
Speeding Up Multi-level Route Analysis
Through Improved Multi-LCS Algorithm

Pei Tu1, Xiapu Luo2,3, Weigang Wu1(B), and Yajuan Tang4

1 Department of Computer Science, Sun Yat-Sen University, Guangzhou, China
tuwantpkyj@hotmail.com, wuweig@mail.sysu.edu.cn

2 Department of Computing, The Hong Kong Polytechnic University,
Kowloon, Hong Kong

csxluo@comp.polyu.edu.hk
3 The Hong Kong Polytechnic University Shenzhen Research Institute,

Shenzhen, China
4 Department of Electronic and Information Engineering,

Shantou University, Shantou, China
yjtang@stu.edu.cn

Abstract. Although the multi-level route analysis (e.g., AS, subnet, IP
levels) is very useful to many applications (e.g. profiling route changes,
designing efficient route-tracing algorithms, etc.), few research investigates
how to conduct such analysis efficiently. Regarding routes as
sequences, current approaches only handle two routes at a time and they
just apply algorithms designed for general sequence comparison. In this
paper, we propose and implement a new approach named Fast-rtd that
contrastsmultiple routes simultaneouslyandexploits theunique featuresof
Internet routes to decrease the computational complexity in terms of time
and memory. Our extensive evaluations on real traceroute data demon-
strate the efficiencyof Fast-rtd, suchasmore than45%memory reduction,
3% to 15% pruning rate increase, and up to 25% speed improvement.

Keywords: Multi-level route analysis · Multiple LCS · BGP

1 Introduction

Identifying the common and/or the different portions among a set of routes in mul-
tiple levels (e.g., AS, subnet, IP levels) is a primitive of route analysis [1]. Such a
primitive is very useful to many applications, such as profiling route changes and
their impacts [2–6], measuring route asymmetry and diversity [7–10], and design-
ing efficient route-tracing solutions [11], to name a few. Although the primitive’s
basic idea is straightforward, it is non-trivial to efficiently realize this primitive
because of the tremendous volume of data. For example, the Ark project collects
500 million traceroutes in each probing unit and more than 10 billion traceroutes
have been recorded. [12]. Moreover, the majority of existing systems process each
level independently, thus resulting in redundant processing and high demand of
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014
V.C.M. Leung et al. (Eds.): TridentCom 2014, LNICST 137, pp. 327–337, 2014.
DOI: 10.1007/978-3-319-13326-3 31

328 P. Tu et al.

resources [1]. Our previous system, rtd, improves the analysis efficiency by inte-
grating all levels recursively [1].

However, we identify another two deficiencies in existing approaches including
rtd. First, existing methods only handle two routes at a time. Applications
may need to process multiple routes at the same time, such as locating the
invariant portions of the routes collected during a period of time, determining
the common IP/Subnet/ASes among a set of routes, etc. Although it is possible
to first analyze each pair of routes and then synthesize the result, such approach
is inefficient because the number of comparisons may increase exponentially.
Second, existing approaches usually regard routes as sequences and then apply
algorithms designed for general sequences to process routes. In other words, they
do not exploit the unique features of Internet routes to optimize the processing.
Note that routes are special sequences. For example, each IP address will appear
in a correct route once to avoid loop. In this paper, we propose a novel approach
named Fast-rtd for multi-level route analysis, which can overcome the above
two limitations and achieve higher efficiency. We make three contributions:

1. We identify the limitations of existing multi-level route analysis approaches,
including the inefficiency of processing multiple routes and the lack of opti-
mization by exploiting the unique features of Internet routes.

2. We propose a new approach named Fast-rtd that supports contrasting
multiple routes at the same time and exploits the unique features of Internet
routes to further decrease the computational complexity in terms of time
and memory.

3. We implement the new approach in around 800 lines of C++ codes and con-
duct extensive evaluations on its performance using real traceroute data. The
results show that Fast-rtd can achieve more than 45% memory reduction,
3% to 15% pruning rate increase, and up to 25% speed improvement.

The remainder of this paper is organized as follows. Section 2 introduces the
multi-level route analysis. We detail the algorithm in Section 3 and evaluate it
in Section 4. After introducing related work in Section 5, we conclude the paper
in Section 6.

2 Multi-level Route Analysis

Following [1], we define a legitimate route R as an ordered sequence of nodes
r1r2 . . . r|R|, where ri �= rj (i, j ∈ {1, 2, . . . , |R|}) to avoid routing loops. Each
node ri, i ∈ {1, 2, . . . , |R|}, is an IP address having n levels of labels, and its
t-th level of label is denoted as Lt(ri). The levels construct an ordered set L =
{L1, ..Ln} with a transitive relation � that have the following properties:

1. Lt � Lt+1 ⇒ if Lt(ri) �= Lt(rj) then Lt+1(ri) �= Lt+1(rj).
2. L1 � L2 · · · � Ln.

Speeding Up Multi-level Route Analysis 329

Note that Lt+1(ri) �= Lt+1(rj) does not imply Lt(ri) �= Lt(rj), ∀i, j ∈ {1, 2, . . . ,
|R|}. Following [1–4,7–10], we use AS(ri)/SN(ri)/IP (ri) to denote the AS/
subnet/IP-level label of ri and define L = {AS-level, subnet-level, IP-level} with

AS − level � subnet − level � IP − level (1)

The goal of a multi-level route analysis is two-fold. First, it identifies the
common portions among a set of routes Rk (k = 1, . . . ,M , M ≥ 2) on different
levels. Then, based on the common portions, it outputs the difference among
these routes on different levels. Instead of conducting the comparison on each
level independently, our previous work (i.e., rtd) integrates the analysis of all
levels recursively [1]. Note that rtd compares two routes at a time using LCS
algorithms for general sequence. Although we can use it to analyze each pair of
routes and then synthesize the result, it has much larger computation complexity
than the algorithms designed for locating LCS of multiple sequences. For exam-
ple, for a set of M routes, rtd will conduct M(M−1)

2 comparisons. In this paper,
we propose Fast-rtd to extend rtd’s functionality from comparing two routes
to multiple routes by using an advanced multi-string LCS algorithm and further
improve the performance in terms of time and memory by exploiting Internet
routes’ features. We will use an example shown in Fig. 1 to introduce the basic
idea of multi-level route analysis and then detail Fast-rtd in Section 3.

As shown in Fig. 1, we compare two routes R1 ={IP1, IP2, IP3, IP4, IP5,
IP6, IP7, IP8, IP9, IP10, IP11, IP12, IP13, IP14, IP15} and R2 ={IP1, IP2, IP3,
IP6, IPa, IPb, IPc, IPd, IPe, IP12, IPf, IP14, IP15}. rtd starts the comparison
from the AS level. Since R1 and R2 differs in the second AS (i.e., AS2 and AS5),
we know that subnets/IPs belonging to AS2 in R1 and those belonging to AS5
in R2 are different according to Eqn.1. Therefore, rtd will compare subnets in
the same ASes (e.g., AS1, AS3, and AS4). Taking AS1 as an example, rtd will
contrast AS1’s subnets in R1 (i.e., {SN1, SN2, SN3}) and that in R2 (i.e., {SN1,
SN2, SN3}). Since they are the same, rtd will compare the IPs in R1 (i.e.,{IP1,
IP2, IP3, IP4, IP5, IP6}),and those in R2 (i.e., {IP1, IP2, IP3, IP6}) and identify
the common IPs (i.e., {IP1, IP2, IP3, IP6}) and the difference (i.e., {IP4, IP5}).
After that, rtd will conduct the same analysis to AS3 and AS4. As shown in
Fig. 1, elements in red box are the differences between R1 and R2.

3 Fast-rtd

To extend the comparison from two routes to multiple routes, Fast-rtd adopts
the Fast-LCS algorithm [13], which provides a near-linear solution to the problem
of finding the longest common subsequence (LCS) among a set of sequences,
which is a NP-hard problem [13,14]. Fast-rtd further improves the performance
of Fast-LCS in terms of speed and memory usage by exploiting routes’ features.
Fast-rtd consists of three steps to be elaborated in the following Sections 3.1
- 3.3. The first two steps are the same as those in the Fast-LCS algorithm and
our improvements are introduced in the third step.

330 P. Tu et al.

Fig. 1. Example of multi-level route analysis

3.1 Building Successor Tables

Given a set of routes Rk (k = 1, . . . ,M , M ≥ 2), Fast-rtd first constructs a set
RU for containing all unique rk,i (k = 1, . . . , M , i = 1, . . . , |Rk|) and then builds
a successor table (denoted as Tk) for each route Rk following [13]. Each element
in Tk is defined as follows:

Tk(i, j) =

{
min{a|a ∈ Sk(i, j)}, Sk(i, j) �= φ

−, otherwise
(2)

Here, Sk(i, j) = {a|Rk(a) = RU (i), a > j)}, it stores the positions of RU (i) in
Rk, where i = 1, . . . , |RU | and j = 0, . . . , |Rk|. Since the same r will not appear
twice in a route, each row of Tk has only one integer.

Fig. 2. The successor tables of R1, R2 and R3

We use an example to illustrate how to construct successor tables. Given
R1 = {r1, r2, r4, r3, r5}, R2 = {r2, r1, r4, r3, r5}, and R3 = {r2, r1, r3, r5}, we
build RU = {r1, r2, r3, r4, r5} and construct T1, T2, and T3 as shown in Fig. 2.

Speeding Up Multi-level Route Analysis 331

Fig. 3. Example of Fast-rtd’s pruning operations

3.2 Constructing LCS Tree

The LCS tree is constructed from the successor tables. We define an identical
tuple as (i1, . . . , im) if r1,i1 = r2,i2 = . . . = rm,im . Let (i1, . . . , im) and (j1, . . . , jm)
be two identical tuples. If ik < jk for k = 1, . . . , m, (i1, . . . , im) is a predecessor
of (j1, . . . , jm), or (j1, . . . , jm) is a successor of (i1, . . . , im). For an identical tuple
(i1, . . . , im), its direct successors can be identified through Eqn.3. Starting from
the identical tuples on the first level, we can emulate all direct successors and
construct a tree.

(i1, . . . , im) → (T1(k, i1), . . . , Tm(k, im)) (3)

From (3) we can see that the operation of producing successor tuples is to couple
the elements of the (im)th column of Tm.

Following the example in Section 3.1, we enumerate all the first identical
tuples: r1(1, 2, 2), r2(2, 1, 1), r3(4, 4, 3), r4(3, 3,−), r5(5, 5, 5). The first identical
tuples are those whether r1, r2, r3, r4, r5 appear firstly in route sequences R1,
R2 and R3, individually. Take r1(1, 2, 2) as an example, we can see R1[1] =
R2[2] = R3[2]. To generate its direct successors, r1(1, 2, 2) couples the 1st col-
umn of T1, the 2nd column of T2, and the 2nd column of T3 to produce new
tuples:r1(−, 2, 2), r2(−,−,−), r3(4, 4, 3), r4(3, 3,−), and r5(5, 5, 5). Note that
although all tuples can produce its successors, not all its successors are valid.
Four pruning operations, to be introduced in the next section, are used to remove
the invalid successors.

3.3 Pruning the Tree and Outputting LCSes

Since not all paths in the tree lead to LCSes, we employ four pruning operations
to remove tuples that do not belong to LCSes. Two operations (i.e., valid prun-
ing operation and level pruning operation) are from Fast-LCS and the other two

332 P. Tu et al.

operations (i.e., parent-child pruning operation and track-back pruning opera-
tion) are proposed by us exploiting the features of route sequences. We detail
the four pruning operations belows.

Valid Pruning Operation. The valid pruning operation removes identical tuples
with ′−′. Tuples like (k,−) or (−, k) are invalid and can be pruned directly.
Given N route sequences, to determine whether a tuple (i1, i2, ..., in) contains
′−′ or not, Fast-rtd will do a linear search, and hence the time complexity is
O(N/2).

LevelPruningOperation. The level pruningoperation removes redundant identical
tuples on the same level. More precisely, given two identical tuples (i1, . . . , im) and
(j1, . . . , jm), if i1 < j1 and ik ≤ jk (k=2,. . . ,m), then (j1, . . . , jm) will be removed.
Given N route sequences, for two tuples (i1, i2, . . . , in) and (j1, j2, . . . , jn),
Fast-rtd will conduct N times comparison to make sure whether the one should
be pruned or not, thus the time complexity will be O(N).

Parent-Child Pruning Operation. The parent-child pruning operation deletes a
child identical tuple if it has the same upper level label as its parent. Given
a subsequence {r1, r2, . . .} where AS(r1) = AS(r2) = AS0 and AS(r3) =
AS(r4) = AS1, in the AS − level, the subsequence can be represented as
{AS0, AS0, AS1, AS1, . . .} with redundant AS0 and AS1. Parent-child prun-
ing operation can help to avoid the redundance during the construction of the
LCS tree, because it makes sure that all the tuples have different level label with
their parent. As it just processes the level label to decide whether a tuple should
be pruned or not,the time complexity of it will be O(1).

Trace-Back Pruning Operation. The trace-back pruning operation deletes tuples
whose labels have occurred on the path from itself to the root of the LCS tree.
This is motivated by the observation that legitimate route sequences do not
contain loops. Given a subsequence {r1, r2, . . .}, if L(rj)! = L(ri),(j > i), then
L(rj)! = L(rk), (0 < k < i). Trace-back pruning operation removes all the tuples
that may form a loop by tracing back to the root of the LCS tree. The tracing
time is O(D), where D is the depth of the tuple in the tree. Since the length of
a route is usually short (i.e., less than 30), O(D) can be approximated as O(1).

Example. By applying these four pruning operations during the construction
of the LCS tree, Fast-rtd can prune a large amount of tuples during the con-
struction of the LCS tree to improve the efficiency. Fig. 3 demonstrates the LCS
tree and how pruning operations remove tuples. The LCS tree begins with the
initial tuples r1(1, 2, 2), r2(2, 1, 1), r3(4, 4, 3), r4(3, 3,−), and r5(5, 5, 5) on the
first level. The valid pruning operation will prune the tuple r4(3, 3,−1), and
then using level pruning operation, we can prune r3(4, 4, 3) and r5(5, 5, 5) with
r1(1, 1, 2), r2(2, 1, 1) left on the first level. Then r1(1, 1, 2) produces its child
tuples r1(−,−,−), r2(2,−,−), r3(4, 4, 3), r4(3, 3,−), r5(5, 5, 5) on level 2 and

Speeding Up Multi-level Route Analysis 333

r2(2, 1, 1) generates its child pairs r1(−, 2, 2), r2(−,−,−), r3(4, 4, 3), r4(3, 3,−),
r5(5, 5, 5) on level 2.

On level 2, using the parent-child pruning operation, we prune r1(−,−,−),
r2(−,−,−). The valid pruning operation removes r2(2,−,−), r1(−, 2, 2),
r4(3, 3,−), r4(3, 3,−) and the level pruning operation removes r5(5, 5, 5),
r5(5, 5, 5) with the only r3(4, 4, 3), r3(4, 4, 3) left on level 2. Then we produce the
child tuples of r3(4, 4, 3), r3(4, 4, 3), including r1(−,−,−), r2(−,−,−),
r3(−,−,−), r4(−,−,−), r5(5, 5, 5), r1(−,−,−), r2(−,−,−), r3(−,−,−),
r4(−,−,−), r5(5, 5, 5) on level 3.

By adopting the parent-child pruning operation, we prune the tuples
r3(−,−,−) and r3(−,−,−) on level 3. The trace-back pruning operation removes
r1(−,−,−) and r2(−,−,−), because they have appeared on LCS path to the root.
The valid pruning operation eliminates r1(−,−,−), r2(−,−,−), r4(−,−,−), and
r4(−,−,−). Continuing the pruning process, we find that r5(5, 5, 5) and r5(5, 5, 5)
are the leaf tuples left on the level 3, meaning that the construction of the LCS
tree is finished. By tracing back from the two r5(5, 5, 5) on the level 3 to the root,
we will obtain two LCS: r1r3r5 and r2r3r5.

3.4 Order of Using the Four Pruning Operations

While there are four pruning operations, we find through extensive experiments
against various data sets that they had better be used in the order of parent-
child, trace back, valid and finally level pruning. By first using the parent-child
pruning operation and the trace-back pruning operation, a large number of tuples
on the same level will be pruned. Then the number of tuples to be pruned by the
valid pruning operation and/or the level pruning operation will be significantly
decreased, thus reducing the computation time.

Analysis. Let N be the number of routes and K denote the number of tuples to
be pruned by the valid pruning operation or the level pruning operation in the
Fast-LCS algorithm. Since the time complexity of the valid pruning operation
and the level pruning operation are O(N/2) and O(N), the time complexity of
pruning tuples in the Fast-LCS will be T1 = K∗O(N) if we regard both as O(N).
Note that the number of tuples to be pruned by the valid or the level pruning
operations is reduced in the Fast-rtd algorithm, because the parent-child and
the trace-back pruning operations have pruned a portion of these tuples. Let p
be the pruning rate of the parent-child and the trace-back pruning operations.
Then the time complexity of using the parent-child or the trace-back pruning
operations will be T21 = K ∗ p ∗ O(1) and that of using the valid or the level
pruning operations will be T22 = K ∗ (1 − p) ∗ O(N). Therefore, the total time
complexity in the Fast-rtd algorithm will be T2 = T21 + T22 . Compared to the
Fast-LCS, we can see that the saved time T ′ = T2 −T1 = K ∗p∗ (O(N)−O(1)).
When N and p increase, Fast-rtd will be more efficient.

Example. Consider the example in Fig. 3 where there are three routes. Tuples
r3(4, 4, 3) on level 2 produces its child tuples r3(4, 4, 3) and r3(4, 4, 3), includ-
ing r1(−,−,−), r2(−,−,−), r3(−,−,−), r4(−,−,−), r5(5, 5, 5), r1(−,−,−),

334 P. Tu et al.

r2(−,−,−), r3(−,−,−), r4(−,−,−), and r5(5, 5, 5) on level 3. In the Fast-LCS
algorithm, using only the valid pruning operation and the level pruning opera-
tion, it will prune the child tuples r1(−,−,−), r2(2,−,−), r3(−,−,−),
r4(−,−,−), r1(−,−,−), r2(2,−,−), r3(−,−,−), and r4(−,−,−). The time com-
plexity will be 8 ∗ O(N/2). However, in the Fast-rtd, by using the parent-
child operation first, we can prune r3(−,−,−) and r3(−,−,−) in 2*O(1), and
then prune r1(−,−,−) and r2(−,−,−) by using the trace-back pruning opera-
tion in 2*O(1). After that, we will prune r4(−,−,−) and r4(−,−,−) through
the valid pruning operation in time 2*O(N/2). Therefore, the saved time t =
8 ∗ O(N/2) − 2 ∗ O(N/2) − 4 ∗ O(1) = 6 ∗ O(N/2) − 4 ∗ O(1). When N increases,
t will increase significantly. Therefore, by first using the parent-child pruning
operation and the trace-back pruning operation, the number of tuples on the
same level will be largely reduced. Hence, the number of tuples to be pruned
by the valid pruning operation or the level pruning operation will decrease, thus
reducing computation time.

4 Evaluation

We implement both Fast-rtd and Fast-LCS for comparisons. They are tested
against two sets of real traceroute data. The first one is the iPlane data set
[15] from April to July in 2012. The other one contains traceroute data from
Planetlab nodes to two subnets in Taiwan, which were collected by ourselves
through paris-traceroute [16]. The two data sets have around 100K routes. For
each unique IP address in these routes, we get its subnet and AS information
through WHOIS database and team cymru’s IP to ASN mapping service [17].

Since Fast-rtd is designed to handle multiple routes, we evaluate it using
three types of routes, which represent different use cases. The first type of data
(denoted as S-S) include routes from one IP address to another collected during a
period of time. Such kind of data will be examined when a user wants to know the
evolving of the routes between two hosts. The second type of data (denoted as M-
S) comprises of routes from a set of IPs to one IP, for example, from an AS to one
IP. Such type of data is useful for inspecting the multiple routes to a destination.
For example, a multi-homing user may have server upstream providers, which
provides different paths and even performance for the user to communicate with
another IP. The third type of data (denoted as M-M) consists of routes from a
set of IPs to another set of IPs, for example, from an AS to another AS. Such
type of data may be used by network administrator for investigating the routes
between ASes, which are useful to traffic engineering.

Fast-rtd improves Fast-LCS by taking into account the features of Inter-
net routes. Fig. 4 illustrates the increased pruning rate and decreased memory
usages. The X-axis is the number of routes and each point represents an average
value from 20 times experiments, where a certain number of routes were ran-
domly selected from our data set. Fig. 4(a) shows that the increased pruning rate
is within the range of [3%,15%]. The value increases with the number of routes.
The M-M types of routes have much larger pruning rate than the M-S and S-S
types of routes. Moreover, the increment of pruning rate is fast for the M-M type

Speeding Up Multi-level Route Analysis 335

0 500 1000 1500 2000
0

5

10

15

20

Number of routes

P
ru

n
in

g
 r

at
e

(%
)

S−S
M−M
M−S

(a) Pruning rate

100 400 800 1200 1600 2000
40

42

44

46

48

Number of routes

M
em

o
ry

 r
ed

u
ct

io
n

 (
%

)

S−S
M−S
M−M

(b) Memory reduction

Fig. 4. The performance improvement introduced by Fast-rtd in different scenarios

of routes when the number of routes increases. The reason may be that the M-M
type of routes have much larger number of unique IPs. Fig. 4(a) demonstrates
that Fast-rtd can lead to more than 40% memory reduction. Moreover, the
reduction rate increases along with the number of roues.

0 500 1000 1500 20000

0.2

0.4

0.6

0.8

Number of routes

Ti
m

e
(s

ec
on

d)

FAST−RTD
FAST−LCS

(a) S-S.

0 500 1000 1500 20000

0.5

1

1.5

2

2.5

Number of routes

Ti
m

e
(s

ec
on

d)

FAST−RTD
FAST−LCS

(b) M-S.

0 500 1000 1500 20000

0.5

1

1.5

2

2.5

3

3.5

Number of routes

Ti
m

e
(s

ec
on

d)

FAST−RTD
FAST−LCS

(c) M-M.

Fig. 5. The speed comparison between Fast-rtd and Fast-LCS in different scenarios

Fig. 5 compares the time required by Fast-rtd and Fast-LCS to process
different scale of routes in different scenarios. The X-axis is the number of routes
and the Y-axis is the computation time. Each point is also an average value from
20 times experiments with randomly selected routes. We can see that Fast-rtd
uses much less time than Fast-LCS and the improvement increases along with
the number of routes. For example, when conducting experiments on 2000 routes,
we can observe up to 25% speed improvement. When the number of routes is
small, the difference is small. The type of data also affects the improvement. For
example, as the improvement of pruning rate due to Fast-rtd is small for the
S-S type of data compared to other type of data as shown in Fig. 4, the time
reduction in Fig. 5(a) is less obvious than that in Fig. 5(b) and Fig. 5(c).

5 Related Work

Contrasting routes on different levels is very useful to many applications, such
as characterizing route changes [2–6], measuring route asymmetry and diversity

336 P. Tu et al.

[7–10], and designing efficient route-tracing solutions[11]. Some research uses
Jaccard Distance to quantify the changes in routes [4,7,8]. Since this metric
does not contain order information, people propose using Edit distance and its
variants to profile route changes [2,9,10,18]. However, all these approaches may
result in computational redundancy because they process the information on
different levels independently [1]. We propose rtd to eliminate redundancy by
integrating all levels, thus achieving much better efficiency. However, all these
approaches including rtd have two deficiencies. First, they only compare two
routes at a time and cannot be easily extended to handling multiple routes.
Second, they just apply algorithms designed for processing general sequences to
routes without exploiting the unique features in Internet routes. Inheriting the
basic idea of integrating all levels, Fast-rtd extends rtd by identifying LCS on
multiple routes and improving the performance in terms of time and memory.

6 Conclusion

In this paper, we propose and implement a new approach named Fast-rtd for
multi-level route analysis. Different from existing approaches that can only deal
with two routes at a time, Fast-rtd can contrasts multiple routes simultane-
ously. Moreover, instead of directly applying algorithms for processing sequences,
Fast-rtd adopts new pruning operation and storage techniques, which are moti-
vated by Internet routes’ features, to decrease the computational complexity in
terms of time and memory. Our extensive evaluations on real traceroute data
demonstrate the efficiency of Fast-rtd, such as more than 45% memory reduc-
tion, 3% to 15% pruning rate increase, and up to 25% speed improvement,
compared with Fast-LCS, the approach for analysis of general sequences.

Acknowledgments. We thank Ang Chen for his discussion and suggestions. This
work is supported in part by the CCF-Tencent Open Research Fund, the Pearl River
Nova Program of Guangzhou (No. 2011J2200088), Guangdong Natural Science Foun-
dation (No. S2012010010670), the National Natural Science Foundation of China (No.
60903185), and the Academic Innovation Team Construction Project of Shantou Uni-
versity (No. ITC12001).

References

1. Chen, A., Chan, E., Luo, X., Fok, W., Chang, R.: An efficient approach to multi-
level route analytics. In: Proc. IFIP/IEEE IM (2013)

2. Schwartz, Y., Shavitt, Y., Weinsberg, U.: On the diversity, stability and symmetry
of end-to-end Internet routes. In: Proc. IEEE GI Symposium (2010)

3. Logg, C., Cottrell, L., Navratil, J.: Experiences in traceroute and available
bandwidth change analysis. In: Proc. ACM SIGCOMM Workshop on Network
Troubleshooting (2004)

4. Chan, E.W.W., Luo, X., Fok, W.W.T., Li, W., Chang, R.K.C.: Non-cooperative
diagnosis of submarine cable faults. In: Spring, N., Riley, G.F. (eds.) PAM 2011.
LNCS, vol. 6579, pp. 224–234. Springer, Heidelberg (2011)

Speeding Up Multi-level Route Analysis 337

5. Fok, W., Luo, X., Mok, R., Li, W., Liu, Y., Chan, E., Chang, R.: Monoscope:
Automating network faults diagnosis based on active measurements. In: Proc,
IFIP/IEEE IM (2013)

6. Liu, Y., Luo, X., Chang, R., Su, J.: Characterizing inter-domain rerouting by
betweenness centrality after disruptive events. IEEE JSAC 31(6) (2013)

7. Pucha, H., Zhang, Y., Mao, Z., Hu, Y.: Understanding network delay changes
caused by routing events. In: Proc. ACM SIGMETRICS (2007)

8. Pathak, A., Pucha, H., Zhang, Y., Hu, Y.C., Mao, Z.M.: A measurement study
of Internet delay asymmetry. In: Claypool, M., Uhlig, S. (eds.) PAM 2008. LNCS,
vol. 4979, pp. 182–191. Springer, Heidelberg (2008)

9. He, Y., Faloutsos, M., Krishnamurthy, S.: Quantifying routing asymmetry in the
Internet at the AS level. In: Proc. IEEE GLOBECOM (2004)

10. Han, J., Watson, D., Jahanian, F.: An experimental study of Internet path diver-
sity. IEEE Trans. Dependable and Secure Computing (2006)

11. Beverly, R., Berger, A., Xie, G.: Primitives for active Internet topology mapping:
Toward high-frequency characterization. In: Proc, ACM/USENIX IMC (2010)

12. Hyun, Y.: Archipelago measurement infrastructure. http://www.caida.org/
projects/ark/

13. Chen, Y., Wan, A., Liu, W.: A fast parallel algorithm for finding the longest com-
mon sequence of multiple biosequences. BMC Bioinformatics 7(S4) (2006)

14. Wang, Q., Korkin, D., Shang. Y.: A fast multiple longest common subsequence
(MLCS) algorithm. IEEE TKDE 23(3) (2011)

15. Madhyastha, H., Isdal, T., Piatek, M., Dixon, C., Anderson, T.: iPlane: An infor-
mation plane for distributed services. In: Proc, USENIX OSDI (2006)

16. Augustin, B., Cuvellier, X., Orgogozo, B., Viger, F., Friedman, T., Latapy, M.,
Magnien, C., Teixeira, R.: Avoiding traceroute anomalies with Paris traceroute.
In: Proc. ACM/USENIX IMC (2006)

17. Team Cymru. IP to ASN service. http://www.team-cymru.org/Services/ip-to-asn.
html

18. Schwartz, Y., Shavitt, Y., Weinsberg, U.: A measurement study of the origins of
end-to-end delay variations. In: Krishnamurthy, A., Plattner, B. (eds.) PAM 2010.
LNCS, vol. 6032, pp. 21–30. Springer, Heidelberg (2010)

http://www.caida.org/projects/ark/
http://www.caida.org/projects/ark/
http://www.team-cymru.org/Services/ip-to-asn.html
http://www.team-cymru.org/Services/ip-to-asn.html

	Speeding Up Multi-level Route Analysis Through Improved Multi-LCS Algorithm
	1 Introduction
	2 Multi-level Route Analysis
	3 Fast-rtd
	3.1 Building Successor Tables
	3.2 Constructing LCS Tree
	3.3 Pruning the Tree and Outputting LCSes
	3.4 Order of Using the Four Pruning Operations

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

