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Abstract. The Software-Defined Networking (SDN) separates the con-
trol plane from the data plane to increase the flexibility. In the data plane,
the unavailability of data forwarding is a common problem preventing a
switch from configuring a new arrival flow into its flow table. When the
burst flows arrived at the switch, the flow table can be consumed, causing
the unavailability occurred. However, the problem is more complicated
than in Internet due to the limited channel bandwidth for detecting the
table usage. Hence, we propose a transparent core layer in the controller.
The mechanism of the layer improves the availability in such way, config-
uring switches adapting to arrival patterns of flows to prevent the resource
of switch exceeding its limit. This paper introduces the design and mech-
anisms of the layer as well as their algorithms. We further use a real flow
trace from a Internet core router to evaluate the performance of layer. By
emulating on on miniNet-HiFi, the results demonstrate that the layer can
smooth the burst flows without making the flow table exceeding its size,
without the layer, the switch lost 8% ingress flows. Meanwhile, the control
throughput is lowered by 25.8% than before.

Keywords: Software-Defined Networks · Network management

1 Introduction

The Software-Defined Networking (SDN) separates the data plane from the con-
trol plane to improve the control flexibility [1,2]. The control plane is consisted
of multiple controllers. In the data plane, each controller configures its switches
via the control channel that supports the OpenFlow (OF) protocol [1]. Each
switch has a flow table to define the forwarding rules. By matching against the
rules, the ingress flows are forwarded by a switch to output ports of the switch.

Generally, a flow is mismatched due to either new flow arrivals or expiration
of the rule. At that time, the switch first queries its controller to retrieve the new
rules for the flow and then programs the rules into the flow table. Such process
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generates the control traffic in the channel between controller and switch. How-
ever, such process has a problem: new ingress flows can be lost by the switch if the
flow table is full or the control channel is congested, thus negatively impacting
on the availability of switch forwarding for the ingress flows.

When applying SDN to the wide-area networks (WANs), the problem is more
challenging than the current applications of SDNs, since the flows are large-scale,
burst, transient and intermittent. These features impact the flow table and the
channel on their performance along with variation of new flow arrivals. Hence,
by exploiting these resources, the performance of data forwarding can be further
exploited, yielding a new adaptive control policy to optimize switch’s flows.

Realizing such policy is complicated by the separated architecture in SDNs. It
is because the policy should be made based on the statistics of switch resources,
however, the channel only has the limited bandwidth. The current work on SDN
architecture have not improved the availability.

In this paper, we propose a novel transparent core layer (named as the
AdaFlow layer) to adaptively control the active count of flow table entries accord-
ing to the flow arrival patterns, so as to improve the forwarding availability. The
mechanism of the layer is consisted of three workflows: (i) The optimization
workflow predicts the expiration of an new flow entry according to a estimated
flow throughput, smoothing the active count for the burst flows; (ii) The resource
workflow predicts the active count by history; and (iii) The estimation workflow
estimate the throughput of a flow according to the flow arrival pattern. The
workflows (ii) and (iii) provides the estimation inputs to the workflow (i).

We evaluate the performance of the layer by using miniNet-HiFi. The results
demonstrate that the layer can smooth a burst quantity of ingress flows without
making the switch exceeding the size of flow table. In comparison, without the
layer, the switch lost 8% ingress flows. In addition, the control throughput is
lowered by 25.8% than before.

The rest of the paper is organized as follows. Section 2 analyzes and states
the problem in depth. Section 3 proposes the design and mechanism of AdaFlow
layer. Section 4 evaluate the performance of the layer. Section 5 and 6 discuss
the related work and conclude the paper.

2 Problem Statement

In this section, we first give the system model of the SDN control on switch and
then formulize the problem of availability of switch as a time series problem.

2.1 System Analysis

In SDN, a controller, denoted as c, configures the forwarding table of the i-th
switch, denoted as si, via the i-th channel, denoted as hi. All the switches of c
are denoted as Sc = {s1, s2, ..., si, ..., sm}, where m is the number of the switches.
Fig. 1 gives such an example which shows a common scenario for the OF for-
warding. The controller c and its OF switches sa, sb and si. The bandwidth of hi
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competes with other switches belonging to the controller within a limited physi-
cal bandwidth. In the switch si, the flow table is consisted of multiple flow table

Fig. 1. OpenFlow forwarding example

entries, and each entry is consisted of forwarding rules, actions, hard timeout
of flow and idle timeout of flow. The switch executes the actions by matching
headers of ingress packets of a flow with the corresponding rules. Formally, we
denote the flow table of i-th switch as Ti = {f1, f2, ..., fj , ..., fQ}, where fj is the
j-th table entry and Q is the number of the active table entries (thus termed as
the active count). The physical size of the table is denoted as Li. In addition,
the idle timeout of the j-th flow entry for the i-th switch is denoted as ki,j . It
is note that the hard timeout will not be considered in our work as settings of
values of the timeouts are different from service to service.

Wherein, the flow table of each switch is initially set to be null. When an
ingress flow from sa is mismatched at si, si queries new configuration to c via
the channel hi, and then forwards the flow to its output port, e.g., sb. When
the hard timeout of the entry is exceeded or no packet is arrived within the idle
timeout, the entry is expired from the table.

For each switch in Sc, the total throughput of the control channel, denoted as
λall, equals to the sum of two types of control traffics for all the switches, namely,
configuring the flow tables, and making controllers connections. The latter one is
a constant for the number of switches. Formally, the total throughput is specified
as Eq. 1, where C(L) is a constant value of L, αt

i is the hit ratio of the flow table
at the time tick t and θ̃t

i is the expiration rate of the flow table of the i-th switch
at t. We denote the upper limit of channel bandwidth as Z.

λall =
∑

si∈Sc

(1 − E(θ̃t
i × (1 − αt

i)) + C(L) (1)

Based on the model, we denote the availability ratio of si at the time tick
t as βt

i . βt
i is the probability that the configurations of the flow table entries of

si, when its ingress flows are arrived in the recent unit time, can be correctly
programmed into si.



AdaFlow: Adaptive Control to Improve Availability of OpenFlow Forwarding 409

2.2 Problem Statement

The problem is to find the configurations of idle timeouts for all the table flow
entries of a switch to minimize the control throughput of the switch restricted
by the lower limit of the availability of the switch, given by a continuous time
series of ingress flow headers of the switch. We formulize such problem as below.

For a switch si at t, we denote the time series of ingress flow arrivals as
Gt = (g0, g1, g2, g2, g3, ..., gb, ..., gt), where b is the time tick of arriving of an
ingress flow ranging from 0 to t and gb is a valuable identifies the arrival flow
by uniquely hashing the header of the flow. The controller c controls the si, and
c defines the lower limit of the availability ratio of switch as βi for all the time
ticks. The idle timeouts of Ti are K = {ki,1, ki,2, ..., ki,Qt

}, where Nt is the size
of flow table at t. The problem is specified as Eq. 2, where ṽ is estimated value
of v, and Ht is estimated throughputs of part flows in Gt held in the controller.

argmin
K∈NQt

(S̃c
t+1

) , subject to:

β̃t+1
i ≥ βi and λt+1

all ≤ Z

Given by Gt and H = {λ̃t(gb) : gb ∈ Ft and 0 ≤ t ≤ t}

(2)

Such minimization problem is challenging as it requires the controller to
predict β and λall with the limited knowledge of Ht. In next, we discuss an
heuristic solution.

3 Design and Mechanism of Adaptive Flow Control

In this section, we propose an adaptive control mechanism to address problem
of the availability of switch forwarding when there is a burst quantity of ingress
flows arrived at the switch. We also introduce its algorithms.

3.1 Overall Design

In general, the proposed adaptive control mechanism ensures the availability of
data plane by predicting the flow arrival patterns and by efficiently measuring
the resource usage of the flow table. The mechanism is implemented as a trans-
parent AdaFlow layer in Beacon controller [2]. The layer locates between the
network services and the OpenFlow protocol stack. The layer optimizes the ser-
vice performance by changing the idle timeout in the FLOW MOD message to
make it subject to Eq. 2 and then performing the configuration by sending the
message to the switch via the OF stack.

Fig. 2 shows the internal design of the layer. It has three concurrent work-
flows. The optimization workflow decides the idle timeouts of new arrival flows
by receiving the two inputs: (i) the flow table usage that is produced by the
resource workflow, and (ii) the input of estimated throughput of the ingress
flows that is produced by the estimation workflow.
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Fig. 2. Internal Design of the AdaFlow Layer

Wherein, the estimation workflow is the simplest. It predicts the throughput
of the flow by averaging on all the thoughputs sent by the FLOW REMOVED
messages [3]. The workflow outputs λt+1

i,b to the prediction workflow.
We detail the rest of two workflows as follows.

3.2 Optimization Workflow

The optimization workflow decides the optimal value of idle timeout for flow
configurations sent from the service. In the workflow, only are the flows with the
duration time of larger than γ considered, because that most of survival times
of flows live for a very short term even in a core router of a WAN, e.g. 2 seconds
(see Subsection 4.1). In next, we give the algorithm of the workflow in the Alg. 1.
It has the three steps as following.

First, the lookup step first receives FLOW MOD message, denoted as fb.
Then, the lookup step lookups fb to decide it is an expired flow. If not, the idle
timeout is set to be a default value, in our prototype, 2 seconds (see lines 5-8
in the Alg. 1). Otherwise, the workflow decides the optimal value for the idle
timeout in the next last step.

Second, when received the FLOW MOD message, the set flag step tag OFPFF
SEND FLOW REMto themessage tomeasure its throughput(see the line 10 in the
Alg. 1).

Last, the idle timeout prediction step first decides an optimal idle timeout for
the flow, denoted as fb(Zi,b), and then send fb(Zi,b) to the OF stack. When the
flow table reaches to full with the probability of the availability ratio of switch
βi, the step sets the idle timeout to 1 to ensure the availability (see the line 12
in the Alg. 1). Otherwise, the step uses Eq. 3 to compute the timeout with the
availability ratio. The mathematical deduction of Eq. 3 is given by Th. 1.

Such workflow provides an adaptive approach to provide a heuristic solution
to the problem that is presented in Eq. 2.

Theorem 1 (Idle Timeout). Given a flow entry fb, the estimated throughput
of the flow λt+1

i,b , and a timeout probability 1 − β, the idle timeout should be set
to Eq. 3, considering the ingress flow is in a Poisson distribution.

kt+1
i,b = 1 +

1
1 − βi

+
1

λt+1
i,b

(3)
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Algorithm 1. Optimization Workflow
Require:

FLOW MOD message: fb
Flow throughput estimation: λt+1

i,b

Active count estimation: Ñi
t+1

Availability ratio of switch: βi

Ensure: fb with idle timeout: fb(k
t+1
i,b )

1: FLOWS = {}
2: repeat
3: wait for receiving a FLOW MOD message fb
4: if fb ∈ FLOWS then
5: FLOWS = FLOWS ∩ {fb}
6: kt+1

i,b = γ

7: send fb(k
t+1
i,b ) to si via the OF stack

8: continue
9: end if

10: tag OFPFF SEND FLOW REM to fb

11: if Ñi
t+1

> Li then
12: kt+1

i,b = 1
13: else
14: kt+1

i,b = 1 + 1/(1 − βi) + 1/λt+1
i,b

15: end if
16: send fb(k

t+1
i,b ) to si via the OF stack

17: until true

Fig. 3. Transition for timer state of idle timeout

Proof. The state of the timeout value can be modelled by using the Markov
chain as follows. Fig. 3 depicts behaviors of the state transition of the timer,
where k is the idle timeout, r = P (λi, 0) is an event when no packet of the flow
arrives in a unit time tick, and s = 1 − P (λi, 0) is the opposite event of r. Each
circle represents a state and each arrow is a transition between the states. The
state 0 ≤ w ≤ k − 1 reaches to w + 1 ≤ k with r, and the state k only can
reach to itself. We denoted such transition as a matrix M , where M(w, v) is the
probability of transiting from the state w to v. In addition, we denoted a vector,
x = [x0, x1, .., xk], as the probabilities at each state, where xq is the probability
of timer at q-th state.

x̃ =
rk

rk × k − rk + 1
× [1,

1
r
,

1
r2

− 1
r

+ 1,
1
r3

− 1
r2

+ 1, ...,
1
rk

− 1
rk−1

+ 1] (4)
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1 − β = Pθ(fi, t) =
rk

rk × k − rk + 1
× (

1
rk

− 1
rk−1

+ 1) (5)

The stationary states of M is when xM = x, denoted as x̃. By solving the linear
equations, x̃ is computed as Eq. 4. Thus, the probability of state at the timeout
is denoted as 1−β = Pθ(fi, t) as Eq. 5. Last, we solve k in Eq. 5 by differentiating
on k to get Eq. 3. Proof is done.

3.3 Resource Workflow

The resource workflow predicts the active count of flow table entries, named as
the active count, by periodically querying the switch. It has the three steps as
following (see the three white rectangles in the top of Fig. 2). First, it measures
the active count of flow table entries of the i-th switch at the time tick t, denoted
as N t

i . Then, it saves N t
i into the memory of controller to form the time series

history, denoted as D = (N t−δ
i , N t−δ+1

i , ..., N t
i ). The layer only maintains the δ

size of the history. Last, it predicts Ñ t+1
i based on the history.

In detail, the algorithm of the prediction is given in the Alg. 2 as below. The
algorithm gives the upper limit of active count in the next tick given by the
availability ratio of switch βi. In the lines 4-12, the controller c measures the
performance statistics of all the OF switch in Sc for the recent δ seconds in a
periodical mode. The statistics cover on all the statistics fields defined the OF
specification 1.0 [3], e.g., the active count of flow table entries. In addition, we
add two extra statistics, namely, the count of flows removed and the rate of flow
modifications (see lines 6-7 in Alg. 2). Based on those statistics, the workflow
predicts the active count by Eq. 6 (see lines 13-16 in Alg. 2). In line 13, we use
the fast Poisson algorithm to compute the confidence value range for the βi.

The algorithm output of Ñ t+1
i is utilized by the prediction workflow to com-

pute the optimal idle timeout of the flow (see Subsection 3.1).

Ñ t+1
i = λ̃t+1

i + N t+1
i − θt+1

i (6)

The correctness of the algorithm holds since Eq. 6 exploits the Markov property
of state of the active count of flow table entries. Because the state of N t+1

i only
depends on the state of N t

i . Thus, the state can be predicted by its state in the
current time tick and patterns of ingress flows, as Eq. 7 shows, where E is the
variable expectation, θ̃t

i is the expiration rate of the flow table of the i-th switch
at t. Eq. 7 indicates that variation states of N t

i depends on ingress flows. Hence,
Alg. 6 is correct.

E(N t+1
i ) − E(N t

i ) ≈ E(λ̃t
i) × (1 − αt

i) − E(θ̃t
i) (7)

4 Evaluation

4.1 Performance Preliminaries

The AdaFlow layer is implemented on the Beacon controller 1.0.3 [2] with sup-
port of OF 1.0.3 protocol [3]. The layer registers the listeners for all the OF
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Algorithm 2. Resource Workflow
Require:

OF messages: STATS REQUEST, FLOW MOD and FLOW REMOVED
The availability of switch: βi

Ensure: Flow table usage: Ñ t+1
i

1: D1≤i≤|Sc| = ()
2: repeat
3: wait for a new second t
4: for si ∈ Sc do
5: features = send(si, STATS REQUEST)
6: features.add(# of modFlows for si)
7: features.add(rate of flowRemoved for si
8: if |Di| > δ then
9: Di.dequeue()

10: end if
11: Di.enqueue(features)
12: end for
13: λ̃t+1

i = PoissonPdf(mean(Di.modF lows), βi)
14: N t+1

i = mean(Di.activeCount)
15: θt+1

i = mean(Di.f lowRemoved)
16: Ñ t+1

i = λ̃t+1
i + N t+1

i − θt+1
i

17: until true

messages required. We test the performance of AdaFlow layer by using the rout-
ing service provided by the Beacon itself.

We setup a basic topology as the Fig. 1 shows, to simplify the problem. We
emulate the topology by using the miniNet-HiFi [4]. It provides the traffic shap-
ing for links and the cgroup based isolation of resources. We limit the bandwidth
of all the links to 1000Mbps. In detail, sa is emulated as a packet generator by
using the TcpReplay tool. The traffic is generated at maximum speed of link. sb

is emulated as a flow receiver that is replaced by the tcpdump tool. And si is an
OpenvSwitch [5] with supporting of the OF 1.0.3 protocol [3]. We limit the table
size of si to 25000 in the controller which is slightly larger than the average rate
of new flow arrival rate, so that we can emulating the burst events of the flows.

Wherein, the generator replays a real packet trace of a core Internet router
amount of 544040 flows1. We replay the trace in the speed of 99 seconds, since
OS is hard to emulate the trace in its real speed. We count the cumulative
distribution function (CDF) of the living time of all the flows in the trace. In
the trace, we find the 79.55% of flows only live for less than 2s. Thus, in the
Alg. 1, γ is set to 2 seconds. In the Alg. 2, δ is set to 60 seconds. In addition,
the availability ratio βi is set to 0.95 (see Subsection 2.2).

1 The trace file can be downloaded from the following URL:
http://data.caida.org/datasets/passive-2013/equinix-chicago/20130529-130000.
UTC/equinix-chicago.dirA.20130529-130100.UTC.anon.pcap

http://data.caida.org/datasets/passive-2013/equinix-chicago/20130529-130000.UTC/equinix-chicago.dirA.20130529-130100.UTC.anon.pcap
http://data.caida.org/datasets/passive-2013/equinix-chicago/20130529-130000.UTC/equinix-chicago.dirA.20130529-130100.UTC.anon.pcap
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(d) CDF of idle timeouts

Fig. 4. Performance of AdaFlow Layer

4.2 Performance Results

The availability ratio of switch forwarding for si is denoted as βi (see Sub-
section 2.2). In practical, βt

i = # of mod flows/λ̃t
i. In the following, we compare

performance of the AdaFlow version of the Beacon controller with its raw imple-
mentation version by using the same trace previously discussed.

The evaluation results are given in Fig. 4. Fig. 4(a) shows the active count
of flow table for the AdaFlow version is decreased by 26.4% than the raw on
the average. The means of the active counts for them are 19073 and 25917 (see
Fig. 4(a)). In addition, in Fig. 4(b), the control throughput of the AdaFlow
version is decreased by 25.8% than the raw on the average. The means of the
throughputs for both of them are 3.504MBps and 4.724MBps. For the AdaFlow,
the FLOW REMOVED messages only consume throughput of 100.582KBps.
When a burst amount of flows arrived, the availability of switch forwarding can
be much improved by such a sharply decreasing. Fig. 4(c) shows the availability
ratio of the AdaFlow version is increased by 8% comparing to the raw. The
means of the ratios for them are 1 and 0.9261. Fig. 4(d) shows the CDF of the
idle timeouts for the AdaFlow version.

5 Related Work

The recent work on the efficiency of control protocol in SDN focus on strengthen-
ing the controller architectures in these three ways: (i) The architecture enables
the features of multi-threading, multi-core and I/O batching when the controller
processes OF messages [6,7], e.g. OpenDayLight [8], Beacon [2] and Maestro [9].

(ii) The architecture clusters several controllers in the same domain to load
balance the arrival of OF messages from the switches, e.g. OpenDayLight uses
the shared pool to distribute the messages among the controllers [8].
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And (iii) The architecture moves part of controller functions to the switch
side to improve the performance of switch, e.g. DevoFlow [10] and NOSIX [11].

Hence, none of these researches considers optimizing the OpenFlow protocol
itself by controlling the flows according their arrival patterns. In addition, our
approach improves performance of these architecture and does not conflict with
these ways. Our work is innovative in dealing with the patterns.

6 Conclusion

We propose a novel adaptive control mechanism for SDN by exploiting the arrival
patterns of flows and detecting the active count of flow table. The mechanism
can smooth a burst quantity of ingress flows to ensure their availability being
processed by the switch, meanwhile, lowering the control throughput. We demon-
strate these benefits by using a real flow trace from an Internet core router. Our
solution provides an easy way to improve performance of SDN services.
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