. Many experimenters opt for this approach
because it gives a certain degree of reproduciblity and automation and it is
simple compared to using configuration management tools. This was used in
[1] for deploying and scheduling thousands of virtual machines on Grid’5000
testbed. Script automation incurs in less overhead when the environment has
to be transmitted, for post execution. Nevertheless, it is still dependent on the
images provided by the underlying platform.

Configuration Management Tools. Unlike the previous approaches, the
golden images are provisioned this time with the help of configuration man-
agement tools (e.g., Chef 2 or Puppet3) which gives to the experimenter a high
degree of automation and reproducibility. However, the process of porting the
non-existing software towards those tools is complex and some administration
expertise is needed. In [14] it is shown the viability of reproducible eScience on
the cloud through the use of configuration management tools. A similar approach
is shown in [3].
2 http://www.opscode.com/chef/
3 https://puppetlabs.com/

http://www.opscode.com/chef/
https://puppetlabs.com/

36 C. Ruiz et al.

Software Appliances. Experimenters can opt for software appliances that
have to be contextualized at deployment time. In [13] the viability of this app-
roach was shown. Those images can be either built or downloaded from existing
testbed infrastructures (e.g Grid’5000, FutureGrid) or sites as TURNKEY 4 or
Cloud market5 oriented to Amazon EC2 images. Those images are independent
from the ones provided by the platform and experimenters have access to more
operating system flavors. The process of image building relies on widely available
tools that will be analyzed in the next subsection.

2.3 Software Appliances Builders

We use the term software appliance, which is defined as a pre-built software that
is combined with just enough operating system (jeOS) and can run on bare metal
(real hardware) or inside a hypervisor. A virtual appliance is a type of software
appliance, which is packed in a format that targets a specific platform (normally
virtualization platform). A software appliance encompasses three layers:

– Operating System: In the broadest sense includes the most popular oper-
ating systems (e.g GNU/Linux, Windows, FreeBSD). This element of the
appliance can also contain modifications and special configurations, for
instance a modified kernel.

– Platform Software: This encompasses compiled languages such as C, C++
and interpreted languages such as Python and Ruby. Additionally, applica-
tions or middle-ware (e.g., MPI, MySQL, Hadoop, Apache, etc). All Those
software components are already configured.

– Application Software: New software or modifications to be tested and
studied.

Vagrant6 and Veewee7 are complementary tools to create and configure
lightweight, reproducible, and portable development environments. Veewee auto-
matically builds virtual machine images of different Linux distributions. Those
images can be exported as so called Boxes that are run on top of the most
popular virtualization technologies (e.g., VirtualBox, VMware, etc.). Vagrant
provision these Boxes using industry-standard configuration management tools
such as shell scripts, Chef or Puppet that will automatically install and config-
ure software. The idea of Vagrant is the creation of disposable and consistent
environments that can be re-built from scratch. BoxGrinder 8 creates appliances
from simple plain text descriptions for various platforms. Unlike previous tools,
it uses the host system to perform the image creation which results in a faster
process. Those tools are widely used in Cloud infrastructures for generating cus-
tomized virtual appliances. In theory any experimenter could reconstruct the
4 http://www.turnkeylinux.org
5 http://thecloudmarket.com/
6 http://www.vagrantup.com/
7 https://github.com/jedi4ever/veewee
8 http://boxgrinder.org/

http://www.turnkeylinux.org
http://thecloudmarket.com/
http://www.vagrantup.com/
https://github.com/jedi4ever/veewee
http://boxgrinder.org/

Reproducible Software Appliances for Experimentation 37

virtual appliances using the same tool and the same specifications provided by
other experimenter. However, the main hurdle is the dependency on external
repositories, for instance, 30% of Veewee definitions files point to repositories
that not longer exist or some packages are missing for a complete installation.

3 Reproducible Software Appliances

We extended our previous work Kameleon [10] which is a very simple software
appliance generator that enables the construction and exact post reconstruction
of a given software appliance from text descriptions. It is targeted to make
easier the reconstruction of custom software stacks in HPC, Grid, or Cloud-
like environments. Kameleon takes care of the following steps in the process of
software appliance generation:

– Operating system: Construction of the respective O.S file system lay-
out, which encompasses the necessary binaries, libraries, configuration files
in order to run. This depends on the distribution chosen for the software
appliance.

– Provision: Installation of different software packages required for the appli-
ance. This can be done through the package manager of the distribution
chosen, from source tarballs, or using configuration management tools.

– User’s code: This step will add user’s modifications or applications that
the user wants to experiment with.

– Save output: Save the generated image into a particular format: Virtual
machine format, LiveCD, raw disk image, etc.

Kameleon approach is based on two contexts, namely execution context which
is where Kameleon engine is executed (e.g., user’s machine) and construction con-
text in charge of generating the file system layout of the appliance. Kameleon
can use different operating system-level virtualization techniques such as: chroot
(the less isolated but the lightness one) or Linux Containers as well as full
virtualization (e.g., VirtualBox, kvm) and real machine (the most isolated but
the heaviest one). Each context has its own advantages and disadvantages. As
exposed before, using the user’s machine to build the appliance could result in
a faster build process. Kameleon enables to take advantage of the most con-
venient approach given the user’s requirements. The process of construction or
reconstruction has to take care of some possible issues caused by, for example,
isolation and portability. Special needs can be specified in Kameleon metadata.

Our previous work was extended mainly in two points: (1) Requirements for
a reproducible software appliance were identified, (2) The implementation of a
persistent cache mechanisim. Both points will be described next.

3.1 Requirements for a Reproducible Reconstruction

The approach for software appliance construction and reconstruction is based
on four requirements:

38 C. Ruiz et al.

global:
 workdir: /tmp/kameleon
 distrib: debian
 debian_version_name: etch
 distrib_repository: http://archive.debian.org/debian-archive/debian/
 output_environment_ le_system_type: ext3
 arch: i386
 network_hostname: "test"
 extra_packages: "mysql-server mysql-client mingetty "
 oar_repository: "deb http://oar-ftp.imag.fr/oar/2.2/debian/stable/ ./"
 steps:
 - bootstrap
 - system_con g
 - mount_proc
 - software_install:
 - extra_packages
 - oar_2.2/oar_debian_install
 - oar_2.2/oar_system_con g
 - oar_2.2/oar_con g
 - autologin
 - kernel_install
 - umount_proc
 - build_appliance_kpartx:
 - create_raw_image
 - attach_kpartx_device
 - mkfs
 - mount_image
 - copy_system_tree
 - install_extlinux
 - umount_image
 - save_as_vdi

oar_config:
 - config_mysql:
 - exec_chroot: /etc/init.d/mysql start || service mysql start || true
 - exec_on_clean: chroot $$chroot bash -c "/etc/init.d/mysql stop || true"
 - mysql_db_init:
 - exec_appliance: cp $$stepdir/data/oar_mysql_db_init $$chroot/usr/lib/oar/
 - exec_chroot: oar_mysql_db_init
 - update_hostfile:
 - append_file:
 - /etc/hosts
 - |
 127.0.0.1 node1 node2
 - create_resources:
 - exec_chroot: oarnodesetting -a -h node1

Fig. 1. Recipe and step example

1. A recipe (Fig. 1) that describes how the software appliance is going to be
built. This recipe is a higher level description easy to understand and con-
tains some necessary meta-data in form of global variables and steps. For
more details [10]

2. The DATA which is used as input of all the procedures described in the
recipe. It encompasses software packages, tarballs, configuration files, control
version repositores, scripts and every input data that make up a software
appliance. Whenever used the term DATA in this paper, it will refer to this.

3. Kameleon engine consist in 700 lines of ruby code which parses the recipe
and carry out the building. This part includes as well the persistent cache
mechanism that will be described later on. This is the user interface to
Kameleon.

4. Metadata that describes the compatibility and requirements between execu-
tion context and construction context.

Therefore, the problem of guaranteeing the exact reconstruction of software
appliances is reduced to keeping the parts of Kameleon unchanged: (1) the recipe,
(2) DATA (3) Kameleon engine. Two different experimenters having those three
exact elements and fulfilling the requirements of context interactions (4) will
generate the same software appliance. Kameleon can generate in an automatic
and transparent way a cache file that will contain the exact DATA used during
the process of construction along with the recipe, steps and metadata, all bundled
together enabling the easy distribution. The low size of Kameleon engine and
Polipo (less than 1MB) makes feasible the distribution of the exact versions used
to create the environment, avoiding the incompatibility between versions. The
whole process is depicted in Fig. 2. More information can be found in [10] or in
Kameleon web site9.
9 kameleon.imag.fr

kameleon.imag.fr

Reproducible Software Appliances for Experimentation 39

Kameleon
Engine

Recipe
Steps

DATA (e.g.,scripts,software
packages, software version

repositories, source tarballs,
etc.)

Software Appliance

CACHE

+

Variables

Actions
- Install Software
- Alter Configurations
- More

- Shell Commands
- Chef

Fig. 2. Software appliance creation with Kameleon

3.2 Persistent Cache Mechanism

Our approach to achieve replicability is to use a persistent cache to capture
all the DATA used during the construction. As we cannot guarantee that a
particular download link will exist forever or always point to the same software
with the same version. A persistent cache mechanism brings the two followings
advantages: (a) Data can always be retrieved and (b) The software versions will
be exactly the same.

Design. The caching mechanism has to be transparent and lightweight for the
user in the two phases of the Kameleon approach: the construction of the soft-
ware appliance, and its respective ulterior reconstruction. As most of DATA
comes from the network (e.g., operating system, software packages), the obvious
approach was to integrate a caching proxy for web. Such a caching proxy will
capture transparently every piece of data downloaded using the network. How-
ever, there are still some parts of the DATA missing, because some files - that
make the software appliance unique - are provided by the user from its local
machine or even worse some packages cannot be cached. That is the reason why
we opted for an approach consisting in two parts:

– A caching web proxy, that caches packages coming from the network. This
relies on Polipo10 which is a very small, portable and lightweight caching web
proxy. We chose Polipo because it can run with almost zero configuration.

– Ad hoc procedures that cache what could not be cached using the caching
web proxy (e.g., version control repositores, https traffic) and all data from
the local machine. These Ad hoc procedures are based on simple actions
depending on the data to cache. Modifications on the fly of the steps involved
on those Ah doc procedures are necessary.

In order to make more clear the composition and limitations of the persistent
cache, we define four properties of DATA:
10 http://www.pps.jussieu.fr/∼jch/software/polipo/

http://www.pps.jussieu.fr/~jch/software/polipo/

40 C. Ruiz et al.

– Location: it can be either Internal (I) or External (E).
– Cacheability: whether it is possible to cache it (C) or not (C̄).
– Method of caching: it can be Proxy (P) or Ad hoc (A).
– Scope: two possible values Private or Public.

The scope makes necessary the creation of two types of cache Private and Public
for distribution purposes. Combining the properties Location, Cacheability and
Method of caching we can identify five types of data:

– E,C,P: data which comes from an external location (e.g., local network,
internet) and can be cached with the proxy (e.g., Software packages, tarballs,
input data).

– E,C,A: same external location, however, it cannot be cached with the proxy
(e.g., version control repositories, https traffic).

– E,C̄: this data comes from an external location but can not be cached due
to some restrictions (e.g., proprietary licenses) or due to its size it can not
be stored (e.g., big databases).

– I,C,A: data that comes from the local machine and it is cached by some ad
hoc procedures.

– I,C̄: it comes form local machine but can not be cached.

4 Experimental Results and Validation

In order to show that our approach is very portable between versions of Linux dis-
tributions. We carried out successfully construction and reconstruction of differ-
ent appliances as shown in Table 1 that consist in different flavors of GNU/Linux
(Debian, Ubuntu) and middleware: OAR [4] a very lightweight batch scheduler,
Hadoop11 and TAU12. It was possible to reproduce old environments of test back
to 2009. A design goal was to achieve a self contained cache. Hence, we tested
the portability of the persistent cache mechanism. The aforementioned software
appliances where reconstructed using their respective persistent cache files, the
Kameleon engine and the Polipo binary which made only 984 K Bytes. This was
tested in the following Linux distributions: Fedora 15, OpenSUSE 11.04, Ubuntu
10.4 and CentOS 6.0.

Table 1. Software appliances generated

General Appliances
Name Main software stack Size [MB]

Hadoop
Java 1.6
Hadoop 1.03 229
Ubuntu 10.04 LTS

HPC Profiling

PAPI 5.1.0
TAU 2.22
OpenMPI 1.6.4 226
Debian Wheezy

OAR Appliances
OAR Version date of release GNU/Linux version Size [MB]
2.2.17 27 Nov 2009 Debian etch 112
2.3.5 30 Nov 2009 Debian etch 113
2.4.7 11 Jan 2011 Debian Lenny 137
2.5.0 5 Dec 2011 Debian Squeeze 140
2.5.2 23 May 2012 Debian Squeeze 140

11 http://hadoop.apache.org/
12 http://www.cs.uoregon.edu/research/tau/home.php

http://hadoop.apache.org/
http://www.cs.uoregon.edu/research/tau/home.php

Reproducible Software Appliances for Experimentation 41

4.1 Building Old Environments

The persistent cache mechanism enable the building of environments generated
at any point of time. It does so by using the same versions that are compatible
with the scripts used at the moment of the first generation of the software
appliance. Not using the same exact versions can sometimes generate unexpected
errors that are time consuming and researchers do not want to deal with.

We faced those problems when building software appliances based on Arch-
linux distribution and on the OAR batch scheduler. Their current versions posed
several incompatibility problems with the scripts used for generating the software
appliances a year ago. The persistent cache mechanism enabled the reconstruc-
tion of these software appliances. All the examples presented in this paper can
be reproduced accesing the Kameleon site13.

5 Conclusions and Future Works

Experiment reproduciblity is a big challenge nowadays in computer science, a lot
of tools have been proposed to address this problem, however there are still some
environments and experiments that are difficult to tackle. Commonly, experi-
menters lack of expertise to setup complex environments necessary to reproduce
a given experiment or to reuse the results obtained by someone else. We presented
in this paper, a very lightweight approach that leverage existing software and
allows an experimenter to reconstruct independently the same software environ-
ment used by another experimenter. Its design offers a low storage requirement
and a total control on the environment creation which in turn allows the exper-
imenter to understand the software environment and introduce modifications
into the process. Furthermore, several methods to carry out the setup of the
environment for experimentation were described and we show the advantages of
our approach Kameleon. As a future work we plan to carry out more complex
experiments with our approach and measure the gains in terms of reproducilibity
and complexity as well as to study the contextualization of environments (e.g.,
post installation process) in different platforms.

Acknowledgments. Experiments presented in this paper were carried out using the
Grid’5000 experimental testbed, being developed under the INRIA ALADDIN devel-
opment action with support from CNRS, RENATER and several Universities as well
as other funding bodies (see https://www.grid5000.fr).

References

1. Balouek, D., Lèbre, A., Quesnel, F.: Flauncher and DVMS - Deploying and Schedul-
ing Thousands of Virtual Machines on Hundreds of Nodes Distributed Geograph-
ically. In: IEEE International Scalable Computing Challenge (SCALE 2013), held
in conjunction with CCGrid 2013, Delft, Pays-Bas (2013)

13 http://kameleon.imag.fr/

http://kameleon.imag.fr/

42 C. Ruiz et al.

2. Brammer, G.R., Crosby, R.W., Matthews, S., Williams, T.L.: Paper mch: Creating
dynamic reproducible science. Procedia CS 4, 658–667 (2011)

3. Bresnahan, J., Freeman, T., LaBissoniere, D., Keahey, K.: Managing appliance
launches in infrastructure clouds. In: Proceedings of the 2011 TeraGrid Conference:
Extreme Digital Discovery, TG 2011, pp. 12:1–12:7. ACM, New York (2011)

4. Capit, N., Da Costa, G., Georgiou, Y., Huard, G., Martin, C., Mounie, G., Neyron,
P., Richard, O.: A batch scheduler with high level components. In: Proceedings of
the Fifth IEEE International Symposium on Cluster Computing and the Grid
(CCGrid 2005), vol. 2, pp. 776–783. IEEE Computer Society, Washington, DC
(2005)

5. Cappello, F., Desprez, F., Dayde, M., Jeannot, E., Jégou, Y., Lanteri, S., Melab, N.,
Namyst, R., Primet, P., Richard, O., Caron, E., Leduc, J., Mornet, G.: Grid’5000:
a large scale, reconfigurable, controlable and monitorable Grid platform. In: 6th
IEEE/ACM International Workshop on Grid Computing (Grid) (November 2005)

6. Chirigati, F., Shasha, D., Freire, J.: Reprozip: using provenance to support com-
putational reproducibility. In: Proceedings of the 5th USENIX conference on The-
ory and Practice of Provenance, TaPP 2013, p. 1. USENIX Association, Berkeley
(2013)

7. Clark, B., Deshane, T., Dow, E., Evanchik, S., Finlayson, M., Herne, J., Matthews,
J.N.: Xen and the art of repeated research. In: Proceedings of the Annual Con-
ference on USENIX Annual Technical Conference, ATEC 2004, p. 47. USENIX
Association, Berkeley (2004)

8. Davison, A.P.: Automated capture of experiment context for easier reproducibility
in computational research. Computing in Science Engineering 14(4), 48–56 (2012)

9. Dudley, J.T., Butte, A.J.: In silico research in the era of cloud computing. Nature
Biotechnology 28(11), 1181–1185 (2010)

10. Emeras, J., Bzeznik, B., Richard, O., Georgiou, Y., Ruiz, C.: Reconstructing the
software environment of an experiment with kameleon. In: Proceedings of the
5th ACM COMPUTE Conference: Intelligent and Scalable System Technologies,
COMPUTE 2012, pp. 16:1–16:8. ACM, New York (2012)

11. Guo, P.J.: Cde: run any linux application on-demand without installation. In: Pro-
ceedings of the 25th international conference on Large Installation System Admin-
istration, LISA 2011, p. 2. USENIX Association, Berkeley (2011)

12. Howe, B.: Virtual appliances, cloud computing, and reproducible research. Com-
puting in Science and Engg. 14(4), 36–41 (2012)

13. Keahey, K., Freeman, T.: Contextualization: Providing one-click virtual clusters.
In: Proceedings of the 2008 Fourth IEEE International Conference on eScience,
ESCIENCE 2008, pp. 301–308. IEEE Computer Society, Washington, DC (2008)

14. Klinginsmith, J., Mahoui, M., Wu, Y.M.: Towards reproducible escience in the
cloud. In: 2011 IEEE Third International Conference on Cloud Computing Tech-
nology and Science (CloudCom), pp. 582–586 (2011)

15. von Laszewski, G., Fox, G.C., Wang, F., Younge, A.J., Kulshrestha, A., Pike,
G.G., Smith, W., Vockler, J., Figueiredo, R.J., Fortes, J., Keahey, K.: Design of
the futuregrid experiment management framework. In: Gateway Computing Envi-
ronments Workshop (GCE), pp. 1–10 (2010)

	Reproducible Software Appliances for Experimentation
	1 Introduction
	2 Related Works
	2.1 Tools for Capturing the Environment of Experimentation
	2.2 Methods for Setting Up the Environment of Experimentation
	2.3 Software Appliances Builders

	3 Reproducible Software Appliances
	3.1 Requirements for a Reproducible Reconstruction
	3.2 Persistent Cache Mechanism

	4 Experimental Results and Validation
	4.1 Building Old Environments

	5 Conclusions and Future Works
	References

