
Multi-source Mobile Video Streaming: Load
Balancing, Fault Tolerance, and Offloading

with Prefetching

Dimitris Dimopoulos, Christos Boursinos, and Vasilios A. Siris(B)

Mobile Multimedia Laboratory, Department of Informatics, Athens University
of Economics and Business, Athens, Greece

vsiris@aueb.gr

Abstract. We present the design and experiments from a testbed imple-
mentation of multi-source mobile video streaming that combines three
mechanisms: 1) load balancing among different paths from multiple
sources, 2) resilience to link and server failures, and 3) enhanced offload-
ing by exploiting mobility and throughput prediction to prefetch video
data in caches located at hotspots that the mobile will encounter. Our
testbed consists of an Android mobile video streaming client that can
utilize both cellular and Wi-Fi interfaces and request different parts of a
video from different servers, a server that accepts client requests for parts
of a video, and a cache server that accepts client requests to proactively
fetch parts of a video so that they are immediately available when the
mobile client enters the cache server’s hotspot.

1 Introduction

A major trend in mobile networks over the last few years is the exponential
increase of powerful mobile devices, such as smartphones and tablets, with mul-
tiple heterogeneous wireless interfaces that include 3G/4G/LTE and Wi-Fi. The
proliferation of such devices has resulted in a skyrocketing growth of mobile traf-
fic, which in 2013 grew 81%, becoming nearly 18-times the global Internet traffic
in 2000, and is expected to grow 10-fold from 2013 until 20181. Moreover, mobile
video traffic was 53% of the total traffic by the end of 2013 and is expected to
be over two-thirds of the world’s mobile data traffic by 2018. The increase of
video traffic will further intensify the strain on cellular networks, hence reliable
and efficient support for video traffic in future networks will be paramount.

Efficient support for video streaming in future mobile environments, in terms
of both network resource utilization and energy consumption, will require

This research has been co-financed by the European Union (European Social Fund-
ESF) and Greek national funds through the Operational Program “Education and
Lifelong Learning” of the National Strategic Reference Framework (NSRF)-Research
Funding Program: Aristeia II/I-CAN.

1 Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2013-
2018, Feb. 5, 2014

c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014
V.C.M. Leung et al. (Eds.): TridentCom 2014, LNICST 137, pp. 271–281, 2014.
DOI: 10.1007/978-3-319-13326-3 26

272 D. Dimopoulos et al.

integration of heterogeneous wireless technologies with complementary char-
acteristics; this includes cellular networks with wide-area coverage and Wi-Fi
hotspots with high throughput and energy efficient data transfer. Indeed, the
industry has already verified the significance of mobile data offloading to exploit
fixed broadband and Wi-Fi technology: globally, 33% of total mobile data traffic
was offloaded onto Wi-Fi networks or femtocells in 20121.

The contribution of this paper is to present the design and experiments from
the testbed implementation of a system for multi-source mobile video streaming
that combines functions for load balancing and fault tolerance, in addition to
implementing an innovative procedure for enhanced mobile data offloading that
utilizes mobility and throughput prediction to prefetch video data in local caches
at hotspots that a mobile will encounter. Indeed, prior work has verified that
mobility and throughput prediction is possible; this paper is not concerned with
developing a system for such prediction, but rather focuses on an actual imple-
mentation of mechanisms that exploit such prediction. The work in this paper is
different from our previous work in [11,13] that considers mobile data offloading
for delay tolerant traffic, which requires transferring a file within a time thresh-
old, and delay sensitive traffic, which requires minimizing the file transfer time;
unlike these traffic types, video streaming requires a continuous transfer of video
data to avoid impact on a user’s QoE (Quality of Experience), thus necessitates
a totally different prefetching procedure and evaluation. Also, unlike [12] which
contains trace-driven simulation, here we focus on the design and experiments
from an actual implementation of enhanced offloading using prefetching, which
is combined with mechanisms for load balancing and fault tolerance.

The rest of the paper is structured as follows: In Section 2 we present related
work. In Section 3 we present the design of the multi-source mobile video stream-
ing system and in Section 4 we present the mechanisms for load balancing, fault
tolerance, and enhanced offloading using prefetching. In Section 5 we present
experiments that illustrate the behavior of the system and the gains in terms of
increased mobile data offloading and improved QoE.

2 Related Work

Prior work has demonstrated bandwidth predictability for both cellular networks
[16] and Wi-Fi [7]. Bandwidth prediction for improving video streaming is inves-
tigated in [4,17], and for client-side pre-buffering to improve video streaming in
[10]. The work in [4,10,17] focuses on cellular networks, whereas we consider
integrated cellular and Wi-Fi networks. Moreover, our goal is not to develop a
new system for mobility and bandwidth prediction, but to exploit such prediction
to prefetch data in order to improve mobile video streaming.

Multi-source video streaming for improving robustness in mobile ad hoc net-
works is investigated in [9], which focuses on video and channel coding. The work
in [2] investigates joint routing and rate allocation for multi-source video stream-
ing in wireless mesh networks. Load balancing over multiple radio interfaces is
investigated in [3], which focuses on client-side scheduling. [14] investigates load

Multi-source Mobile Video Streaming: Load Balancing, Fault Tolerance 273

Fig. 1. The system architecture consists of an Android multi-source mobile video
streaming client, video servers, and local hotspot caches for prefetching video data

balancing by probabilistically splitting a video flow across multiple radio inter-
faces based on video transmission patterns. The adaptation of P2P techniques
for multi-source video streaming to Android clients is investigated in [8].

The feasibility of using prediction for prefetching is investigated in [1], which
however does not propose or evaluate specific prefetching algorithms. Prefetching
for improving video file delivery in cellular femtocell networks is investigated in
[5], and to reduce the peak load of mobile networks by offloading traffic to Wi-Fi
hotspots in [6]. Our work differs from the above work on multi-source streaming
and prefetching in that it presents an actual testbed implementation of multi-
source mobile video streaming that combines mechanisms for load balancing,
fault tolerance, and an innovative procedure for prefetching video data in Wi-Fi
hotspots that the mobile will encounter in order to improve video streaming.

3 System Design

The system consists of i) an Android client running in a mobile device that
can playback a video while streaming different parts of the video from multiple
servers, ii) video servers that accept requests for parts (chunks) of a video, and
iii) caches located in Wi-Fi hotspots that accept requests from mobile clients to
prefetch chunks of a video from a remote server, Figure 1. Next we describe in
more detail each of these three entities.

The multi-source mobile video streaming client contains all the intelligence
for downloading parts of a video file from multiple servers. In particular, the
video streaming client implements the following three procedures:

– load balancing: the client measures the throughput that it receives data
from different video servers, and adjusts the number of video chunks that it
requests from each server based on the measured throughput.

274 D. Dimopoulos et al.

Fig. 2. Android multi-source mobile video streaming client design

– fault tolerance: the client can detect when a server or the path from a server
is down, and request video chunks from another available server.

– enhanced offloading with prefetching: the client exploits mobility and through-
put prediction to send to local caches in hotspots that it will encounter requests
to prefetch parts of the video, so that they are immediately available when the
mobile device connects to these hotspots.

The high-level design of the multi-source video client is shown in Figure 2.
The download manager obtains mobility and throughput prediction information,
based on which it instructs a local cache in the Wi-Fi hotspot that the mobile will
encounter to prefetch video data. The video is segmented into multiple chunks
that are contained in separate files. Each chunk is transferred to the mobile client
through a separate TCP connection; this is performed by the downloader mod-
ules, Figure 2, where each downloader is responsible for transferring video data
from a particular server. Such an approach for TCP-based video streaming, by
breaking the video into multiple chunks, is used in the MPEG-DASH standard.
However, we did not use the MPEG-DASH video standard because at the time of
our implementation there was no stable MPEG-DASH video player for Android.
Nevertheless, the design of the multi-source mobile video streaming client and
the procedures implementing the aforementioned functionality are independent
of the details of the protocol used for transferring video chunks.

To download video from multiple servers, the mobile client needs to know
the IP addresses of these video servers, which can be included in the mobility
prediction information or in metadata files such as MPEG-DASH’s Media Pre-
sentation Description (MPD). Alternatively, knowledge of the video servers’ IP
addresses is not necessary in Information-Centric Network (ICN) architectures,
where users request content based on the name for the content [15].

Unlike the multi-source mobile video streaming client which implements
load balancing, fault tolerance, and prefetching, the video server simply accepts
requests for video chunks, which are stored locally in separate files. Cache servers
located in Wi-Fi hotspots are involved in video transfer only when prefetching is
used. The advantages of prefetching are that transferring video data from a local
hotspot cache can fully utilize the Wi-Fi throughput, which is typically higher
than the backhaul throughput that connects the hotspot to the Internet. If the

Multi-source Mobile Video Streaming: Load Balancing, Fault Tolerance 275

video is not prefetched, then the amount of video data transferred through the
Wi-Fi hotspot is constrained by the available backhaul throughput.

4 Mechanisms

In this section we describe in more detail the three mechanisms implemented in
the multi-source mobile video streaming client.

4.1 Load Balancing

This mechanism balances the load among the available servers, based on the
throughput from each server. Specifically, the transfer of a video file occurs in
rounds. In each round a specific number of video chunks C are transferred, which
depends on the video playout rate Rplayout and the chunk size S. In particular,
the number of chunks C should satisfy C ·S ≥ Rplayout ·T, where T is the time for
transferring C chunks, and depends on the number of servers and the throughput
from each server. Let ri be the throughput from video server i measured in one
round. If N is the number of servers, then the number of chunks ci transferred
from server i in the next round is given by

ci =
ri

∑N
j=1 rj

C for i = 1, ..., N − 1 and cN = C −
N−1∑

i=1

ci .

The throughput from each video server is measured by the downloaders, whereas
the calculation of the number of video chunks that are requested from each server
is performed in the download manager, Figure 2.

4.2 Fault Tolerance

The fault tolerance mechanism detects when a video server or a path from a
server is down, in which case it downloads video chunks from an alternative
server. Detection of a server or path fault is performed by the downloaders based
on both a timeout (set to 50 milliseconds) for creating a new TCP connection and
a broken TCP connection. Moreover, to handle the case of transient failures, the
client periodically requests video data from a server that was previously down,
allowing it to detect when the server becomes operational again.

4.3 Enhanced Offloading with Prefetching

Mobility prediction provides knowledge of how many Wi-Fi hotspots a mobile
will encounter, when they will be encountered, and for how long the node will
be in each hotspot’s range. In addition to this mobility information, we assume
that information on the estimated throughput in the Wi-Fi hotspots and the
cellular network is also available; for the former, the information includes both
the throughput for transferring data from a remote location, e.g., through an
ADSL backhaul, and the throughput for transferring data from a local cache.

276 D. Dimopoulos et al.

The procedure to exploit mobility and throughput prediction for prefetching
is shown in Algorithm 1, which is implemented in the download manager of
the multi-source mobile video streaming client. The algorithm extends the one
investigated using trace-driven simulation in [12], by exploiting knowledge of
the video buffer playout rate to reduce the throughput which it downloads video
data over the mobile network. The procedure defines the mobile’s actions when
it exits a Wi-Fi hotspot, hence has only mobile access (Line 9), and when it
enters a Wi-Fi hotspot (Line 14). Mobility and throughput prediction allows
the mobile to determine when it will encounter the next Wi-Fi hotspot that
has higher throughput than the cellular network’s throughput. From the time to
reach the next hotspot and the average video buffer playout rate, the mobile can
estimate the position that the video stream is expected to reach (CurrentPosition
+ Offset) when it arrives at the next Wi-Fi hotspot (Line 10). It then sends a
request to the cache in the next hotspot it will encounter to start caching video
data from that position (Line 11). The video buffer playout rate is also used to
estimate the throughput at which it should download video data while in the
mobile network (Line 12).

Algorithm 1. Using mobility and throughput prediction to prefetch video data
1: Variables:
2: Rplayout: average video buffer playout rate
3: Tnext Wi-Fi: average time until node enters range of next Wi-Fi
4: CurrentPosition: current position of video stream
5: Offset: estimated offset of video stream when node enters next Wi-Fi hotspot
6: B: amount of video data in buffer
7: RateMobile: rate at which video is downloaded from mobile network
8: Algorithm:
9: if node exits Wi-Fi hotspot then

10: Offset ← Rplayout · Tnext Wi-Fi
11: Start caching video stream in next Wi-Fi starting from CurrentPosition + Offset
12: RateMobile ← Rplayout − B

Tnext WiFi
13: Download video data from mobile network with rate RateMobile
14: else if node enters Wi-Fi hotspot then
15: Transfer video data that has not been received up to Offset from original location
16: Transfer video data from local cache
17: Use remaining time in Wi-Fi hotspot to transfer video data from original location
18: end if

When the node enters a Wi-Fi hotspot, it might be missing some portion of
the video stream up to the offset from which data was cached in the hotspot; this
can occur if, due to time variations, the node reaches the Wi-Fi hotspot earlier
than the time it had initially estimated. In this case, the missing data needs to
be transferred from the video’s original remote location (Line 15), through the
hotspot’s backhaul link. Also, the amount of data cached in the Wi-Fi hotspot
can be smaller than the amount the node could download within the time it is in
the hotspot’s range. In this case, the node uses its remaining time in the Wi-Fi
hotspot to transfer data, as above, from the video’s original location (Line 17).

Multi-source Mobile Video Streaming: Load Balancing, Fault Tolerance 277

5 Experiments

In this section we present experimental results that illustrate the load balancing
and resilience mechanisms and the performance gains of enhanced offloading with
prefetching, in terms of a higher percentage of offloaded traffic and improved
Quality of Experience (QoE), expressed through the reduced number of video
pauses (or stalls). Our goal also includes demonstrating the flexibility provided
by combining an actual multi-source mobile video streaming implementation
with mobility emulation, in terms of time-varying connectivity type (mobile or
Wi-Fi) and throughput, to execute experiments with different throughput values
and different hotspot configurations.

5.1 Experiment Setup

In the beginning of each experiment the mobile client obtains a description of
the experiment scenario in an XML (Extended Markup Language) file. The file
specifies the mobile’s connectivity, e.g. Wi-Fi or cellular, for different segments
and the IP addresses of the video servers and caches (in the case of prefetching);
the connectivity segments are specified by their starting time. Essentially, the
scenario description file allows us to emulate the device’s mobility, in terms of
different connectivity scenarios, in addition to different maximum download rates
for the mobile, Wi-Fi, and ADSL backhaul link; the latter is performed using the
wondershaper network traffic shaping tool. The above mobility (in terms of time-
varying connectivity type) and throughput emulation provides the necessary
flexibility to perform experiments with a range of parameters and assess the
performance of the system in scenarios with a different number, location, and
throughput of Wi-Fi hotspots. Finally, our testbed implementation can support
scenarios where both the mobile and WiFi interface are used simultaneously;
this is achieved with the tethering feature of Android devices, which allows both
the mobile and Wi-Fi interface to be simultaneously active.

The video used in the experiments was a 596 second clip from Big Buck
Bunny, encoded at 1280x720 and with an average rate of approximately
1.65 Mbps. The video was segmented into 1229 chunks, each with size approxi-
mately 97 KBytes. In the experiments the multi-source mobile video streaming
client was running on a Galaxy S2 smartphone with Android 4.0.4. The video
and cache servers were running on two virtual machines with Ubuntu 13.10,
executed in a workstation with VirtualBox 4.3.6.

5.2 Results

Load Balancing: Figure 3(a) shows the download throughput when video is
streamed from two servers. Initially, the maximum throughput from each server
is 1 and 3 Mbps. At approximately 40 seconds the maximum downlink rate from
each server becomes 2 Mbps, and the achieved download throughput from both
servers approaches this value. Of course, throughout the experiment the video
is played back without any pauses (stalls).

278 D. Dimopoulos et al.

Fault Tolerance: Figure 3(b) shows the download throughput from two servers.
Initially, the load is balanced among the two servers. At approximately 40 sec-
onds the second server falls and the download throughput from the first server
increases. Later, at time 65 seconds the second server becomes available again
and the load is again equally distributed between the two servers.

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70 80 90

Th
ro

ug
hp

ut
 (M

bp
s)

Time (seconds)

Server 1
Server 2

(a) Load balancing

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70 80 90
Th

ro
ug

hp
ut

 (M
bp

s)

Time (seconds)

Server 1
Server 2

(b) Fault tolerance

Fig. 3. Load balancing and fault tolerance

Enhanced Offloading with Prefetching: The next set of experiments show
the performance gains that can be achieved with prefetching, in terms of the
increased percentage of offloaded traffic and the improved video QoE through
the reduction of the number of frame pauses (stalls). By default each experiment
involves a total of 6 Wi-Fi hotspots, which the mobile encounters at time 0, 100,
200, 300, 400, and 500 seconds. The mobile is able to download video data
in each hotspot for a duration of 20 seconds; note that prefetching cannot be
performed in the first hotspot, since the experiments begin when the mobile is
already in the first hotspot. We also assume that there is some randomness in
the time a hotspot is encountered and in the maximum download throughput
in each segment. The default variability of the time and throughput is 2% and
5%, respectively, while we also present results for different variabilities. A 5%
variability for throughput 1 Mbps means that the actual throughput is randomly
selected from the interval [950, 1050] Mbps, hence there is a mismatch between
predicted and actual throughput. The graphs in this section show the average
of five runs and the corresponding 95% confidence interval.

Percentage of offloaded traffic: Figure 4(a) shows the percentage of video traffic
offloaded to Wi-Fi for three schemes: 1) no prefetching (i.e., when the mobile
enters a hotspot the video is downloaded from a remote server using the max-
imum ADSL bauckhaul throughput), 2) prefetching and downloading of video
data over the mobile network at the maximum rate, and 3) prefetching and
downloading video data over the mobile network at a smaller rate, Algorithm 1.
Observe that the percentage of offloaded traffic with prefetching increases when
the Wi-Fi throughput increases, verifying that prefetching can utilize the higher

Multi-source Mobile Video Streaming: Load Balancing, Fault Tolerance 279

Wi-Fi throughput; on the other hand, without prefetching the percentage of
offloading is independent of the Wi-Fi throughput, since the ADSL backhaul
is the bottleneck. Also, a higher percentage of offloading is achieved with pre-
fetching and reduction of the mobile throughput. Note that maximum offloading
percentage is approximately 85%, since the video data transferred in the second
mobile segment, which is approximately 15%, cannot be offloaded.

Figure 4(b) shows the percentage of offloading for a different number of
hotspots: 4 hotspots located at times 0, 100, 300, and 500 seconds, and 3 hotspots
located at times 0, 100, and 300 seconds. More hotspots allow a higher per-
centage of offloading. Also, note that the two prefetching schemes achieve the
same offloading for 3 hotspots; this occurs because when the number of hotspots
is small, prefetching fully utilizes the available Wi-Fi throughput, hence Algo-
rithm 1 uses the maximum mobile throughput. In general, the offloading gains
depend on the location and duration of connectivity in hotspots. Moreover,
higher values of the time variation (up to 10%) and throughput variation (up
to 20%) yielded similar offloading results and are not included due to space
constraints.

(a) Wi-Fi throughput, 6 hotspots (b) # of hotspots, RWi-Fi = 8 Mbps

Fig. 4. Mobile video data offloading. Rmobile = 2 Mbps, Radsl = 3 Mbps.

Improved video QoE: Next we investigate the improved QoE that can be achieved
with prefetching, in terms of fewer video frame pauses. Figure 5 shows that the
gains in terms of fewer pauses is higher when the mobile throughput is smaller;
this is expected since more frame pauses occur when the mobile throughput
is smaller, which is when the higher throughput of Wi-Fi can be utilized with
prefetching to download more video data and avoid frame pauses; on the other
hand, when prefetching is not used, while in a hotspot the video downloading
rate is constrained by the ADSL throughput. Note that in the scenarios of this
subsection traffic is downloaded over the mobile network using the maximum
throughput, hence we do not differentiate between the two prefetching schemes
considered in the previous subsection.

Influence of time and throughput variability: Figures 6(a) and 6(b) show the QoE
for different time and throughput variabilities, respectively; these figures show
that the variance of the measured pauses increases with higher variability, but
prefetching still achieves fewer frame pauses.

280 D. Dimopoulos et al.

(a) Mobile throughput, 6 hotspots (b) # of hotspots, Rmobile = 1.2 Mbps

Fig. 5. Mobile data QoE. RWi-Fi = 8 Mbps, Radsl = 3 Mbps.

(a) Time (b) Throughput

Fig. 6. Influence of time and throughput variability. RWi-Fi = 8 Mbps, Radsl = 3 Mbps,
Rmobile = 1.2 Mbps.

6 Conclusions and Future Work

We have presented a testbed implementation of multi-source mobile video stream-
ing for integrated cellular and Wi-Fi networks that combines mechanisms for
load balancing, fault tolerance, and enhanced offloading with prefetching video
data in local hotspot caches. Experimental results illustrate the functionality and
performance of the above mechanisms in addition to the ability of the testbed
framework to execute scenarios with different connectivity types, throughput
values, and hotspot configurations. Future work includes extending the imple-
mentation to investigate QoE-aware adaptation of Scalable Video Coding (SVC)
streaming.

References

1. Deshpande, P., Kashyap, A., Sung, C., Das, S.: Predictive Methods for Improved
Vehicular WiFi Access. In: Proc. of ACM MobiSys (2009)

2. Ding, Y., Yang, Y., Xiao, L.: Multi-Path Routing and Rate Allocation for Multi-
Source Video On-Demand Streaming in Wireless Mesh Networks. In: Proc. of IEEE
INFOCOM (2011)

Multi-source Mobile Video Streaming: Load Balancing, Fault Tolerance 281

3. Evensen, K., Kaspar, D., Griwodz, C., Halvorsen, P., Hansen, A.F., Engelstad, P.:
Improving the Performance of Quality-Adaptive Video Streaming over Multiple
Heterogeneous Access Networks. In: Proc. of ACM, Multimedia Systems (2011)

4. Evensen, K., Petlund, A., Riiser, H., Vigmostad, P., Kaspar, D., Griwodz, C.,
Halvorsen, P.: Mobile Video Streaming Using Location-Based Network Prediction
and Transparent Handover. In: Proc. of ACM NOSDAV (2011)

5. Golrezaei, N., Shanmugam, K., Dimakis, A.G., Molisch, A.F., Caire, G.: Femto-
Caching: Wireless Video Content Delivery through Distributed Caching Helpers.
In: Proc. of IEEE Infocom (2012)

6. Malandrino, F., Kurant, M., Markopoulou, A., Westphal, C., Kozat, U.C.: Proac-
tive Seeding for Information Cascades in Cellular Networks. In: Proc. of IEEE
Infocom (2012)

7. Nicholson, A.J., Noble, B.D.: BreadCrumbs: Forecasting Mobile Connectivity. In:
Proc. of ACM Mobicom (2008)

8. Krieger, U.R., Eittenberger, P.M., Herbst, M.: RapidStream: P2P Streaming on
Android. In: Proc. of 19th IEEE Intl Packet Video Workshop (2012)

9. Schierl, T., Ganger, K., Hellge, C., Wiedand, T., Stockhammer, T.: Svc-based
miltisource streaming for robust video transmission in mobile ad hoc networks.
IEEE Wireless Communications, 96–103 (October 2006)

10. Singh, V., Ott, J., Curcio, I.: Predictive Buffering for Streaming Video in 3G
Networks. In: Proc. of IEEE WoWMoM (2012)

11. Siris, V.A., Anagnostopoulou, M.: Performance and Energy Efficiency of Mobile
Data Offloading with Mobility Prediction and Prefetching. In: Proc. of IEEE Work-
shop on Convergence among Heterogeneous Wireless Systems in Future Internet
(CONWIRE), co-located with IEEE WoWMoM (2013)

12. Siris, V.A., Anagnostopoulou, M., Dimopoulos, D.: Improving Mobile Video
Streaming with Mobility Prediction and Prefetching in Integrated Cellular-WiFi
Networks. In: 10th Int’l Conference on Mobile and Ubiquitous Systems: Comput-
ing, Networking and Services (Mobiquitous) (2013)

13. Siris, V.A., Kalyvas, D.: Enhancing Mobile Data Offloading with Mobility Predict-
ion and Prefetching. In: Proc. of ACM MOBICOM MobiArch Workshop (2012)

14. Song, W., Zhuang, W.: Performance analysis of probabilistic multipath transmis-
sion of video streaming traffic over multi-radio wireless devices. IEEE Transactions
on Wireless Communications 11(4), 1554–1564 (2012)

15. Xylomenos, G., Vasilakos, X., Tsilopoulos, C., Siris, V.A., Polyzos, G.C.: Caching
and Mobility Support in a Publish-Subscribe Internet Architecture. IEEE Comm.
Mag. 50(7), 128–136 (2012)

16. Yao, J., Kahnere, S.S., Hassan, M.: An Empirical Study of Bandwidth Predictabil-
ity in Mobile Computing. In: Proc. of ACM WinTech (2008)

17. Yao, J., Kahnere, S.S., Hassan, M.: Quality Improvement of Mobile Video Using
Geo-intelligent Rate Adaptation. In: Proc. of IEEE WCNC (2010)

	Multi-source Mobile Video Streaming: Load Balancing, Fault Tolerance, and Offloading with Prefetching
	1 Introduction
	2 Related Work
	3 System Design
	4 Mechanisms
	4.1 Load Balancing
	4.2 Fault Tolerance
	4.3 Enhanced Offloading with Prefetching

	5 Experiments
	5.1 Experiment Setup
	5.2 Results
	Load Balancing:
	Fault Tolerance:
	Enhanced Offloading with Prefetching:

	6 Conclusions and Future Work
	References

