
Connectivity Emulation Testbed
for IoT Devices and Networks

Nadir Javed(B) and Bilhanan Silverajan

Tampere University of Technology, Tampere, Finland
{nadir.javed,bilhanan.silverajan}@tut.fi

Abstract. This paper describes our ongoing effort in creating a dis-
tributed highly scalable and resilient platform that can model network
interactions among a very large number of devices, in terms of their
wireless and wired network characteristics as well as multiradio hardware
capabilities. Such an emulation platform was realized as a service overlay
network atop the PlanetLab distributed testbed. Our initial results sug-
gest that the approach undertaken is highly feasible to model both device
heterogeneity ranging from simple sensors to more powerful devices, as
well as wireless network characteristics to customize link reliability, chan-
nel throughput as well as bandwidth availability.

Keywords: IoT · PlanetLab · Testbed · Connectivity

1 Introduction

The Internet of Things (IoT) is expected to be constituted of billions of inter-
connected nodes and an equally significant number of networks [1]. These nodes
comprise powerful devices as well as complexity and resource limited nodes such as
sensors and actuators. In addition to high-speed fixed and wireless networks, the
IoT is expected to comprise lossy, unreliable and limited bandwidth networks too.
Such a diversity of connected nodes and networks inevitably impacts the types of
service interactions as well as network communications, in both client-server, as
well as peer-to-peer configurations. Nodes such as smart phones possess hardware
allowing multiple radio technologies to co-exist, enabling multi-radio communi-
cation with other nodes using links of varying bandwidth and latency. Gateway
nodes also allow packets from one kind of radio technology and access network to
traverse another. Wireless sensor nodes introduce multi-hop relays into the net-
work. Obviously this implies that measuring traffic flows among disparate types
of networks, and traffic characteristics of pairwise node-based interactions are not
trivial. The management of these networks and nodes, as well as lookups and dis-
covery, are challenging problems to solve, considering the deployment scale.

In this paper, a scalable device and network emulation testbed for IoT is
described, that allows such investigations to occur, from the device to the net-
work, to subsequently execute services and monitor application level behavior.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014
V.C.M. Leung et al. (Eds.): TridentCom 2014, LNICST 137, pp. 146–155, 2014.
DOI: 10.1007/978-3-319-13326-3 15



Connectivity Emulation Testbed for IoT Devices and Networks 147

This testbed, based on device-level interface characteristics and network condi-
tions, resulted in a prototype architecture deployed atop PlanetLab [2]. Planet-
Lab guarantees neither constant network connectivity nor machine uptimes. Our
prototype leverages both the availability of multiple hosts on demand, as well as
link unreliability as positive aspects: Instantiation of emulated nodes does not
impact overall system resources, while the intrinsic unreliability of host uptimes
as well as connectivity can be typical of resource constrained nodes, which either
go into sleep state or turn off their uplinks in an effort to conserve energy. The
main objectives of our work are:

Network heterogeneity. Nodes in our testbed should feature emulation of sev-
eral types of network interfaces and properties. Network connections feature
diverse link characteristics, as well as link quality, packet loss and latency.

Flexibility. The testbed should serve as a foundation for wide research in
deploying new types of services and applications, as well as the introduction of
new application-level protocols. Such services, applications and protocols can be
connection-oriented, connectionless, client-server or peer-to-peer based.

Scalability. The testbed should offer the ability to emulate and instantiate
devices in the order of thousands to tens of thousands. Instantiation and man-
agement of instantiated emulated nodes should be accomplished using intuitive
mechanisms that do not impact the execution nor the performance of the phys-
ical hosts atop which the emulated nodes run.

Remote Node Management. The testbed should allow remote configuration
and management with a web-based front-end. Managing large numbers of nodes
should be performed by allowing nodes to be tagged, for easy retrieval afterwards.

The rest of this paper is structured as follows: Section 2 presents related work.
Sections 3 and 4 discuss the architecture, design as well as the implementation
of important components in our testbed. Testing and verification is discussed in
Section 5 while Section 6 concludes the paper.

2 Related Work

In published literature, a number of projects undertake active testbed research
and deployment.

The MagNets project [3] aimed at deploying a next-generation wireless access
network testbed infrastructure in the city of Berlin, where heterogeneous devices
possessed by university students are allowed free access to an operator supported
network. The Pan-European Laboratory (PanLab) concept [4] introduces a
resource federation framework allowing multi-domain testbeds that provide het-
erogeneous crosslayer infrastructures for broad testing and experimentation. The
SmartSantander [5] project aims to create a city-wide test facility for the exper-
imentation of architectures, key enabling technologies, services and applications
for the Internet of Things. It is conceived to provide a platform for large scale
experimentation under real-life conditions. A unified testbed platform was devel-
oped to emulate LTE over Wired Ethernet, that can be used to examine the key
aspects of an LTE system in realtime, including real time uplink and downlink



148 N. Javed and B. Silverajan

scheduling, QoS parameters, and Android end-user applications [6]. The
Distributed Network Emulator (DNEmu) [7] investigates how realistic network
experiment can be performed involving globally distributed physical nodes under
heterogeneous environments where a requirement of experimentation control
between the real world network and emulated/simulated networks is introduced.

3 Design

We envision an emulation testbed with various device instances as shown in
Figure 1a. The PlanetLab network is abstracted as a cloud, while squares rep-
resent PlanetLab nodes atop which various internetworked device instances and
their available communication links are modeled. The network capabilities of
such device instances are modeled focusing on the link reliability, bandwidth
limitation and possible time delay.

As Figure 1.b shows, the testbed architecture comprises a central manage-
ment server controlling and managing available PlanetLab hosts, setting up
device instances on these hosts and emulating their network interfaces. An inter-
face to the PlanetLab Central (PLC) server is used to fetch detailed node infor-
mation such as node locations, addresses and uptime status. PLC provides an
RPC-based API for this purpose [8].

A database is needed to maintain and record the state of the testbed. It used
by the management server for storing and retrieving data essential for setting up
a runtime environment, such as information for configuration of device instances
as well as network links and characteristics. Such information is also retrieved
by the webserver to be presented to the user for management and use of the
emulated devices.

User-defined tags are supported by the platform to identify PlanetLab nodes
and device instances, either individually or as groups. Tags associated with nodes
and device instances are stored in the database as well.

This server also provides a web-based user-interface through which the plat-
form can be deployed and managed. Figure 2 depicts browser windows, showing

Fig. 1. a) Concept of device emulation on PlanetLab hosts b) Architecture and major
components in the emulation platform



Connectivity Emulation Testbed for IoT Devices and Networks 149

details of emulated devices such as the interfaces available for an emulated device
instance, user-defined descriptions, device tags, number of instances and IDs.

Fig. 2. Browser views of emulated devices

In this example, the user has defined device instances to emulate a remote
health monitoring sensor and an Arduino device capable of communication over
Bluetooth, Ethernet and WiFi based interfaces. The device ID is automatically
generated and supplied by the system. The server also supplies other views
aggregating all devices defined by a user, as well as physical PlanetLab nodes to
be added into an existing testbed. The addition of various types of tags to be
associated with PlanetLab nodes and devices to be emulated can be performed
via this interface as well.

4 Implementation

Figure 3 presents a detailed view on how the emulation testbed has been imple-
mented. The management server forms the core of the system which controls all
the other components involved. The main system processes have been developed
using PHP since the system uses a web based interface for user interaction. The
user interface was implemented with a combination of HTML and JavaScript.
To use the PLC API for fetching node information, a Python script was imple-
mented. The database engine is based on MySQL. The server and the database
use AJAX-based communication.

In order for the management server to set up the emulation testbed, it needs
to be able to connect to the PlanetLab nodes defined by the user, and configure
device instances. Therefore in addition to these components, SSH-based client
functionality was also provided to the management server, with which it forms
secure connections to PlanetLab nodes through which the required configuration
commands are transmitted and the results are obtained. The SSH communica-
tion is established using public and private keys instead of passwords. The public
key is uploaded to the PlanetLab Central server from where it gets propagated
to all the hosts that are being used. The private key is stored on the management
server and is used for authentication with the remote node.



150 N. Javed and B. Silverajan

Fig. 3. Testbed implementation and existing connection types between them

PlanetLab provides a command-line tool for node-based bandwidth manage-
ment. The tool is based on Dummynet, a powerful and flexible tool for testing
network protocols and topologies [9]. Each physical machine runs a customized
version of Dummynet that cannot be modified or replaced by end-users. Instead, a
userspace command called netconfig is provided at each node for controlling band-
width, network latency and packet loss ratio for incoming or outgoing connections,
based on one or more known ports or addresses. In our testbed, we utilize netcon-
fig to emulate both uplink and downlink of different network interfaces which are
distinguished by using different port numbers. All incoming and outgoing traffic
is monitored, and once a packet is detected having the same source or destination
port number, rules are applied that have been specified for the traffic on that port
number. For example, a sample netconfig configuration command invoked by an
end-user for network emulation on a PlanetLab node could be:

host~> netconfig config SERVICE 6361 IN bw 2Mbit/s delay 2ms plr 0.2 OUT bw 1MBit/s delay 1ms plr 0.1

This configures the emulated link to intercept all the traffic flowing on port
number 6361 and will force the incoming packets to a bandwidth of 2Mbit/s,
cause a delay of 2 milliseconds and drop 20 % of the packets since the packet loss
ratio is set to 0.2. Similarly all the outgoing packets will be forced to a bandwidth
of 1Mbit/s, a delay of 1 millisecond and 10% packets will be dropped.

In order to start emulating the devices, the user first needs to add some nodes
to the testbed, define the required network interfaces and their characteristics,



Connectivity Emulation Testbed for IoT Devices and Networks 151

define new devices in the system and associate the existing network interfaces
to the device. After the required details are present, the user selects the nodes
on which the devices are to be emulated. The system application at this point
queries the database for node details and the list of available devices that can
be emulated on the selected nodes. This information is then presented to the
user who selects the device type and the number of instances that needs to be
initialized on each node. The first part of the process is represented in Figure 4
as a message sequence chart showing the communication exchange between the
different entities involved.

Fig. 4. First part of the message sequence for device emulation process

Once the server receives the user’s choice of device and the number of instances
that needs to be emulated, it queries the database for device details. The system
application then queries the database for details of each associated interface. For
each interface, a random port number is generated that is not being already used
on the selected host for some other emulated link. Based on this port number and
the interface details, a configuration command is generated by the system for exe-
cution on the node to emulate the requested network interface. This is the second
part of the process and details can be seen in Figure 5.

After the configuration command is ready for all the required network inter-
faces of the device that is to be emulated, the system establishes an SSH con-
nection with the selected PlanetLab node. Once the connection is established it
executes in a loop all the configuration commands for each interface for each of
the device instance that needs to be emulated. The system receives the result for
each command that is executed and updates the records in database accordingly.
Upon completion, the user is notified of the configuration results and is presented
with the essential information required to utilize the newly instantiated device.
This final part is represented in Figure 6.

After netconfig is executed on the PlanetLab node it creates the appropri-
ate queues for handling the traffic, known as pipes, and also creates certain
rules, which are then used for governing the flow of traffic through these pipes.



152 N. Javed and B. Silverajan

Fig. 5. Second part of the message sequence for device emulation process

Fig. 6. Final part of the message sequence for device emulation process

Dummynet as an emulator makes use of these queues for enforcing the custom
bandwidth, delays and packet drops. Every emulated network link has one or
more pipes associated with it, and once the network packet matches the specified
rule, it is put inside this pipe and the outward or inward flow is then controlled
so that it conforms to the requested bandwidth. Similarly there could be some
time constraints applied to the traffic flowing through the pipe for the latency
effect and some packets could be randomly dropped from the queue depending
on the packet loss ratio the user has configured.

5 Testing and Verification

The design and implementation of the emulation testbed were tested under live
conditions on the PlanetLab environment. Unit testing was performed on the



Connectivity Emulation Testbed for IoT Devices and Networks 153

management server as well as the database, before widespread device instan-
tiation was tested over approximately 50 Planetlab nodes, although it is rela-
tively trivial to increase the number of testbed nodes to several hundreds or
thousands. On each node, we successfully tested instantiation of at least 300
emulated devices as depicted in the earlier Fig. 2.

In order to verify that our testbed is configuring network interfaces properly,
we tested the configured links across different emulated devices using a network
measurement utility called Iperf [10]. Iperf works as a service in our device
instances, supporting both client and server mode. It allowed us to create TCP
and UDP streams between two hosts and provided throughput measurements
for the underlying network.

To provide a simple example for this paper, we defined a test device in the
testbed having a network interface with an uplink and downlink bandwidth of 5
Mbit/s and we deployed this device on a PlanetLab host. Iperf was then installed
on this host and the bandwidth was measured for the traffic flowing on the port
on which the interface has been configured.

Figure 7 shows the bandwidth measurement for the incoming traffic and
Figure 8 shows the measurement for outgoing traffic. As it can be seen from
these figures, the bandwidth observed on the configured interface conforms to
the bandwidth that was configured.

Fig. 7. Incoming traffic bitrate verification

Fig. 8. Outgoing traffic bitrate verification

In order to verify that latency and packet loss factors are also functional on
the interface, it was modified first to have a delay of 50ms along with the band-
width of 5Mbit/s. The results obtained are shown in Figure 9, clearly showing
a drop in the bandwidth due to the time delay on the interface.

Secondly the same interface was configured now to have a packet loss ratio
of 0.1 i.e. 10 % of the packets on the interface would be dropped randomly. The
results from this configuration are presented in Figure 10, also showing a drop
in the observed bandwidth.



154 N. Javed and B. Silverajan

Fig. 9. Time delay affecting bandwidth

Fig. 10. Packet loss ratio

6 Conclusions and Future Work

The main outcome of this work has been the development of a distributed
platform that allows us to emulate multiple devices on PlanetLab nodes that
possess multiple links of varying characteristics to simulate fixed, wireless and
virtual interfaces found in mobile devices and resource challenged nodes. While
we achieved the target set out in our prototype testbed, we expect greater use-
fulness can be achieved by modeling other characteristics. These include various
processor architectures, execution speeds as well as storage requirements. This
remains a challenge as physical PlanetLab machines are highly homogeneous in
terms of hardware as well as operating systems, typically running on x86-based
workstations. However we remain optimistic that in future, research projects
would arise to take on such a challenge for emulating the hardware characteris-
tics of devices. This would undoubtedly affect startup and configuration times as
well, as a PlanetLab node would have no idea of the type of device it is supposed
to instantiate until the command is issued by the management server. In such a
scenario, it can be envisioned that an additional component would be necessary
in order to transfer binary device images to end-hosts for successful emulation.

The current architecture is aimed towards providing a single realm of con-
trol, i.e. the management of the emulated devices is centralized towards a single
server while information about running nodes and their interfaces is stored in
a single database. This is highly suitable for scenarios whereby management is
controlled by a single organization. Such scenarios include a smart grid operator,
nation-wide traffic management systems as well as smart city based management
solutions. Commands for emulation are issued over the SSH protocol as blocking
operations. As future work, we intend to investigate protocol driven approaches
towards the instantiation and subsequent management of the emulated nodes.
This would imply adding a management interface to each instantiated node over
which well defined request and response messages would be sent to set or retrieve
various types of information regarding the emulated nodes. Access control as well
as transport layer security need to be well considered using this strategy.



Connectivity Emulation Testbed for IoT Devices and Networks 155

While bandwidth and link characteristics were successfully controlled over
TCP-based connection-oriented interactions, an operating system software bug
on physical PlanetLab machines unfortunately prevented us from achieving sim-
ilar results with UDP-based datagrams. At the time of writing, we are still in the
process of troubleshooting the issue together with the PlanetLab administration.
However, our results suggest that the approach undertaken is highly feasible to
model both device heterogeneity ranging from simple sensors to more powerful
devices, as well as wireless network characteristics to customize link reliability,
channel throughput as well as bandwidth availability.

References

1. Ericsson, More than 50 Billion Connected Devices, White Paper (2011). http://
www.ericsson.com/res/docs/whitepapers/wp50billions.pdf

2. PlanetLab International Testbed. http://www.planet-lab.org
3. Karrer, R.P., et al.: Magnets-experiences from deploying a joint research-

operational next-generation wireless access network testbed. In: Testbeds and
Research Infrastructure for the Development of Networks and Communities, Tri-
dentCom 2007, IEEE (2007)

4. Sebastian, W., et al.: Pan-European testbed and experimental facility federation-
architecture refinement and implementation. International Journal of Communi-
cation Networks and Distributed Systems 5(1/2), 67–87 (2010)

5. Luis, S., et al.: SmartSantander: The meeting point between Future Internet
research and experimentation and the smart cities. In: Future Network and Mobile
Summit (FutureNetw), IEEE (2011)

6. Chertov, R., Kim, J., Chen, J.: LTE Emulation over Wired Ethernet. In: Korakis,
T., Zink, M., Ott, M. (eds.) TridentCom 2012. LNICST, vol. 44, pp. 18–32.
Springer, Heidelberg (2012)

7. Tazaki, H., Asaeda, H.: DNEmu: Design and Implementation of Distributed Net-
work Emulation for Smooth Experimentation Control. In: Korakis, T., Zink, M.,
Ott, M. (eds.) TridentCom 2012. LNICST, vol. 44, pp. 162–177. Springer, Heidel-
berg (2012)

8. PlanetLab, PlanetLab Central API Documentation. https://www.planet-lab.eu/
db/doc/PLCAPI.php

9. Carbone, M., Rizzo, L.: Dummynet Revisited. ACM SIGCOMM Computer Com-
munication Review 40(2), 12–20 (2010)

10. Iperf project. http://iperf.sourceforge.net/

http://www.ericsson.com/res/docs/whitepapers/wp50billions.pdf
http://www.ericsson.com/res/docs/whitepapers/wp50billions.pdf
http://www.planet-lab.org
https://www.planet-lab.eu/db/doc/PLCAPI.php
https://www.planet-lab.eu/db/doc/PLCAPI.php
http://iperf.sourceforge.net/

	Connectivity Emulation Testbedfor IoT Devices and Networks
	1 Introduction
	2 Related Work
	3 Design
	4 Implementation
	5 Testing and Verification
	6 Conclusions and Future Work
	References


