A Networkless Data Exchange and Control
Mechanism for Virtual Testbed Devices

Tim Gerhard®™), Dennis Schwerdel, and Paul Miiller

Integrated Communication Systems Lab, University of Kaiserslautern,
Kaiserslautern, Germany
{t-gerhard10,schwerdel ,pmueller}@informatik.uni-k1l.de

Abstract. Virtualization has become a key component of network test-
beds. However, transmitting data or commands to the test nodes is still
either a complicated task or makes use of the nodes’ network interfaces,
which may interfere with the experiment itself. This paper creates a
model for the typical lifecycle of experiment nodes, and proposes a mech-
anism for networkless node control for virtual nodes in such a typical
experiment lifecycle which has been implemented in an existing testbed
environment.

Keywords: Testbed + Control Interface + Node Control

1 Introduction

Network research is becoming more important since the Internet and other com-
puter networks have a growing influence on the world. For this area of research,
network testbeds are a crucial tool for experimentation. These testbeds usually
offer a number of devices distributed over the globe with certain connection con-
figurations between them. The experimenters’ influence on this setup and its
variables depends mainly on the testbed’s architecture.

An important aspect for the usage of a testbed is how the network devices
can be controlled. For large experiments which have many network nodes it is
not feasible to control every device by hand. Thus, the experimenter needs to
have a controlling interface which can be automated, i.e. scripted. Many testbeds
(such as PlanetLab [3] or EmuLab [2,7]) use the devices’ networking capabilities
to provide such an interface. Automation frontends for these testbeds like gush
[1] also need a network connection to the devices.

However, in a networking testbed, a network interface (especially one con-
nected to the Internet) may not be a good solution to the problem of controlling
a device. There are several disadvantages when choosing this control method
which have to be accounted for in the experiment design.

configuration. Depending on how node control is realized, there is either an
additional network interface on every device or one of the interfaces which
is being used in the experiment is also used for control. In the first case,

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014
V.C.M. Leung et al. (Eds.): TridentCom 2014, LNICST 137, pp. 14-22, 2014.
DOI: 10.1007/978-3-319-13326-3_-2



A Networkless Data Exchange and Control Mechanism 15

the experiment must be configured never to use the additional interface,
even when routing over this interface would make more sense than routing
over another one. In the second case, this interface is forced to support the
traditional protocol stack including TCP/IP.

traffic. There may be uncontrolled traffic coming from the outside network to
the experiment. This may affect measurements as this additional traffic uses
bandwidth, may cause additional latency or interfere with the experiments
in other ways.

connectivity. There may be experiments which may not be connected to the
Internet for several reasons. For example, you cannot run a malware analy-
sis while connected to the Internet without endangering the Internet (Such
an experiment has been done on ToMaTo, using VNC as the node control
method [5]).

Testbeds can provide a networkless control interface for these kinds of experi-
ments, which will be shown in this paper. In Section 2, a model for automated
node control will be developed. Section 3 describes how these operations can be
realized in a host-guest system, section 4 introduces the actual implementation
in the Topology Management Tool (ToMaTo [4,6]) and section 5 concludes this
paper.

2 Requirements for Automated Control

After creating devices, the experimenter will usually install software on it (1),
configure it (2), run the experiment (3) and then collect the resulting data (4).
Step 1 consists of transmitting files to the device and then execute the installation
routine. Step 2 also consists of running commands and maybe uploading some
configuration files to the device. Step 3 can be initiated by a command, and step
4 is a file download from the device. Every additional interaction can also be
possible through file transmission or sending commands.

For an automated control, one must be able to wait for a command to finish
before continuing with the next step. Therefore, an automated control interface
only needs these three operations: transmitting files between the controlling and
the controlled device, executing commands or scripts on the controlled device
and monitoring the progress of this execution.

Instead of allowing to directly execute a defined command, the controlled
device can be configured to automatically execute a script identified by a certain
file name after such a script has been uploaded. Uploads and downloads are
done through archives, where the archive will be extracted to a certain directory
after an upload, and the archive will be created from this directory again for
download. For the purpose of describing, archive and directory can be viewed as
equivalents.

A system which provides these three operations (upload and execute, query
execution status, download) for its devices to its users without using the target
device’s network interfaces provides Remote Ezxecution and Transfer of Files for
Vitual computers (RexTFV).



16 T. Gerhard et al.

3 Communication Between Host and Guest

This paper will focus on the interface between host and guest. It does not describe
how the host is controlled by the user, but it is assumed that the additional
commands can be integrated into the testbed’s architecture.

Storage is a resource which is shared between host and guest. In general, the
guest can access a part of the host’s storage. This fact can be used to emulate a
shared directory, which can then be used to provide the operations described in
Section 2.

The network-less Execution and Transfer Protocol (n1XTP) uses such a shared
directory to provide these operations between host and guest systems. The term
network-less means that it does not make use of network interfaces.

RexTFV has been designed to work for virtual devices, but it can be used in
any scenario where the controlling node can access the controlled node’s storage.

3.1 Shared Directory

Virtualization systems can be categorized into container-based or full virtual-
ization, which are completely different approaches to the problem of virtualizing
computer systems. Thus, there are fundamental differences in the realization of
the shared directory.

As will be shown in the next section, the shared directory has to provide the
following:

— upload of an archive,

— download of an archive, and

— a frequent, scheduled reading of a certain file (the status file) by the host,
written by the guest.

It is assumed that the user does not execute the upload and download operations
while the guest is still working on the files, given the fact that the user knows
when operations are running. Thus, only the scheduled reading of the status file
has to cover possible inconsistency.

Container-Based Virtualization. Cantainer-based virtual machines (such as
OpenVZ or VServer) aim at creating a different runtime environment, while host
and guest system still share one kernel, including drivers. This means that the
virtual machine is integrated into the host’s scheduler and file system. In fact,
the guest’s root directory is simply a certain directory in the host’s file system.
Since nlXTP requires full control over the shared directory, this shared directory
must be an otherwise unused subdirectory of the guest’s file system.

Both host and guest can access the directory at any time, reading or writing.
The only occurence of inconsistency may happen if the host reads a file which is
at this point of time being written by the guest. To prevent this, the usual ways
of preventing simultanous access to one file by multiple processes can be used.
Alternatively, the file can be secured by a checksum.



A Networkless Data Exchange and Control Mechanism 17

Host VM

Fig. 1. The virtual disk can be mounted in both systems simultaneously

Full Virtualization. In full virtualization systems (like KVM/QEMU or Vir-
tualBox), such a shared file system can be realized by a virtual disk, which can
be accessed by both the host system and the guest system (see figure 1). This
disk needs to have a file system which is supported by both systems (in many
cases VFAT is suitable).

To avoid an inconsistent file system, host and guest must never write to this
disk at the same time, or before the cache of the other system has been written
back. Since it must be assumed that the disk is always mounted by the guest
system while it is turned on, the host system must only write on the disk while
the guest system is shut down. This means that archive uploads are unavailable
while the guest system is running.

unmount

mount

1/0

q | virtual
operation

disk

virtual
disk

Fig.2. Access Sequence when the host performs an I/O operation on the shared
directory

However, the host system can still read the disk while the guest system is
turned on. To lower the probability of an inconsistent file system while read-
ing, the host system only mounts the disk right before reading or writing, and
unmounts it right after the reading (see figure 2). Assuming a write-through
caching strategy by the guest, and given the assumption from above (the user
does not start a download while the the guest is still writing on the files), the
guest writing in the status file while the host is reading it remains the only
chance of inconsistency.

There may be three kinds of effects: (1) The file does not exist, (2) The
file does not fit into the boundaries described in the disk’s file table or (3) the



18 T. Gerhard et al.

file is being changed by the guest while the host is reading it (thus, the data
is corrupted). To avoid all these errors, the guest secures the file content by a
checksum. In case 1, the inconsistency can be detected directly (assuming that
the file must exist; if it doesn’t, the whole operation is pointless). In case 2, the
checksum does not exist (or case 3 applies, depending on the implementation)
and in case 3, the checksum validation will fail. If inconsistency is detected, the
reading can be repeated after a short interval of time: just enough so the guest
can finish the operation on the file.

3.2 Operations

NIXTP provides operations according to RexTFV in section 2. These are: upload
& execute, query execution status and download. For the purpose of description,
upload and execute can be seen as two different operations, where the execution
automatically follows after an upload and is never called directly.

Upload. Depending on the realization of the shared directory, the upload may
not be possible while the guest system is turned on. When the user uploads a file,
the host deletes the current content of the shared directory, and then extracts
the archive into this directory.

Execution. In order to provide the information for the status query, the script
is not directly executed. Instead, a monitor program is called which then executes
the script.

When uploading, there are three possible situations:

1. The guest system is turned off.

2. The guest system is turned on, and the host can invoke processes on the
guest system.

3. The guest system is turned on, and the host cannot invoke processes on the
guest system.

In case 1, the execution must be delayed until the guest system has been booted.
On every guest system the monitor is executed at the boot process if the start
script has been changed.

In case 2, the monitor is called by the host right after the archive has been
extracted.

In case 3, the guest needs to run a daemon program which can react to
changes in the shared directory. When a new start script appears, it executes
the monitor. The same daemon may also handle case 1. In this case, the testbed
must make sure that the daemon does not start the script before the archive has
been completely extracted. One way of doing this is to not copy the start script
into the shared directory before everything else is present.



A Networkless Data Exchange and Control Mechanism 19

Status Query. The status information consists of:

— Has the script finished? (Done Flag)
— Is the monitor still running? (Running Info)
— A custom string defined by the script (Custom Status)

This information is stored in a file called the status file, which is written by
the monitor. The status file can be read by the host, which then provides the
information to the testbed, which can make it accessible to the user.

The Done Flag will be set to true as soon as the monitor detects that the
script process has terminated.

Since this termination cannot be detected if the monitor crashes or terminates
before the script has been finished, the monitor repeatedly (i.e., every 2 minutes)
writes the current timestamp into the Running Info. The host interprets this as
a sequence number, and if it does not change for a certain amount of time, the
monitor can be assumed to have stopped. Because the host only watches for
changes, it is not necessary to synchronize the clocks. To hide complexity to
the user, the host provides this information as a boolean value: The monitor is
running or not.

The Custom Status can either be written by the start script, or the monitor
provides a function which can be called by the script. This string may contain
anything from a single value to an XML file. Since RexTFV provides an interface
for the user (or any client program), this string can be used to send information
from the virtual machine to the experimenter.

Additionally, the standard and error output of the script are being saved
to the shared directory, where it can be downloaded as described in the next
section.

Download. In order to download, the host packs the whole shared directory
into an archive which can then be sent to the user.

This directory contains the start script’s standard and error output, the
status file, all the data which has been uploaded and not deleted, and all files
which may have been generated in the shared directory by other programs and
stored in this directory.

To avoid large downloads, the start script should delete unnecessary data like
software packets after it has finished all other operations. In order to get all the
necessary data, all programs should be configured to store their output data in
this directory. If such a configuration is not possible, the start script must make
sure to copy the data here after the experiment.

3.3 Architecture

RexTFV has been designed to not require any changes to the testbed’s archi-
tecture, so that it can seemlessly integrated into an existing testbed by adding
some function calls and adding these functions to the software controlling the
hosts.



20 T. Gerhard et al.

user
frontend

{

RexTFV

niXTP handler

Y
nixtp

nixtp A monitor
directory

auto_exec

guest system

Fig. 3. Components of RexTFV using nIXTP and integration into the testbed

Figure 3 shows the distribution of components between guest, host and user
system. Functions which are in the white area may be distributed as the testbed’s
architecture requires it. In general, the testbed must forward RexTFV function
calls to the host system, and then use its nIXTP handler for communicating with
the guest system, i.e. writing and reading from the shared directory, and even-
tually mounting and unmounting it. Since all function calls from the user to the
nlXTP handler must run through the testbed, authentication and authorization
for these operation can be checked by the testbed.

Function calls are always targeted at the host and never at the virtual devices.
Thus, well-known technologies of network virtualization can be used to seper-
ate this control-traffic from the traffic of the experiment in such a way that it
becomes invisible for the experiment nodes. This way, this kind of control does
not happen over the network from the point of view of the experiment nodes.

The operations from section 3.2 assume small programs on the guest system,
the so-called “guest modules”. These are the nlXTP daemon, which has to cover
some cases for the auto-execution, and the nlXTP monitor, which has to execute
the start script and write down the status information. In contrast to control over
network, these requirements are low, because nlIXTP does not require TCP/IP,
SSH, user authentication or other complex programs on the devices, which are
necessary for the core functionality.

If the guest modules are missing on a virtual machine, file transfers (the
virtual floppy must be mounted manually), and the submission of status infor-
mation (which must be written in the testbed-specific format in the status file)



A Networkless Data Exchange and Control Mechanism 21

are still possible in a manual way. This can also be used to install the guest
modules manually on a newly created device. The only thing that would be
impossible is the automatic execution of the start script.

4 Implementation

NIXTP has been implemented for the container-based OpenVZ and the full virtu-
alization KVM. This proves that the concepts described in section 3 work. Since
these concepts do not require or assume anything except the basic principles of
container-based or full virtualization, they should work with other virtualization
systems as well.

RexTFV has been implemented in ToMaTo using nlXTP. The functions can
be found under the more user-friendly name ezxecutable archives.

5 Conclusion

RexTFV can be used to automate the lifecycle of devices in an experiment.
When using nlXTP for host-to-guest and guest-to-host communication, it does
not need any changes to the network configuration of a virtual machine, making
it possible to run an experiment without ever connecting to the Internet, thus
reducing noise from the outside which may affect the results. Furthermore, if
an experimenter decides not to use RexTFV, its presence won’t change the
experiment’s setup.

NIXTP makes use of the fact that the host and the guest system access the
same physical storage to emulate a shared directory for network-less communi-
cation and is therefore only applicable in such a situation. It was specifically
designed to avoid using an IP stack communication on experiment nodes.

Archives can not only be used for file transmission or single commands, but
also for automating parts of or the whole experiment lifecycle on a testing node.
In principle, the knowledge about which archives have been uploaded on which
devices at what time in the experiment may, together with all testbed variables,
determine the whole experiment. This can increase reproducibility and confirma-
bility for the given experiment, if the archives are provided to the readers of a
publication.

References

1. Albrecht, J., Huang, D.Y.: Managing Distributed Applications Using Gush.
In: Magedanz, T., Gavras, A., Thanh, N.H., Chase, J.S. (eds.) Trident-
Com 2010. LNICST, wvol. 46, pp. 401-411. Springer, Heidelberg (2011).
http://link.springer.com/chapter/10.1007/978-3-642-17851-1_31

2. Bastin, N., Bavier, A., Blaine, J., Chen, J., Krishnan, N., Mambretti, J., McGeer, R.,
Ricci, R., Watts, N.: The instageni initiative: an architecture for distributed systems
and advanced programmable networks. Computer Networks (2014). http://dl.acm.
org/citation.cfm?id=2612045


http://link.springer.com/chapter/10.1007/978-3-642-17851-1_31
http://dl.acm.org/citation.cfm?id=2612045
http://dl.acm.org/citation.cfm?id=2612045

22

T. Gerhard et al.

Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak,
M., Bowman, M.: Planetlab: an overlay testbed for broad-coverage services.
SIGCOMM Comput. Commun. Rev. 33(3), 3-12 (2003) ISSN 0146-4833.
doi:10.1145/956993.956995. http://doi.acm.org/10.1145/956993.956995

Schwerdel, D., Hock, D., Glinther, D., Reuther, B., Miiller, P., Tran-Gia, P.: ToMaTo
- A Network Experimentation Tool. In: Korakis, T., Li, H., Tran-Gia, P., Park, H.-S.
(eds.) TridentCom 2011. LNICST, vol. 90, pp. 1-10. Springer, Heidelberg (2012).
http://link.springer.com/chapter/10.1007/978-3-642-29273-6_1

Schwerdel, D., Reuther, B., Mueller, P.: Malware analysis in the tomato testbed
(2011). http://dspace.icsy.de:12000/dspace/handle/123456789/350

Schwerdel, D., Reuther, B., Zinner, T., Mueller, P., Tran-Gia, P.: Future inter-
net research and experimentation: The g-lab approach. Computer Networks 61(0),
102-117 (2014). ISSN 1389-1286. doi:http://dx.doi.org/10.1016/j.bjp.2013.12.
023.. http://www.sciencedirect.com/science/article/pii/S1389128613004362 (Spe-
cial issue on Future Internet) Testbeds - Part I

White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler,
M., Barb, C., Joglekar, A.: An integrated experimental environment for distributed
systems and networks. pp. 255-270, Boston, MA (December 2002). http://dl.acm.
org/citation.cfm?id=844152


http://doi.acm.org/10.1145/956993.956995
http://link.springer.com/chapter/10.1007/978-3-642-29273-6_1
http://dspace.icsy.de:12000/dspace/handle/123456789/350
http://dx.doi.org/10.1016/j.bjp.2013.12.023.
http://dx.doi.org/10.1016/j.bjp.2013.12.023.
http://dl.acm.org/citation.cfm?id=844152
http://dl.acm.org/citation.cfm?id=844152

	A Networkless Data Exchange and Control Mechanism for Virtual Testbed Devices
	1 Introduction
	2 Requirements for Automated Control
	3 Communication Between Host and Guest
	3.1 Shared Directory
	3.2 Operations
	3.3 Architecture

	4 Implementation
	5 Conclusion
	References


