
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014
V.C.M. Leung et al. (Eds.): TridentCom 2014, LNICST 137, pp. 338–347, 2014.
DOI: 10.1007/978-3-319-13326-3_32

From Model to Internetware

A Unified Approach to Generate Internetware

Junhui Liu(), Qing Duan, Yun Liao, Lei Su, and Zhenli He

School of Software, Yunnan University, Kunming, Yunnan 650091, China
Key Laboratory for Software Engineering of Yunnan Province, Republic of China

HanksLau@gmail.com,
{qduan,YunLiao,LeiSu,ZhenliHe}@ynu.edu.cn

Abstract. Model driven development has been considered to be the hope of im-
proving software productivity significantly. However, it has not been achieved
even after many years of research and application. Models are only and still
used at the analysis and design stage, furthermore, models gradually deviate
from system implementation. This paper integrates domain-specific modelling
and web service techniques with model driven development and proposes a uni-
fied approach, SODSMI (Service Oriented executable Domain-Specific Model-
ling and Implementation), to build the executable domain-specific model so as
to achieve the target of model driven development. In this work, Domain-
specific modelling is the key to construct xDSM (the eXecutable Domain-
Specific Model). Web services are used as the implementation entities of the
core functions of xDSM with the support of DSMEI (the Domain-Specific
Model Execution Infrastructure). Finally, xDSM is transformed into the form of
internetware to achieve system implementation.

Keywords: Model driven development · Domain-specific modelling · Executa-
ble model · Model execution infrastructure · Internetware

1 Introduction

Software is the spirit of a computer system. It has substantial impacts on success in
business today. However, faced with increasing demands and more challenging mar-
ket pressures, software systems become more and more large and complex. The tradi-
tional software development technologies are insufficient for ensuring a successful
outcome that fulfills requirements and quality goals set out [1]. The complexity, va-
riety and changeability make the large software projects have staggering failure rates:
difficult to maintain, low dependability, high cost and the longer time-to-market. The
Standish Report [2] states that nearly a third of projects are cancelled before comple-
tion and more than half suffer from serious cost overruns.

Developing and maintaining complex, large-scale, product line of highly custom-
ized software systems is difficult and costly. Part of the difficulty is due to the need
to communicate business knowledge between domain experts and application
programmers. Domain specific model driven development (MDD) addresses this

 From Model to Internetware 339

difficulty by providing domain experts and developers with domain specific abstrac-
tions for communicating designs [3]. Model describes system and its environment
from a given view. It is an abstract representation of system and its environment. For
a specific aim, model extracts a set of concepts relevant to the subject in order to
make developers focusing on the whole system and ignoring irrelevant details [4].

In this paper, we discusses how to build the executable domain-specific model to
achieve the target of MDD. This paper proposes an approach to the executable do-
main-specific modelling based on web services. Domain-specific modelling is the key
to construct the eXecutable Domain-Specific Model (xDSM). Web services are used
as the implementation entities of the core functions of xDSM with the support of the
domain-specific model execution infrastructure which named DSMEI. Finally, xDSM
is transformed into the form of internetware to achieve system implementation.

2 Proposed Approach

The role of model for software analysis and design is irreplaceable. Developers estab-
lish software analysis and design models in accordance with a variety of software
standards, and communicate with each other by models. Model is expected to bring an
essential leap of software development, and drive the whole software development
process. It means that modelling is not only related to the requirement analysis, soft-
ware design and software implementation, but also able to support unit testing, system
testing, long-term system maintenance and software reuse, etc. The above all require
the executability of model. Only executable models can strictly ensure that model
validation, system-generation and system maintenance are based on the models.

The key elements of the executability of model lies in whether there are a well-
defined models and whether there is a code generator which can automatically and
completely generate code. Both of them are mutually constraining and complemen-
tary. Code generator can be simple and easy to implement while the model is com-
plete and accurate. On the contrary, code generator must be difficult to achieve with
complex structure and required adaptability and flexibility while the model is impre-
cise. In order to build the executable model, and achieve the automatic transformation
from models to system implementation, there are two aspects both need to be con-
cerned. On one hand, models ought to be refined and the degree of abstract ought to
be reduced so that models can gradually approach system implementation; on the
other hand, code generator ought to have strong adaptability and flexibility to reflect
the model description.

This paper is based on domain-specific modelling to construct the executable mod-
el. During the process, the key is behaviour modelling. Based on the complete,
consistent, detailed and accurate model description by XDML, model parsing
and executing mechanism are used to replace code generator, and combine with Do-
main Framework as the infrastructure of the domain-specific model implementation.
Different from other domain specific modelling approach, the abstract level of
code implementation is enhanced by the standardised, self-contained, self-describing,
modular web services. Encapsulating the details of code implementation, the related

340 J. Liu et al.

domain-specific software
Specific Model Execution
system running is driven b
is the core idea of This pap
ble Domain-Specific Model

SODSMI constructs execu
domain-specific modelling
code implement.

From the perspective of
responding to four core elem

• xDSM -- Executable Dom
• XDML -- Executable Do
• DSMEI -- Domain-Speci
• AGOS -- Atomic Group

XDML is used to describ
ecution depends on the co
Domain Framework provid
related services of AGOS
XDML, DSMEI and AGOS

3 xDSM – Executa

The primary task of SODSM
model is always an underb
Static models can describe
structure and the system hie
the running process of softw

functional entities are provided to DSMEI (Doma
Infrastructure) by the way of web services cluster. T

y parsing and executing the behaviour models. The ab
er. The framework of SODSMI (Service Oriented execu
lling and Implementation) is shown in Figure 1.

Fig. 1. Framework of SODSMI

utable models and their execution infrastructure based
 through the model refinement and the enhancement

functionalities, SODSMI is divided into three levels, c
ments:

main-Specific Model
omain-specific Meta-modelling Language
ific Model Execution Infrastructure
of dOmain-specific web Services

be xDSM. xDSM is parsed and executed in DSMEI. Its
orresponding interfaces provided by Domain Framewo
des the core software functional entities through doma
S, and supports the xDSM execution upwards. xDS
S constitute the framework of SODSMI together.

able Domain-Specific Model

MI is to build executable models, while the executability
belly of MDD for a long time. Software itself is dynam
e some profiles of software, for examples, the subordin
erarchy. But it can describe neither the entire software,
ware. At the same time, the abstract of models restricts

ain-
The
ove
uta-

d on
t of

cor-

ex-
ork.
ain-
SM,

y of
mic.
nate
nor
the

accuracy of models, which
used to construct entire sof
of the system from differen
a profile of the system. H
straints among those mode
abstract. The process of bu
cult for modellers to constr
the details of code generato
UML system.

Fig. 2. xDS

xDSM is constructed ba
plied to solve the software
domain. xDSM represents t
ed, that narrows the scope
model accurately. xDSM m
meta-modelling phase and
carried out by domain exp
end users. The duty and the
shown in Figure 2.

xDSM is required to me
requires the model definitio
the details relevant to the m
aspects of modelling. The
describe domain concepts
modelling phase, domain c
objects, relationships, cons
cept. In the application mo
software systems. The accu
meta-model. The model do

From Model to Internetware

h makes models lack of many of the key elements that
ftware. In MDA system, UML can be used to build mod
nt perspectives and aspects. Model views represent a par
However, there are neither positive connections nor c
l views. Model views can be more or less, be concrete
ilding a model can be ceased at any phase. It is very di
ruct a complete software model unless they understand
or. That makes the executable models difficult to achiev

M Meta-Modelling and Application Modelling

ased on the domain-specific model, and is technically
e development problems existing in a certain applicat
the concepts and rules of the domain. The model is targ
of the description effectively and is helpful to define

modelling process is divided into two phases: the xD
d the xDSM application modelling phase. The former
erts and technical experts, and the latter is carried out

e role of modellers in each modelling phase are different

eet MMLs standards 5 (Modelling Maturity Levels) [5]
on is sufficiently precise. The accuracy here is to descr
modelling objectives accurately rather than to describe
core of xDSM is behaviour modelling. It is required

s and system behaviours unambiguously. In the me
concepts are described unambiguously, including dom
straints and any operations embodied in the domain c
odelling phase, the target is to meet all the requirement
urate software behaviour modelling is carried out by us
oes not care about the implementation of local softw

341

are
dels
rt or
con-
e or
iffi-

d all
e in

ap-
tion
get-
the
SM
r is
t by
t, as

]. It
ribe

e all
d to
eta-

main
con-
s to
sing

ware

342 J. Liu et al.

functions, but it does not ignore the necessary details of the behaviour execution
yet -- the data flow, the control flow and the related constraints of behaviours must be
described in detail.

On one hand, the measurement of the accuracy of models is determined by domain
experts and technical experts through xDSM meta-modelling and DSMEI. Namely, if
the application model which is built according to the definition of the meta-model can
be accurately and completely executed by DSMEI, the models can be regarded accu-
rate enough. On the other hand, the application model which is built in accordance
with end users' requirements can ensure the integrity of the model. Namely, if the
results of the application model execution meet the system requirements completely,
or the generation system realises the functional requirements completely, the models
can be regarded complete enough. Moreover, application modelling also facilitates
the improvement of meta-modelling and the execution environment, to meet the re-
quirements to application modelling better.

Furthermore, the description of the behaviour details in xDSM also increases the
complexity of modelling. It requires to adjust the complexity of modelling through
meta-modelling and application modelling. That is guided by domain experts and
developers mainly in the meta-modelling phase. On one hand, the behaviour complex-
ity is encapsulated in the meta-model while the behaviour details are hidden in do-
main objects and relationships with the different granularity; on the other hand, the
complex behaviour descriptions are hidden by the implementation convention of the
meta-model and the execution environment. So end users can do the application mod-
elling simply and flexibly. So it is easier for end users to build the executable model
with high-quality.

4 XDML – Executable Domain-Specific Meta-modelling
Language

Following the guide of MMLs5, XDML is defined to describe xDSM meta-model and
its application model. XDML extends the semantic basis of XMML language -- a visu-
al meta-modelling language [6], and integrates the well-defined behaviour semantics to
support the domain-specific behaviour modelling. XDML defines the concrete syntax
of AS&MC which provides accurate definition for dynamic behaviours of models.

XDML improves the description accuracy of the specific domain problem and its
solutions, and reduces the complexity of the language itself. XDML is simpler and
more accurate in syntax and semantics than the universal modelling languages. That
reduces the difficulty of XDML compiler, interpreter and the supporting environment
development.

XDML is at a higher abstract level. Generally, the main domain concepts are map-
ping to the objects in XDML, while other concepts are mapping to the attributes, rela-
tionships, sub-model of the object or model links of other languages. Therefore,
XDML makes developers use domain concepts directly to construct the domain mod-
els. It is able to describe domain concepts, the relationships between domain concepts
and domain rules with larger granularity morpheme. Developers can use the domain
knowledge elements in XDML directly to develop the application system, rather than

develop program code or co
the most basic classes or o
ciency is improved effective

For enhancing the accura
MDA system, OMG issued
the ability of the behaviour
curate model description in
is also introduced into xUM
of above all is to make the b
are overlapped in semantics
the abstract syntax of UML
ASL is consistent with the
sets of abstract syntax of se
references among those lan
tion interfaces, so as to mak

The core of xDSM is t
well-defined behaviour sem
cations as its necessary con
visual meta-modelling lang
semantics, supports the do
structs the concrete syntax
textual concrete syntax of
based on the behaviour sem
dynamic behaviour of mode

Fig. 3

From Model to Internetware

omponents that are corresponded to domain concepts fr
objects from the scratch. So the system development e
ely.
acy of models and the ability of the behaviour modelling
UML 2.0 which integrates action semantics [7] to impr
modelling, and uses OCL to enhance the ability of the

n MDA system. And ASL (Action Specification Langua
ML to define the system actions in detail. The ultimate g
behaviour modelling more accurately. UML, OCL and A
s. A part of the abstract syntax of OCL is introduced fr
L 2.0, especially the introduction of action semantics
action semantics of UML [9]. The coexistence of sev

everal languages makes it needs a lot of correspondence
nguages, and depends on the cohesion of the model ref
ke the whole syntax architecture huge and complex.
the complete and accurate behaviour modelling, with
mantics, the accurate model constraints and action spec
nditions. XDML is extended based on the semantics of
guage – XMML. It integrates the well-defined behavi
omain-specific behaviour modelling adequately, and c
of XDML based on XML meta-language. It constructs
AS&MC (Action Specifications and Model Constrain

mantics of XDML to provide the accurate definition for
els, as shown in Figure 3.

3. XDML Architecture and Work Process

343

rom
effi-

g in
rove

ac-
age)
goal
ASL
rom
[8].
eral
and

flec-

the
cifi-
the

iour
con-

the
nts)
the

344 J. Liu et al.

5 DSMEI – Doma

Today, the scales of softwa
are involved in software ap
tecture more and more com
desktop system, but gradu
which are integrated with e
are limited because the gen
system. Moreover, code gen
the generated system, and i
tem itself, that requires cod

DSMEI is combined wit
executing mechanism subst
ly. Domain Framework is u
the generated code. DSME
implementation of the dom
which reduces the comple
Figure 4.

F

The system behaviours a
ly. Based on that, the mode
replace the code generation
semantic, and the operation
Framework. Here the mode
of Domain Framework is in
model can be transform int
flexibly. Furthermore, DSM
lates the parts of domain
through AGOS. So that it c
as well as the combination w
That makes the architecture
the virtualisation technique
common and flexible suppo
this way.

ain-Specific Model Execution Infrastructure

are systems are increasing, and the number of people w
pplications is also increasing, so as to make software arc
mplex. The software is no longer limited to a stand-al
ually evolved into the networked and complex syste
ach other. In this case, the functionalities of code genera
nerated code may be only a part of the complex softw
nerator is also a software product. It is more complex t
it is also needed to face the changes of the generated s
e generator to be strongly adaptable and flexible [10].

th Domain Framework, and employs the model parsing
tituting the code generator to execute xDSM models dire
used to provide the interface of the underlying platform
EI encapsulates the architectures, platforms and concr

main-specific application system into Domain Framewo
exity of the generated code significantly, as shown

Fig. 4. DSMEI Functional Structure

are able to be described by xDSM completely and accur
el parsing and executing mechanism is used by DSME
n process. xDSM is parsed into the operations with prec
ns are corresponded to the interfaces provided by Dom
el itself is an executable software product. As the evolut
ndependent of the parsing and executing of the model,
to the system implementation on DSMEI dynamically
MEI is combined with Domain Framework, and encap
n-related implementation into the modular web servi
can focus more on the parsing and executing of the mo
with web services which are related to the specific dom
e of DSMEI general, while the dynamic characteristics
es of web services make DSMEI more flexible, so tha
orting environment is provided for the model execution

who
chi-
one
ems
ator

ware
than
sys-

and
ect-

m to
rete
ork,

n in

ate-
EI to
cise

main
tion
the
and

psu-
ices
del,

main.
and
at a
n by

 From Model to Internetware 345

6 AGOS

To a certain extent, the code is also a model. It is the most refined model, and a lan-
guage description defined precisely. It can be used to describe a system, but it is also
platform-dependent. But such an iterative refinement is not necessary. On one hand,
over-refinement makes the scale of model so large that the model loses its abstract
nature. On the other hand, to deal with the ever-changing system requirements, even
if the advanced language also needs to be added SDK (Software Development Kit)
continuously, it must be much harder to the model which only have a weaker descrip-
tive ability. Consequently, a better software functional entity must be found to realise
the executable model.

The software functional entity has undergone several evolutions: from functions to
objects, from objects to components, then from components to web services. Web
services architecture adds and standardises a new layer, named "Service Layer" be-
tween the logistic layer and technical implement layer. The standardisation and dy-
namic characteristics make web services be able to provide the abundant and flexible
software functional entities. AGOS adopts web services that is standardised, self-
contained, self-described and modulised to enhance the abstract level of the code
implementation, encapsulates the details of the code implementation, and provides the
related domain-specific software functional entities to DSMEI by the way of web
services cluster. Web services are not stand-alone. They depend on the domain-
specific application systems and their processes. The development and reuse of web
services have already been determined when the xDSM meta-model is constructed. It
is a top-down design process. Based on the domain concepts, it describes the domain
behaviour process dynamically according to the model, and drives the definition and
functionalities of web services according to the realisation requirements of the model.
The design principles of web services are as follows: the common parts of the specific
domain are encapsulated into web services. The changeable parts are divided into two
kinds: one kind that is easy to deal with by xDSM is defined directly by model; the
other kind that it is not easy to deal with by xDSM will be transformed into service
parameters, and use the parameterised means to handle the change-point. Web ser-
vices provide the minimal software functional entities in the entire system. It is also
the implementation foundation of the entire executable model.

Various web services at the different levels are required to support the problem
space involved in the domain-specific modelling. AGOS regards a group related web
services of a specific domain as a service cluster. On one hand, it requires a lot of web
services entities to provide different functions; on the other hand, there may be sever-
al corresponding web services entities to the same functional requirement. So DSMEI
is able to not only support the protocol of the service itself, but also deploy web ser-
vices cluster dynamically in the software life cycle, for examples, querying services,
matching services, assembling services, replacement services, load balancing of the
service group of the same functional node, and adjustment of the coordinated ser-
vices, etc. The flexible architecture of DSMEI is the foundation of the above all. It is
able to provide Domain Framework dynamically based on web services, and adjusts
the existing web service cluster to adapt software changes quickly.

346 J. Liu et al.

7 Features of SODSMI

SODSMI is aimed at modelling for system implementation, which reduces the model
complexity and improves the model accuracy. This method has a holistic and sustain-
able system to support the transformation from models to system implementation.
Compared to other modelling methods, such as MDA system, the proposed approach
is more suitable for the establishment and support of executable models, mainly
shown as follows:

1. SODSMI is customised for solving software development problems in a certain
application areas. It is dedicated and problem-oriented. Although it is at the ex-
pense of commonality, it improves the accuracy of the description on domain spe-
cific problems and its solutions, and reduces the complexity of modelling.

2. SODSMI improves the abstract level of models, and XDML provides an abstract
mechanism to deal with the complexity of specific domains. It provides concepts
and rules of the corresponding application domain, rather than those of a certain
given programming language. Modellers face the domain concepts with different
granularity directly, rather than construct the implementation details in the light of
classes and objects, etc.

3. SODSMI pays attention to the integrity of MDD. Its goal is to achieve the system
implementation, rather than to simply use models as a means of analysis and de-
sign. SODSMI completes the whole process from model establishment to code
generation.

4. SODSMI emphasises on the capacity of meta-modelling, and adopts the separation
of meta-modelling and domain application modelling to establish models that
adapts better to specific domain. At the same time, it is able to separate users’ ap-
plication modelling from domain experts' meta-modelling as well as developers’
creating support tools.

5. In SODSMI, the establishment of meta-model and code generator are developed
within the organisation. They are mutually complementary: the model establish-
ment is adapted completely to code generator; the generated code is practical,
readable, and efficient as same as the code is written by experts who define the
code generator. Meanwhile, the establishment of meta-model and code generators
implicates a lot of implicit implementation convention that need not be expressed
at the model layer, which observably reduces the complexity of models.

6. SODSMI is based on domain engineering, which provides a well support in es-
sence for software reuse; on the contrary, the software reuse techniques also pro-
vides a well support for the DSM method.

Acknowledgment. This work is funded by the Open Foundation of Key Laboratory of Soft-
ware Engineering of Yunnan Province under Grant No. 2011SE13.

 From Model to Internetware 347

References

1. Georgas, J.C., Dashofy, E.M., Taylor, R.N.: Architecture-Centric Development: A Differ-
ent Approach to Software Engineering. ACM Crossroads 12(4), 6–23 (2006)

2. Johnson, J.H.: The CHAOS Report. The Standish Group International, Inc. (1994)
3. Hen-Tov, A., Lorenz, D.H., Schachter, L.: ModelTalk: A Framework for Developing Do-

main-Specific Executable Models. In: Proceedings of the 8th Ann. OOPSLA Workshop
Domain-Specific Modeling (DSM 2008), Nashville, TN, USA, pp. 19–20. ACM Press
(October 2008)

4. Kuhne, T.: What is Model? Language Engineering for Model Driven Software Develop-
ment. In: Dagstuhl Seminar Proceedings (2005)

5. Davis, M.D., Sigal, R., Weyuker, E.J.: Computability, Complexity, and Languages.
Fundamentals of Theoretical Computer Science. Academic Press, Inc. (2008)

6. Zhou, H., Sun, X.P., Duan, Q., et al.: XMML: A Visual Metamodelling Language for Do-
main Specific Modelling and its Application in Distributed Systems. In: Proceedings of
12th IEEE International Workshop on Future Trends of Distributed Computing Systems
(FTDCS), Kunming, China, pp. 133–139 (October 21-23, 2008)

7. Frankel, D.S.: Model Driven Architecture:Applying MDA to Enterprise Computing. John
Wiley & Sons (January 2003)

8. OMG. UML 2.0 OCL Specification. Object Management Group. Framingham, Massachu-
setts (2003)

9. Mellor, S.J., Balcer, S.J.: Executable UML: A Foundation for Model Driven Architecture.
Addison Wesley, Massachusetts (2002)

10. Yang, F., Mei, H., Lu, J., Jin, Z.: Some Discussion on the Development of Software Tech-
nology. Acta Electronica Sinica 26(9), 1104–1115 (2003)

	From Model to Internetware A Unified Approach to Generate Internetware

	1 Introduction
	2 Proposed Approach
	3 xDSM – Executa able Domain-Specific Model
	4 XDML – Executable Domain-Specific Meta-modelling Language
	5 DSMEI – Doma ain-Specific Model Execution Infrastructure
	6 AGOS
	7 Features of SODSMI
	References

