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Abstract. The EAR-IT project relies on 2 test-beds to demonstrate the
use of acoustic data in smart environments: the smart city SmartSantander
test-bed and the smart building HobNet test-beds. In this paper, we take a
benchmarking approach to qualify the various EAR-IT test-bed based on
WSN and IoT nodes with IEEE 802.15.4 radio technology. We will high-
light the main performance bottlenecks when it comes to support transmis-
sion of acoustic data. We will also consider audio quality and energy aspects
as part of our benchmark methodology in order to provide both perfor-
mance and usability indicators. Experimentations of multi-hop acoustic
data transmissions on the SmartSantander test-bed will be presented and
we will demonstrate that streaming acoustic data can be realized in a multi-
hop manner on low-resource device infrastructures.
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1 Introduction

There is a growing interest in multimedia contents for surveillance applications
in order to collect richer informations from the physical environment. Capturing,
processing and transmitting multimedia information with small and low-resource
device infrastructures such as Wireless Sensor Networks (WSN) or so-called
Internet-of-Things (IoT) is quite challenging but the outcome is worth the effort
and the range of surveillance applications that can be addressed will signifi-
cantly increase. The EAR-IT project (www.ear-it.eu) is one of these original
projects which focuses on large-scale ”real-life” experimentations of intelligent
acoustics for supporting high societal value applications and delivering new inno-
vative range of services and applications mainly targeting to smart-buildings and
smart-cities. One scenario that can be demonstrated is an on-demand acoustic
data streaming feature for surveillance systems and management of emergencies.
Other applications such as traffic density monitoring or ambulance tracking are
also envisioned and are also requiring timely multi-hop communications between
low-resource nodes. The EAR-IT project relies on 2 test-beds to demonstrate the
use of acoustic data in smart environments: the smart city SmartSantander test-
bed and the smart building HobNet test-bed.
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There have been studies on multimedia sensors but few of them really con-
sider timing on realistic hardware constraints for sending /receiving flows of pack-
ets [1-7]. In this paper, we take a benchmarking approach to qualify the various
test-beds based on WSN and IoT nodes with IEEE 802.15.4 radio technology.
We will highlight the main performance bottlenecks when it comes to support
acoustic data. We will also consider audio quality and energy aspects as part of
our benchmark methodology in order to provide both performance and usability
indicators. The paper is then organized as follows: Section 2 reviews the EAR-IT
test-beds and especially the various sensor node hardware. We will also present
some audio sampling and transmission constraints. Section 3 will present our
benchmark approach and experimental results showing the main performance
bottlenecks. Section 4 will present the audio hardware we developed for the IoT
nodes. In Section 5 we will present experimentations of multi-hop acoustic data
transmissions on the SmartSantander test-bed and an analysis of the audio qual-
ity and energy consumption of the deployed system. Conclusions will be given
in Section 6.

2 The EAR-IT Test-Beds

The EAR-IT test-beds consist in (i) the SmartSantander test-bed and (ii) the
HobNet test-bed. The SmartSantander test-bed is a FIRE test-bed with 3 loca-
tions. One main location being the Santander city in north of Spain with more
than 5000 nodes deployed across the city. This is the site we will use when
referring to the SmartSantander test-bed. The HobNet test-bed is located at
MANDAT Intl which is part of the University of Geneva and it is an in-door
test-bed. Many information can be found on corresponding project web site
(www.smartsantander.eu and www.hobnet-project.eu) but we will present in
the following paragraphs some key information that briefly present the main
characteristics of the deployed nodes.

Fig. 1. Left: Santander’s IoT node (left) and gateway (right). Right: HobNet’s CM5000
& CM3000 AdvanticSys TelosB

2.1 The SmartSantander Test-Bed Hardware

IoT Nodes and Gateways. [oT nodes in the Santander test-bed are WaspMote
sensor boards and gateways are Meshlium gateways, both from the Libelium com-
pany (www.libelium.com). Most of IoT nodes are also repeaters for multi-hops


www.smartsantander.eu
www.hobnet-project.eu
www.libelium.com

Benchmarking Low-Resource Device Test-Beds for Real-Time Acoustic Data 99

communication to the gateway. Figure 1(left) shows on the left part the WaspMote
sensor node serving as IoT node and on the right part the gateway. The WaspMote
is built around an Atmel ATmegal281 micro-controller running at 8MHz. There
are 2 UARTSs in the WaspMote that serve various purposes, one being to connect
the micro-controller to the radio modules.

Radio Module. IoT nodes have one XBee 802.15.4 module and one XBee
DigiMesh module. Differences between the 802.15.4 and the DigiMesh version
are that Digimesh implements a proprietary routing protocols along with more
advanced coordination/node discovery functions. In this paper, we only con-
sider acoustic data transmission/relaying using the 802.15.4 radio module as the
DigiMesh interface is reserved for management and service traffic. XBee 802.15.4
offers the basic 802.15.4 [8] PHY and MAC layer service set in non-beacon mode.
Santander’s nodes have the "pro” version set at 10mW transmit power with an
advertised transmission range in line-of-sight environment of 750m. Details on
the XBee/XBee-PRO 802.15.4 modules can be found from Digi’s web site (www.
digi.com).

2.2 The HobNet Test-Bed Hardware

HobNet is also a FIRE test-bed that focuses on Smart Buildings. Although the
HobNet test-bed has several sites, within the EAR-IT project only the UNIGE
test-bed at the University of Geneva with TelosB-based motes is concerned.

IoT Nodes. Sensor nodes in the HobNet test-bed consist in AdvanticSys TelosB
motes, mainly CM5000 and CM3000, see figure 1(right), that are themselves
based on the TelosB architecture. These motes are built around an TT MSP430
microcontroller with an embedded Texas Instrument CC2420 802.15.4 compat-
ible radio module. Documentation on the AdvanticSys motes can be found on
AdvanticSys web site (www.advanticsys.com). AdvanticSys motes run under the
TinyOS system (www.tinyos.net). The last version of TinyOS is 2.1.2 and our
tests use this version.

Radio Module. The CC2420 is less versatile than the XBee module but on the
other hand more control on low-level operations can be achieved. The important
difference compared to the previous Libelium WaspMote is that the radio module
is connected to the microcontroller through an SPI bus instead of a serial UART
line which normally would allow for much faster data transfer rates. The CC2420
radio specification and documentation are described in [9].

The default TinyOS configuration use a MAC protocol that is compati-
ble with the 802.15.4 MAC (Low Power Listening features are disabled). The
default TinyOS configuration also uses ActiveMessage (AM) paradigm to com-
municate. As we are using heterogeneous platforms we will rather the TKN154
TIEEE 802.15.4 compliant API. We verified the performances of TKN154 against
the TinyOS default MAC and found them greater.
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2.3 Audio Sampling and Transmission Constraints

4KHz or 8KHz periodic 8-bit audio sampling implies to handle 1 byte of raw
audio data once every 250us or 125us respectively. Then, when a sufficient num-
ber of samples have been buffered, these audio data must be encoded and trans-
mitted while still maintaining the sampling process. For instance, if we take the
maximum IEEE 802.15.4 payload size, i.e. 100 bytes, the audio sample time
is 25ms and 12.5ms for 4KHz and 8KHz sampling respectively. Most of IoT
nodes are based on low speed microcontroller (Atmel ATmegal281 at 8MHz for
the Libelium WaspMote and TI MSP430 at 16MHz for the AdvanticSys) mak-
ing simultaneous raw audio sampling and transmission (even without encoding)
nearly impossible when using only the mote microcontroller.

3 Benchmarking IoT Nodes

The benchmark phase is intended to determine (i) the network performance
indicators in terms of sending latency, relay latency, relay jitter and packet loss
rates, (#4) audio quality indicators depending on the packet loss rates and (ii7)
energy consumption indicators. Regarding the network indicators we measured
on real sensor hardware and communication API the time spent in a generic
send() function, noted tsend, and the minimum time between 2 packet genera-
tion, noted tpx¢. tpre Will typically take into account various counter updates and
data manipulation so depending on the amount of processing required to get and
prepare the data, t,;: can be quite greater than tscnq. With tsenq, we can easily
derive the maximum sending throughput that can be achieved if packets could
be sent back-to-back, and with t,;; we can have a more realistic sending through-
put. In order to measure these 2 values, we developed a traffic generator with
advanced timing functionalities. Packets are sent back-to-back with a minimum
of data manipulation needed to maintain some statistics (counters) and to fill-in
data into packets, which is the case in a real application. On the WaspMote,
we increased the default serial baud rate between the microcontroller and the
radio module from 38400 to 125000. The Libelium API has also been optimized
to finally cut down the sending overheads by almost 3! Figure 2 shows ts¢nq and
tykt as the payload is varied.
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Fig. 2. Sending performances: WaspMote (left) and TelosB (right)
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At the sending side, transmission of raw audio at 8KHz is clearly not possible
as the time to send 100-byte packets is well above the available time window.
4KHz audio is possible on the WaspMote but not really feasible on the TelosB
because the sampling process does interrupt the sending process which is already
very close to the maximum time window allowed, i.e. 25ms.

In the next set of benchmark, we use a traffic generator to send packets
to a receiver where we measured (7) the time needed by the mote to read the
received data into user memory or application level, noted t,cqq, and (iz) the
total time needed to relay a packet. Relay jitter is found to be quite small and
easily handled with traditional playout buffer mechanisms.
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Fig. 3. Read and relaying performances: WaspMote (left) and TelosB (right)

On the WaspMote, we found that t,..q is quite independent from the micro-
controller to radio module communication baud rate because the main source of
delays come from memory copies. We can see that when it comes to multi-hop
transmissions, 4KHz raw audio is not feasible neither on WaspMote nor TelosB
because the time window of 25ms for a 100-byte packets is not sufficient. We will
describe in section 5 the audio quality and the energy benchmarking process.

4 Audio Hardware

To leverage the performance issues identified during the benchmark step, one
common approach is to dedicate one of the 2 tasks to another microcontroller: (1)
use another microcontroller to perform all the transmission operations (memory
copies, frame formatting, ...) or (2) use another microcontroller to perform
the sampling operations (generates interruptions, reads analog input, performs
A/D conversion and possibly encodes the raw audio data). With the hardware
platforms used in the EAR-IT project we can investigate these 2 solutions:

1. Libelium WaspMote uses an XBee radio module which has an embedded
internal microcontroller that is capable of handling all the sending operations
when running in so-called transparent mode (serial line replacement mode);

2. Develop a daughter audio board for the AdvanticSys TelosB mote that will
perform the periodic sampling, encode the raw audio data with a given
audio codec and fill in a buffer that will be periodically read by the host
microcontroller, i.e. the TelosB MSP430.
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Solution 1 on Libelium WaspMote. Solution 1 has been experimented and
we successfully sampled at 8KHz to generate a 64000bps raw audio stream
which is handled transparently by an XBee module running in transparent mode.
Transmission is done very simply by writing the sample value in a register. How-
ever, we are still limited to 1-hop transmission because the transparent mode
does not allow for dynamic destination address configuration making multi-hop
transmissions difficult to configure. Moreover, as previously seen, the packet read
overhead is very large on the WaspMote. The advantage is however to be able
to increase the sampling rate from 4KHz to 8KHz when sending at 1-hop.

VCCon D2

AUDIO on A2

GND on GND l

L ]

Fig. 4. Audio hardware on Libelium WaspMote

Solution 2 on AdvanticSys TelosB. The developed audio board will have its
own microcontroller to handle the sampling operations and encode in real-time
the raw audio data into Speex codec (www.speex.org). 8KHz sampling and 16-bits
samples will be used to produce an optimized 8kbps encoded Speex audio stream
(Speex encoding library is provided by Microchip). This audio board is designed
and developed through a collaboration with IRISA/CAIRN research team and
Feichter Electronics company (www.feichter-electronics.com). Here is a
schematic of the audio board design:

Fig. 5. Left: Audio board schematic. Right: TelosB with the audio board

The audio board has a built-in omnidirectional MEMs microphone (ADMP404
from Analog Devices) but an external microphone can also be connected. The
microphone signal output is amplified, digitized and filtered with the WM8940
audio codec. The audio board is built around a 16-bit Microchip dsPIC33EP512
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microcontroller clocked at 47.5 MHz that offers enough processing power to encode
the audio data in real-time. From the system perspective, the audio board sends
the audio encoded data stream to the host microcontroller through an UART com-
ponent. The host mote will periodically read the encoded data to periodically get
fixed size encoded data packets that will be transmitted wirelessly through the
communication stack. The speex codec at 8kbps works with 20ms audio frames:
every 20ms 160 samples of 8-bit raw audio data is sent to the speex encoder to pro-
duce a 20-byte audio packet that will be sent to the host microcontroller through
an UART line. These 20 bytes will be read by the host microcontroller and 4 fram-
ing bytes are added to the audio data. The first two framing bytes will be used
by the receiver to recognize an audio packet. Then sequence number can be used
to detect packet losses. The last framing size stores the audio payload size (in our
case it is always 20 bytes). Framing bytes are optional but highly recommended.
If framing bytes are not used, only a Start Of Frame byte is inserted to allow the
speex audio decoder at the receiver end to detect truncated packets.

5 Experimentations

The WaspMote mote as an audio source using solution 1 is a straightforward solu-
tion therefore the experimentations described here use the AdvanticSys TelosB
mote with the developed audio board but relay nodes consist in both Libelium
WaspMote and AdvanticSys motes: some TelosB motes can be used on the San-
tander test-bed using WaspMote as relay nodes. The receiver consists in an Advan-
ticSys TelosB mote connected to a Linux computer to serve as a radio gateway.

The audio source can be controlled wirelessly with 3 commands: ”D” com-
mand defines the next hop address, ”C” command controls the audio board
power (off/on) and ”A” command defines the audio frame aggregation level
which will be described later on. The relay nodes can also be controlled wire-
lessly and they mainly accept the ”D” command to define the next hop address.
The receiver will get audio packets from the AdvanticSys radio gateway, check
for the framing bytes and feed the speex audio decoder with the encoded audio
data. The audio decoder will produce a raw audio stream that can be played in
real-time with play or stored in a file by using standard Unix redirection com-
mand. A play-out buffer threshold can be specified for play to compensate for
variable packet jitter at the cost of higher play-out latencies.

We selected a location in Santander near the marina, see figure 6(left), to
install the audio source and the relay nodes on the same street lamps than the
one deployed by the Santander test-bed, see figure 6(right). We didn’t perform
tests on the HobNet test-bed yet, but we use both HobNet (AdvanticSys TelosB)
and Santander (Libelium WaspMote) hardware as relay nodes. We placed our
nodes on the street lamps indicated in figure 6(left), at locations 11, 392, 395
and the top-right gateway. The audio node is on location 11, the receiver is at
the top-right gateway location and the 2 relay nodes are at location 392 and
395. With 2 relay nodes, the number of hops is 3. Most of IoT nodes deployed
in Santander can reach their associated gateway in a maximum of 3 hops. The
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Fig. 6. Test of acoustic data streaming: topology

original IoT nodes of the Santander test-bed are placed on street lamp as shown
in figure 6(left). We strapped our nodes as depicted by figure 6(right).

5.1 Multi-Hop Issues

We can see in figure 3 that on average an AdvanticSys TelosB relay node needs
about 19ms to relay a 25-byte packet. However, sometimes relaying can take
more than 20ms. As the audio source sends a 24-byte packet once every 20ms,
it may happen that some packets are dropped at the relay node. We observed
packet loss rates between 10% and 15% at the receiver. Figure 3 also shows that
a WaspMote needs on average 24ms to relay a 25-byte packet. We also observed
packet loss rates between 20% and 30% at the receiver.

In order to reduce the packet drop rate, we can aggregate 2 audio frames
(noted A2) into 1 radio packet at the source therefore providing a 40ms time
window for the relaying nodes. In this case, the radio packet payload is 48 bytes.
The average relaying time is about 22ms for the TelosB and 37ms on the Wasp-
Mote as shown in figure 3. While A2 is sufficient on the TelosB to provide a
packet loss rate close to 0, the WaspMote still suffers from packet loss rates
between 10% and 15% at the receiver because some relaying time are greater
than 40ms. On the WaspMote, we can aggregate 3 audio frames (A3) to provide
a 60ms time window which is enough to relay a 72-byte packet that needs about
48ms to be relayed. Doing so succeeded in having packet loss rate close to 0.

5.2 Audio Quality Benchmarking

In order to measure the receiving audio quality, we use the ITU-T P.862 PESQ
software suite for narrowband audio to get an audio quality indicator (MOS-
LQO) between the original audio data and the received audio data. Figure 7
shows for various packet loss rates the MOS-LQO indicator value when there is
no audio aggregation, i.e. 1 audio frame in 1 radio packet. The first vertical bar
(at 4.308) is the MOS-LQO value when comparing the speex encoded audio data
to the uncompressed audio format?. It is usually admitted that a MOS-LQO of at

! Reader can listen at the various audio files at web.univ-pau.fr/~cpham/
SmartSantanderSample/speex
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least 2.6 is of reasonably good quality. When there is a packet loss, it is possible
to detect it by the gap in the sequence number and use the appropriate speex
decoder mode. The red bars indicates the MOS-LQO values when packet losses
are detected. Without the packet loss detection feature, missing packets are
simply ignored and the speex decoder will simple decode the flow of available
received packets. We can see that it is always better to detect packet losses.
In figure 7 we can see that an AdvanticSys relay node without audio packet
aggregation (between 10% and 15% packet loss rate) still has an acceptable
MOS-LQO value. Using A2 aggregation makes the packet loss rate to be below
5% and therefore provides a good audio quality as indicated in figure 7(right).
When using Libelium WaspMote as relay nodes, A3 aggregation with packet
losses detection gives a MOS-LQO indicator of 3.4 and 2.9 for 5% and 10%
packet loss rates respectively.

SPEEX 8000 MOSLQO against test8000.spx.wav - 20 bytes / radio packet SPEEX 8000 MOSLQO against test8000.spx.wav - 40 bytes / radio packet
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Fig. 7. MOS-LQO: Al(left) and A2(right) aggregation when pkt loss rate is varied

5.3 Energy Consumption Benchmarking

We also investigated the energy consumption of the audio source TelosB node
with the developed audio board. Figure 8(left) plots the measured energy con-
sumption every 20ms. The first part of the figure shows the idle period where
the audio board is powered off and the radio module is on. Then, starting at
time 43s, the audio board is powered on to capture and encode in real-time dur-
ing about 20s. The audio packets are sent wirelessly. Figure 8(right) shows the
cumulated energy consumption.

During idle period, the consumed energy is about 0.068J/s (68mW). During
audio capture with the radio sending, the consumed energy is about 0.33J/s
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Fig. 8. Instantaneous (left) and Cumulated (right) energy consumption
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(330mW). With 2 AA batteries providing about 18700J, we could continuously
capture and transmit during more than 15 hours (2700000 audio frames)! With
the WaspMote (although not shown due to space limitation), the 8KHz sampling
and transmission process consumed about 0.610J /s (610mw) giving a continuous
capture during more than 8 hours.

For relay, the WaspMote relay consumed about 0.236J/s (236mW) in listen-
ing mode and 0.238J for relaying a 72-byte radio packet in A3 mode, 3 audio
frames (60B) + 3*4 framing bytes (12B). Again, with 2 AA batteries, in the
best case the relay node can relay about 78606 radio packets before energy is
down, i.e. 1h20m of audio. Data transmission in relaying has to use the API
mode therefore the energy consumption is higher than in the case of transparent
mode. However, given the results of our benchmarking process, we believe that
periodic audio streaming scenarios are very possible in the context of a smart
cities where most of sensor nodes can usually be recharged at night.

6 Conclusions

We took a benchmarking approach to study how acoustic data can be handled
on low-resource device test-beds, highlighting communication overheads and bot-
tlenecks that dramatically limit the relaying operations. We developed an audio
board to sample and encode in real-time acoustic data and presented experimen-
tations on the Santander EAR-IT test-bed for real-time acoustic data streaming,.
With appropriate audio aggregation to fit into relaying capabilities we demon-
strated that streaming acoustic data is feasible on Smart Cities infrastructures
with reasonably high audio quality and node lifetime.
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