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Abstract. Nowadays, the spreading and development of multi-access mobile de-
vices together with the proliferation of different radio access technologies make 
possible to users to actively benefit from the advances of heterogeneous and over-
lapping wireless networks. This fact and the varying characteristics of mobile  
applications in means of the required network resources and Quality of Service 
parameters invoke elaboration of effective flow-based mobility handling algo-
rithms and their cross-layer optimization. Aiming to help research and develop-
ment in the above topic, we propose an advanced, Android-based testbed and 
demonstration environment incorporating a cross-layer optimization platform and 
a flow-aware, client-based mobility management scheme. The testbed relies on 
MIP6D-NG, which is a client-based, multi-access Mobile IPv6 implementation 
with different extensions (e.g., Multiple Care-of Addresses registration, Flow 
Bindings etc.) and an advanced cross-layer communication API. We also intro-
duce an adaptive flow handover system for multi-access environments based on 
cross-layer information transfer between the applications and the MIP6D-NG 
core, all implemented and evaluated in the proposed testbed.  

Keywords: Android · Cross-layer-optimization · Mobile IPv6 · Flow Bindings · 
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1 Introduction 

Recent Android devices are usually provided with multiple network interfaces, thus 
making able users to reach Internet resources using Wi-Fi or 3G/4G networks. The 
increasing number of heterogeneous and overlapping radio accesses [1] demand to 
design and implement algorithms which are able to exploit the available network 
resources. This motivated us to design and evaluate an extensive, modular, Android-
based testbed environment with an advanced flow-aware mobility management 
framework working in different layers of the TCP/IP stack, a technique for cross-layer 
information transfer, and an adaptive decision algorithm operating as the engine of 
this fine-grained mobility management solution. With this system it became possible 
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to dynamically bind flows of any Android application to the available access net-
works and likewise to control the mobility management in the flow level. The deci-
sion core of the architecture manages the control of the flows of Android applications 
by determining the most appropriate interface (i.e., access network) for them. This 
decision algorithm is an exchangeable module in the testbed and able to optimize the 
binding of flows and to control the relevant mobility management tasks according to 
any aspect of the dynamically changing network environment. All the above features 
of the environment are using a real-time network measurement module continuously 
providing up-to-date information to the decision engine from the physical, MAC, IP, 
or even above layers. Based on the current/past network characteristics and the differ-
ent optimization criteria selected by the mobile user, the decision engine will perform 
evaluation and in case of need, will send commands to the mobility execution module 
implemented by MIP6D-NG [2]. We used this testbed to evaluate the performance of 
different algorithm variants of adaptive cross-layer decision running on Android 
Smartphones. 

The remainder of the paper is organized as follows. In Section 2, we introduce the 
related work on the existing solutions for cross-layer optimized flow mobility. Both 
theoretical and practical (i.e., implementation based) researches are depicted here. 
Section 3 introduces the architecture of our highly customized Android environment. 
Section 4 in turn details our overall testbed system setup. Section 5 presents our re-
sults. In Section 6 we conclude the paper and describe our future work. 

2 Background and Related Work 

Rapid evolution of wireless networking has provided wide-scale of different wireless 
access technologies like Bluetooth, ZigBee, 802.11a/b/g/n/p, 3G UMTS, LTE,  
LTE-A, WiMAX, etc. The complementary characteristic of the above architectures 
motivates network operators to integrate them in a supplementary and overlapping 
manner. 

Benefits of such multi-access environments can only be exploited if mobility be-
tween the different networks is efficiently handled. The Mobile IPv6 [3] protocol 
family solves the session continuity for mobile nodes on the move. Two MIPv6 im-
plementations are publicly available nowadays. Both the UMIP and the MIP6D-NG 
are Linux-based open source implementations of MIPv6 and its core extensions  
(NEMO [4], MCoA [5]). While UMIP [6] is the more mature and widespread solu-
tion, MIP6D-NG is a novel, emerging, more extendable implementation comprising 
some advanced and innovative functions which are not available in UMIP. From this 
set of pioneering features Flow Bindings [7] and a cross-layer communication API 
makes MIP6D-NG a promising client based cross-layer optimization supporting mul-
ti-access mobility management solution, and that was our motivation to apply it in our 
testbed architecture. However, further optimization can be achieved by assigning 
application flows to the appropriate interfaces using intelligent decisions and 
adaptivity based on the available network resources. Vertical handover and network 
flow mobility algorithms are the basics of an optimal and cross-layer driven mobility 
management method for future heterogeneous mobile networks. 
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2.1 Vertical Handover and Decision Algorithms 

The literature on vertical handover (VHO) solutions is extensive. Many papers intro-
duce special handover schemes, network topologies and architectures with decision 
engines for VHO management (e.g. [8]). One of the most crucial elements of our 
testbed is the decision engine, thus we start the introduction of the related work on the 
most important VHO decision techniques and approaches. 

We categorize the decision mechanisms based on the input parameters they rely 
on. A summary about the used parameters for VHO decision can be found in [9], 
where authors rate VHO algorithms into four categories: RSSI-, bandwidth-, cost-
based and combined solutions. In [9], Xiaohuan et al. also present a novel algorithm 
but it does not rely on other inputs than RSSI. Majority of the existing algorithms use 
only signal strength as input parameter (e.g., [10]), and authors usually evaluate their 
solutions based on simulations or analytical calculations. However the RSSI based 
techniques are the most widespread in the literature, the efficiency of this type of 
VHO algorithms can be very low, if the parameters of other layers in the TCP/IP 
stack (e.g., packet loss rate in L3) are not appropriate. Aiming to increase the effi-
ciency of the applied decision scheme we have to use more input parameters, not only 
signal strength. Authors of [11] and [12] follow this path and also rely on other input 
parameter types (e.g., monetary cost, bandwidth, and user preferences) beside the 
RSSI to design more a sophisticated handoff solution. Majority of the existing deci-
sion schemes are not capable to support decisions for flow level mobility manage-
ment, meaning that during the handover all the flows are moved to another interface, 
hence eliminating the possibility to differentiate between applications neither in the 
VHO decision nor in the execution phase. For more fine-grained mobility manage-
ment it is indispensable to define network flows and manipulate them separately  
during handover events. The concept of network flows allows us to assign flows to 
applications and link them to different interfaces. We can describe a flow with a 5-
tuple: source address and port, destination address and port, protocol type. We focus 
on the literature of flow mobility in the following section. 

2.2 Flow Mobility 

Most of the papers in the subject discuss the definition and management of different 
flows in protocol level [13]. In our testbed the advanced toolset of MIPD6-NG solves 
all the protocol level questions of flow mobility management by relying on the Flow 
Binding and MCoA RFCs, so we do not detail this in this paper.  Instead, we focus on 
the flow-aware VHO schemes and existing flow mobility implementations. 

In [14], Haw et al. examine a multi-criteria VHO decision mechanism to manage 
the network flows efficiently. In their flow mobility scenario two flows were defined 
(FTP and VoIP), however the flow mobility was managed by the operator side and in 
the context of the mostly theoretical content centric networking (CCN). Contrarily we 
designed and implemented an IPv6 client-based mobility management which provides 
more freedom to the end users and relies on the practical IPv6 networking schemes. In 
[15] also a multi-criteria decision engine is presented. The introduced algorithm sup-
ports handover decisions based on network cost, signal strength, packet loss and pre-
defined weight of the flows. This paper introduces theoretical results and doesn’t 
contain evaluation based on real implementations.  
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The articles above present only recommendations and/or simulation models for flow 
mobility management. The first publicly available Flow Bindings implementation was 
designed for Linux distributions by the authors of [16], however their implementation 
supported only NEMO environments, regular mobile nodes were not able to register or 
update network flows. Francois Hoguet et al. [17] showed a Linux based flow mobility 
environment and the possibilities of  porting it to Android Smartphones. They used the 
UMIP’s MIPv6 implementation and a proprietary flow binding solution. The authors 
measured the performance differences between a laptop and an Android Smartphone. 
This is a real implementation for Android devices, but does provide neither efficient flow 
mobility management nor complex decision engine. [18] and [19] also introduces a 
Linux based scheme, but this solution covers only a special NEMO use-case, always 
moves every flow (its predictive mobility management scheme prohibits separation of 
individual flows) and does not rely on the Flow Bindings RFCs. Ricardo Silva et al. [20] 
examine the mobility management on Android systems. They created a custom Android 
ROM to use the 3G and Wi-Fi interfaces simultaneously. IEEE 802.21 Media Independ-
ent Handover framework [21] is applied to support IPv6 based mobility. From this article 
also the flow mobility and the flow based decision mechanism are missing compared to 
our architecture. 

3 Customized Android Architecture 

In our proposed testbed environment the Mobile Node (MN) entity is realized by an 
Android Smartphone. The overall customized Android Smartphone architecture will 
be introduced in this section using a bottom-up approach (Fig. 1).  

The mobile device must be able to run the MIP6D-NG daemon. MIP6D-NG re-
quires special kernel therefore we modified the kernel part (added Mobile IPv6 sup-
port, MIP6D-NG compatibility, modified header files, external modules). To execute 
these modifications a custom ROM is required. The daemon runs on the native layer 
of the architecture. The porting MIP6D-NG to Android systems was a non-trivial 
task, because it required libraries and header files that do not exist on Android OS or 
if exists, differ from their original GNU Linux implementations. Therefore we created 
a cross-compiler toolchain which contains the ARM compatible versions of all the 
necessary components. We extended the NDK stand-alone toolchain1 with our own 
libraries and header files. Other important daemons are located in this layer, such as 
Pingm6, Socat, and Lighttpd. Pingm6 is a modified Linux ping6 command which 
allows testing the flow mobility features. We used Socat for the UDP file transfer. 
Lighttpd is an open-source web server optimized for speed-critical environments. We 
used this for TCP video streaming purposes. 

For multi-access communications, the MN needs the ability to communicate via 
two (3G and Wi-Fi) network interfaces (with IPv6 support) simultaneously. Despite 
the fact that recent Android devices usually possess multiple radio interfaces, even the 
newest Android OS versions (Android 4.4) do not allow the simultaneous usage of 
them. In fact, the built-in mechanisms for network interface management in Android 
phones are very simple: if a 3G interface is active and Wi-Fi is available, the 3G will 
                                                           
1  Android NDK toolchain: http://developer.android.com/tools/sdk/ndk/ 
index.html 
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shut down, while if only a 3G network is available, then the Wi-Fi interface will be in 
down state. Android OS designers are currently pushing a solution which saves bat-
tery power so only one interface can be active at the same time. To change the mech-
anism described above it was necessary to modify the source code of the Service 
module of the Android OS managing network connections. The Service module con-
tains the ConnectivityService.java where the handleMessage()method of 
NetworkStateTrackerHandler class is responsible for the state management of net-
work interfaces: a switch-case statement contains the implementation of each scenar-
io. We implemented a new statement as an extension: if the 3G interface is active and 
Wi-Fi is available, then 3G should remain active, therefore real multi-access became 
usable. It meant that the Android OS itself also required modifications. 

Another issue to be solved was that the 3G interface doesn’t support native IPv6 on 
most Android devices. In order to solve this problem and also to provide portability of 
the testbed (i.e., testing and demonstration possibilities over any legacy IPv4 3G net-
work) we were implementing an OpenVPN connection with a bridged interface on the 
Android Smartphone. Our custom ROM therefore contains the OpenVPN binary and the 
required busybox commands (e.g., ifconfig, route, etc.). In order to be able to create 
the bridge interface we needed the following kernel modules loaded: bridge.ko, 
llc.ko, psnap.ko, p8022.ko, stp.ko. To configure the environment variables of 
openvpn, the Smartphone runs the OpenVPN-Settings application. The OpenVPN server 
is located on a router, which provides an appropriate IPv6 prefix for the Android 
Smartphone 3G connection through the OpenVPN tunnel. 

In order to perform the required modifications inside the source code of the Android 
OS and the kernel, a build environment was created which was able to make a custom 
ROM image with our MIP6D-NG ready kernel source code and with our modified An-
droid OS code. We used CyanogenMod2 Android sources and Andromadus3 kernel tree 
distribution as a base code platform for our extensions. The result is a custom ROM with 
Android 4.1.2 and Kernel 3.0.57 with the appropriate patches and settings (MIP6D-NG 
requires kernel 3.x version, some kernel patches and special configuration). In the Java 
layer we designed and implemented a modular Android application comprising three 
main parts. The so called Radio Access Network Discovery Module (RANDM) is de-
signed to measure the different parameters from multiple layers of the available networks 
(e.g., signal strength, delay, and packet loss). For signal strength measurements we used 
the TelephonyManager API. The packet loss and delay are calculated from the output of 
Pingm6. To run Pingm6 (which is not a so called system binary) from Java layer we had 
to use an external library, the RootCommands4. RANDM forwards the measurement 
results to the Handover Decision and Execution Module (HDEM). HDEM is able to 
direct the Android OS to connect an available WiFi network using the 
WifiConfiguration and WifiManager APIs. The Handover Execution module (HEM) 
communicates with the native MIP6D-NG daemon, creates and sends flow register and 
flow update messages induced by the advanced decision algorithm. For the cross-layer 
information exchange a socket based communication scheme was designed and devel-
oped. The Handover Decision module (HDM) decides about the necessity of the  
 

                                                           
2 CyanogenMod github: https://github.com/CyanogenMod 
3 Andromadus github: https://github.com/Andromadus 
4 RootCommands external library: https://github.com/dschuermann/ 
root-commands 
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Fig. 1. Highly customized Android architecture 

handoff based on the decision algorithm introduced in the next section. HDM directs 
the HEM to send flow register or update command to MIP6D-NG. The HDM is a 
modular, exchangeable part of the architecture, thus we can alternate the used deci-
sion algorithm very easily.  

Currently we have three different decision mechanism implemented in our testbed: 
Static Flow Assignment (SFA), a purely Signal Strength based [9] (RSSI) and our 
custom cross-layer optimized algorithm. The SFA is able to register flows using 
MIP6D-NG, but cannot move them between the available interfaces. The RSSI algo-
rithm reassigns the flows on the basis of the signal strength measurements of the 
available networks. Contrarily, our scheme relies on cross-layer information. The 
most important input parameters of our decision algorithm are the actual measurement 
data, the static information obtained during the network measurements in the current-
ly used networks, and a knowledge database containing the information of all the 
previously visited networks. The first step of the algorithm is the registration of data 
flows to the default 3G interface using cross-layer communication between the appli-
cation and the network layers. After this step starts the phase of passive measurements 
of Wi-Fi networks. If there are no available networks, the algorithm holds the flows 
on the 3G interface and waits for the appearance of new Wi-Fi access points. Other-
wise starts the cross-layer measurements, in which it measures the signal strength 
from link-layer, and packet loss, RTT and jitter from network layer. If the parameters 
of the current measured network are not suitable for the QoS profile, the scheme  
starts to measure the next available network. If the measured QoS values are appro-
priate, the MN connects to this Wi-Fi network and moves the corresponding  
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Fig. 2. The proposed cross-layer optimized decision algorithm 

flow(s) to the Wi-Fi interface based on the flow(s) QoS profile(s). After that, the ap-
plication waits for a random time to avoid ping-pong effect of handovers similarly to 
the solution applied in [22]. 

The third and last part of the Java layer application is the Source of Data Flows 
which serves as a simple traffic generator: produces an UPD audio stream and/or a 
TCP file transfer. 

4 Overall Testbed Architecture 

Fig. 3 presents the overall architecture of our testbed environment designed and im-
plemented for real-life evaluation of advanced cross-layer optimized, flow level mo-
bility management protocols and algorithms. The Home Agent is realized by a Dell 
Inspiron 7720 notebook running a MIP6D-NG daemon configured for Home Agent 
functionality. This entity requires special kernel configuration, which means the need 
of a MIP6D-NG compatible kernel.  
 

 
Fig. 3. The overall testbed architecture 
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A HTC Desire S Smartphone plays the role of the MN. In our testbed the core 
router is an ASUS WL500 with DD-WRTv24 OS (CrushedHat distribution). Two 
OpenVPN daemons are running on this router. On one hand an OpenVPN Server 
provides an appropriate IPv6 address for the 3G connection of Android Smartphone 
using RADVD5. On the other hand an OpenVPN client operates as an IPv6 over IPv4 
or IPv6 over IPv6 tunnel, interconnecting the testbed with our IPv6 domain, inde-
pendently of the router’s actual IP access. It means that the overall architecture could 
be portable and in the worst case only recovers legacy IPv4 connection for the core 
router. Wanulator6 network emulator nodes are also applied in the environment. This 
entity is a Linux distribution which allows us to manipulate the QoS parameters (e.g. 
delay, packet loss, jitter etc.) of the link to which it is connected (i.e., the wireless 
connections in the depicted setup). Using Wanulator we are able to evaluate different 
decision algorithms in any set of network QoS parameters. 

5 Results 

In order to present the feasibility of our testbed and to evaluate the proposed flow 
mobility decision algorithm, we implemented three measurement scenarios. In the 
first test case the significance of the lack of flow level mobility management is pre-
sented by the static flow assignment scheme that involves the following: 

• the Smartphone connects to the Internet using only the 3G interface  
• the Flow Application registers two different type of flows (e.g., TCP and UDP) 

to the MIP6D-NG, both statically assigned to the only available 3G interface 
• a new Wi-Fi AP appears and the application connects to this new AP 
• newly started flows, that favor Wi-Fi by their QoS profile can be registered to 

this newly available Wi-Fi, but ongoing sessions cannot be moved to use the 
novel access networks: they remain on the 3G connection 

Relying on SFA we could communicate simultaneously with two different types of 
network, but because of the lack of fine-grained mobility, the data flows remain on 
the interface they were statically assigned to. Using such a static flow assignment 
algorithm we cannot exploit optimally the available network resources. On the contra-
ry, our algorithm is able to handle the registered flows separately (e.g., we move only 
the TCP flow to the Wi-Fi (which has higher bandwidth value) and hold on the 3G 
interface the VoIP flow (which is reactive to the frequent handoffs). By running TCP 
and UDP tests we measured the amount of the transmitted data (audio and video files) 
of SFA and our proposal during transmissions of 90 seconds. Fig. 4 left part shows 
clearly that an algorithm which is able to dynamically move flows between interfaces 
(i.e., access networks) can transfer much more data. In case of the evaluated schemes 
in our scenario the average gain was 100.8%. Majority of handover decision algo-
rithms in the literature are (purely) signal-strength based. The efficiency of this type 
of vertical handovers can be very low if the chosen network shows degraded QoS 
parameters in network layer of the TCP/IP stack (e.g., packet loss or high jitter oc-
curs). In order to highlight this, our second measurement scenario  
 

                                                           
5 Router Advertisement daemon: http://www.litech.org/radvd/ 
6 Wanulator Network Simulator: http://wanulator.de/ 
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Fig. 4. Comparison between SFA (blue) and our algorithm (green) [left], comparison between 
RSSI (orange) and our algorithm (green) [right] 

manipulates the network level parameters (e.g., packet loss) using the Wanulator box. 
This scenario from the RSSI algorithm’s point of view: 

• 3G network is available and the application connects to the 3G network  
• the application registers two different types of flow to the 3G interface 
• a new Wi-Fi network with good signal strength but high packet loss appears 
• the application connects to this Wi-Fi network 
• flows favoring Wi-Fi by their QoS profile will be moved to Wi-Fi  

In this case the RSSI algorithm moves the data flows to the Wi-Fi interface, but 
because of the degraded network layer parameters it has much lower efficiency. On 
the contrary, our algorithm measures the packet loss and holds the flows on 3G inter-
face until it finds an appropriate Wi-Fi network. Fig. 4 right part compares the two 
schemes: the amount of transmitted data over the TCP flow as a function of the packet 
loss is depicted. In the two cases (packet loss = 0% and 1%) the performance of RSSI 
algorithm is better, because our algorithm keeps the data of flows on 3G interface 
during the measurement session, while RSSI starts to use the Wi-Fi (which has a big-
ger bandwidth in the first and second test case) earlier. The measurement phase of our 
algorithm takes 20 seconds, but this will be enhanced in the future. The cumulative 
average gain of the cross-layer scheme in this scenario was 139%. 

6 Conclusions 

In this paper we aimed to present a highly customized Android-based testbed and dem-
onstration environment involving a cross-layer optimization platform and a flow-aware, 
client-based mobility management scheme based on MIP6D-NG. We confirmed the 
applicability of our testbed by evaluating our flow mobility management proposal with 
the help of real-life measurements. We performed a comparison between our algorithm 
and two other scheme implemented from the literature (SFA, RSSI). As a part of our 
future activities in the designed testbed we are planning to refine our algorithm  
(e.g., decreasing the measurement period) and combining our client-based approach with 
network-based mobility management techniques. 
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