
Segmented and Interactive Modules
for Teaching Secure Coding: A Pilot Study

Sagar Raina(&), Siddharth Kaza, and Blair Taylor

Department of Computer and Information Sciences, Towson University,
7800 York Road, Towson, MD, USA

{sraina,skaza,btaylor}@towson.edu

Abstract. Learners can experience content disorientation in web based learning
modules. The security injection modules developed by Towson University have
increased students’ secure coding awareness and ability to apply secure coding
principles, but feedback from instructors indicate that students tend to skim or
skip the module contents and proceed directly to the laboratory assignment.
In this paper, we describe the factors that cause cognitive overload in hypertext
readers and address the pertinent issues and describe the process we used to
enhance the effectiveness of the modules. Security Injections 2.0 incorporates
principles of segmentation - breaking large module content into smaller sections
and presenting each section one at a time, dialoguing - answering questions and
receiving corrective or explanatory feedback, and controlling - reading and
learning content at learners own pace. Segmentation, dialoguing, and controlling
engage learners and retain concepts. Pilot study results indicate 77 % of the
students scored above 70 % in concept retention assessment.

Keyword: Computers and education

1 Introduction

Addressing the crucial need for cybersecurity learning materials, the Security Injec-
tions@Towson project (towson.edu/securityinjections) has developed modules for
Computer Science 0 (CS0), Computer Science 1 (CS1), Computer Science 2 (CS2) and
Computer Literacy courses that target key secure coding concepts including integer
error, buffer overflow, and input validation. Assessment results indicate that these
modules have led to an increase in students’ security awareness and their ability to
apply secure coding principles [7, 15]. The modules, developed on the cognitive
learning principles of Bloom’s Taxonomy, adopt a uniform structure. Each module
begins with a background section to describe the problem, including examples, fol-
lowed by a code responsibly section which includes methods to avoid security issues, a
laboratory assignment with a security checklist, and a discussion questions section. The
module content is presented as hypertext on a single webpage [15]. The module
structure is designed to help students to first remember and understand the problem
through the background and code responsibly sections, apply the concepts learned
through laboratory assignments and analyze, through discussion questions [15]. Stu-
dents have to turn in the laboratory assignment and discussion question answers to their

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014
G. Vincenti et al. (Eds.): eLEOT 2014, LNICST 138, pp. 147–154, 2014.
DOI: 10.1007/978-3-319-13293-8_18



instructors as text document to receive the grades and feedback. Over 160 instructors
from various community colleges and universities are using security injection modules
in CS0, CS1, CS2 and Computer Literacy courses. Although assessment results indi-
cate significant improvement in students’ secure coding awareness and their ability to
apply secure coding principles, instructors using these modules have observed that
students tend to skim or skip the module contents. The previous research suggests that
skimming or skipping important content might hamper students’ knowledge about the
topic they are learning [6]. In this paper, we investigate this problem and propose a
solution.

2 Literature Review

2.1 Hypertext Reading

The security injection modules are web-based, that is, students can access the modules
as hypertext using a uniform resource locator (URL). Hypertext is defined as a doc-
ument that contains a variety of media resources such as text, audio, video, graphics,
presented in a non-linear fashion unlike printed textbooks. The media resources in
hypertext, may link to other documents, giving flexibility to a reader to click any of the
links and acquire knowledge [4, 9]. To acquire knowledge from hypertext, readers do
not follow a specific reading order. Depending upon the readers’ goals and interest, the
hypertext readers may adopt a specific reading strategy [4, 8, 13]. The reading strategy
allows readers to decide what to read and what to skim [13]. In addition, the amount of
content presented on a screen is also considered as a deciding factor for skimming
hypertext. Huge amount of hypertext on a screen may cause readers to skim the text in
comparison to lesser amount of hypertext [5]. The readers, in skimming process, read
the first half of the paragraphs and skip the rest if they think information gain is low
and, start reading the next paragraph [5]. During this process, readers might skip
important content [5, 13]. In addition, this selective reading might result in less in-
depth reading, less concentration and less attention towards the content [9]. Overall,
skimming content results negatively towards knowledge consumption [6]. In a study
conducted among 113 participants, to observe their reading behavior, 78 % of par-
ticipants reported they read more selectively because of the large amount of infor-
mation available on web [9]. The process of selecting content to read hypertext requires
readers to make decisions, which induces cognitive overload in a reader [4, 13]. There
are several other factors that might induce cognitive overload in a reader including -
lack of prior knowledge or domain knowledge about the content, complexity of the
concept being taught, structure of the content, and lack of motivation to read the
content [1]. Readers lacking prior knowledge or domain knowledge, have difficulty
processing and understanding the content, thus inducing cognitive overload [4, 8, 12].
Additionally, if a concept itself is complex to teach and present, readers find it difficult
to process and understand, resulting in cognitive overload in a reader. Well-structured
hypertext is easy to process by human brains as compared to unstructured content.
Unstructured content may distract readers while reading, and induce cognitive overload
[1, 13]. Lack of motivation in a reader affects their cognitive ability to understand the
content and thus inducing cognitive overload [1, 8]. Cognitive overload make reader’s

148 S. Raina et al.



become disoriented and lose attention towards the content, resulting readers to skim or
skip the content [2, 13, 16]. Also, because of the large amount of content presented on a
single computer screen, readers scroll windows up and down, and during the process
skip some lines of text and lose their place. In one study, which assessed 73 students
reading on the web, 25 % of the students reported they skipped lines and lost their place
while scrolling the window up and down on a computer screen [16]. In conclusion,
there are several factors that induce cognitive overload in a reader while reading a
hypertext, including domain knowledge/prior knowledge, concept complexity, content
structure, amount of content presented on a single screen and lack of motivation.
Cognitive overload cause readers to become disorient and inattentive towards the
content, which results in skimming and skipping of content. In the next section, we
discuss cognitive load theory.

2.2 Cognitive Load Theory

As discovered in the literature review section, one of the factors that might cause
readers to skim or skip hypertext content is cognitive overload. According to cognitive
load theory, cognitive load is the amount of information the working memory in a
human brain can process at a given time [2, 4]. Human beings have a working memory
which can hold or process a limited amount of new information at a given time
[4, 10, 11]. When this working memory receives information to process beyond its
limited capacity, it leads to cognitive overload in a human brain [11].

Working memory could be affected by different ways while processing information,
resulting in different types of cognitive loads. If the working memory load is affected
due to the complexity of the nature of learning task itself, it is called as intrinsic
cognitive load. If the cognitive load is affected due to the way information is presented
on the screen, it is called as extraneous cognitive load.

In order to avoid cognitive overload and induce learning in a reader, we need to
either reduce the intrinsic or extraneous cognitive load or both [10, 11].

3 Proposed Solution

To improve the effectiveness of the secure coding modules, we analyzed the security
injection modules for the factors that lead to cognitive overload in readers, which lead
them to skip and skim the content. We found that domain knowledge/prior knowledge,
concept complexity, and content structure are addressed by the security injection
modules. The security injection modules did not address amount of content and lack of
motivation factors. Section 3.1 provides detailed analysis of how we mapped cognitive
overload factors with the security injection modules.

3.1 Mapping Cognitive Overload Factors with Security
Injection Modules

1. Amount of information presented on a single computer screen: Security injection
modules are presented on a single webpage which includes content related to
background, and code responsibly information, laboratory assignments and

Segmented and Interactive Modules for Teaching Secure Coding 149



discussion questions. A single web page accommodates a large amount of infor-
mation where students have to scroll window up and down for selecting any
information. We believe there are higher chances that students might skim or skip
the content because of large amount of text and scrolling phenomena.

2. Domain Knowledge: Security injection modules are given to students as a part of
laboratory assignment. Before attempting the modules, students are taught basic
programming concepts during lecture hours, for example: knowledge about data
types, variables, arrays etc. Therefore, we assume students have enough domain
knowledge to read and understand the security injection module content. Addi-
tionally, the modules are structured to provide foundational knowledge first.

3. Complexity of content: The security injection modules are designed based on the
principles of Bloom’s Taxonomy and are structured to help students methodically
understand, remember and apply the concepts learned. The assumption is, by
adhering to this taxonomy, content complexity is reduced.

4. Structure of content: The security injection modules follow a uniform format
through all CS0, CS1, CS2 and Computer Literacy courses. Each module, across all
courses, contains background, code responsibly, laboratory assignment and dis-
cussion questions sections. Each section has a heading and sub-heading that reader
can easily process and understand.

5. Lack of motivation: The security injection modules are presented in a linear and
non-interactive format and include a large amount of information on a single page.
It is possible students are less interested and motivated to read the content because
of little or no interactivity between the reader and the system.

3.2 Possible Solution

To increase their effectiveness in teaching secure coding content, the security injection
modules need to address the amount of content and motivational factors to prevent
students from skimming and skipping the content. The large amount of information
presented at once can increase extrinsic cognitive load [11]. The research suggests, this
type of cognitive load can be reduced by breaking large information into small chunks
and present only one idea at a time on a single screen. This principle is called seg-
mentation [1, 3, 12]. Segmentation improves processing of information in the working
memory and makes recalling/retention of concepts easier [12].

Motivation can be increased by engaging learners or readers with the system they are
interacting with. Engaging learners with the system can possibly be introduced by adding
elements of interactivity within the learning system. The interactivity motivates learners
to learn [12]. Interactivity in the context of learning is the “responsiveness to the learner’s
actions during learning” [12]. The types of interactivity in e-Learning environments
include: dialoguing, controlling, manipulating, searching and navigating [12]. We
focus on dialoguing and controlling types of interactivity, the remaining three are
addressed by the platform where security injection modules are currently hosted. Dia-
loguing occurs when the learner answers questions and receives feedback to his/her
input. Controlling means the learner can determine or control the pace of the presentation.
Dialoguing help students to learn better, through the feedback provided by the learning

150 S. Raina et al.



environment [12]. Feedback reduces extraneous cognitive load in the working memory.
Controlling also help students learn better by allowing them to control the pace of the
presentation. Controlling reduces the extraneous load by allowing learners to process
smaller chunks of information in the working memory at their own pace.

We propose to enhance the security injection modules by incorporating principles
of segmentation and interactivity (dialoguing and controlling). We propose to imple-
ment segmentation by breaking the module content per section (background, code
responsibly, laboratory assignment, discussion questions) and present each section one
at a time on a computer screen. This way readers have to read small amount of content
one at a time and there will be less processing load on the working memory, which will
help readers to retain the concept’s learned for the longer period [1, 3, 12, 14]. We
propose to implement dialoguing by including a set of questions at the end of each
section. Based on the student’s response, they will receive both corrective and
explanatory feedback. Feedback will increase student learning [12]. We propose to
implement controlling by not allowing students to proceed to the next section until they
answer all of the questions correctly, which might encourage students to refer back to
the content, on answering incorrectly [3, 11, 12].

4 System Implementation

4.1 System Design

To implement the proposed solution, several solutions were considered (including
writing the system from scratch) before determining that a modified version of Stanford
University’s class2go web-based application (https://github.com/Stanford-Online/
class2go/) was most appropriate. Class2go is built using the django framework and
is a well-tested open-source framework that provides core functionality including user
registration, course creation, test administration, and components for auto-grading. The
application creates modules and sections within those modules. Each section in a
module is auto-graded using built-in functionality for text and multiple choice ques-
tions. Additional components were added to allow students to find and correct software
vulnerabilities in code segments using security checklists until all questions are
answered correctly (Refer Fig. 1).

4.2 Module Design

Applying the segmentation principle [1], the learning modules were organized into four
subsections: background, code responsibly, laboratory assignment, and discussion
questions. In the background and code responsibly sections, students are required to go
through the content and answer a series of questions. Each question provides feedback
upon submit, thus satisfying the dialoguing principle. The student cannot advance to
the next section until all questions are answered correctly, which satisfies the con-
trolling type of interactivity. In laboratory assignments and discussion questions, stu-
dents answer text-based and multiple choice questions, and identify vulnerabilities
based on a security checklist. The student is able to highlight portions of the code
according to steps in the checklist. These are also auto-graded until completion.

Segmented and Interactive Modules for Teaching Secure Coding 151

https://github.com/Stanford-Online/class2go/
https://github.com/Stanford-Online/class2go/


5 Pilot Evaluation

5.1 Method

A pilot study was conducted with the newly built system using a C++ module focused
on integer error in a CS0 class at Towson University. The class had 60 in-class
undergraduate computer science students and 9 online students. The students were
given security injections 2.0 module URL and were asked to follow the instructions.
While in-class students were interacting with the newly built system, their behavior was
observed by the instructors, giving an idea of students’ engagement towards the sys-
tem. A week later, a paper-based test was conducted to assess the students’ retention of
integer overflow concepts. Students in a paper-based test were asked to “Explain
integer overflow”. The students were evaluated on the scale out of 10 on the paper-
based test.

5.2 Assessment

The data was evaluated for 43 students who took the post-test. The assessment results
indicate that students scored an average of 7.7 out of 10 with a standard deviation (SD)
of 3.18. Approximately 77 % of students scored 7 and above (falling on the higher end,
on the scale of 0–10) in their post-test, reflecting their good understanding and retention
of integer overflow concepts including 45 % students scoring 10 out of 10 and 25 %
students scoring 8 out of 10 (Refer Fig. 2). We also assessed the correlation between
the number of attempts student made to complete the module and their post-test scores
to find out if increase in number of attempts improves learning and retention of integer
overflow concepts. The results indicate weak pearson’s correlation coefficient (–2.63),
thus giving us a hint that multiple attempts does not contribute to learning and retention
of concepts. We intend to study the data to further analyze this claim.

Fig. 1. The (a) security injection module, (b) content-based questions, (c) instant feedback.

152 S. Raina et al.



6 Conclusion and Future Work

In this study, we addressed students’ tendency to skip and skim content in order to
improve the effectiveness of secure coding learning modules. We enhanced the mod-
ules by incorporating segmentation and interactivity principles to create segmented,
feedback-oriented and self-paced modules to improve student learning by engaging
them with content and increase their motivation. Assessment of the results indicated
higher scores for the majority (77 %) of the students. Though the design of this study
lacks a control group and has a small sample size, therefore, the results cannot be
generalized to entire population, but, the descriptive statistics gives us an idea of
students’ good performance on security injections 2.0 modules. To further expand the
study, we are designing an experiment and instruments which includes the deployment
of multiple modules in CS0, CS1, and Computer Literacy to measure student learning,
student concept retention and student engagement in two e-learning modalities
(interactive modules and non-interactive modules) and plan to pilot them this summer.
Future work will include auto-grading for full-text questions, which is currently limited
to matching keywords. In addition, the system architecture requires modification to
support large-scale dissemination and assessment.

References

1. Al-Samarraie, H., Teo, T., Abbas, M.: Can structured representation enhance students’
thinking skills for better understanding of E-learning content? Comput. Educ. 69, 463–473
(2013)

2. Chalmers, P.A.: The role of cognitive theory in human–computer interface. Comput. Hum.
Behav. 19(5), 593–607 (2003)

3. Clark, R.C., Mayer, R.E.: E-Learning and the Science of Instruction: Proven Guidelines for
Consumers and Designers of Multimedia Learning (Google eBook). Wiley, New York
(2011)

4. DeStefano, D., LeFevre, J.-A.: Cognitive load in hypertext reading: a review. Comput. Hum.
Behav. 23(3), 1616–1641 (2007)

Fig. 2. Post-test scores versus students (percent)

Segmented and Interactive Modules for Teaching Secure Coding 153



5. Duggan, G.B., Payne, S.J.: Skim reading by satisficing: evidence from eye tracking. In: CHI
2011 (2011)

6. Dyson, M., Haselgrove, M.: The effects of reading speed and reading patterns on the
understanding of text read from screen. J. Res. Reading 23(2), 210–223 (2000)

7. Kaza, S., Taylor, B., Hochheiser, H., Azadegan, S., O’Leary, M., Turner, C.F.: Injecting
security in the curriculum – experiences in effective dissemination and assessment design.
In: The Colloquium for Information Systems Security Education (CISSE), 8 (2010)

8. Lawless, K.A., Brown, S.W., Mills, R.: Knowledge, interest, recall and navigation: a look at
hypertext processing. J. Literacy Res. 35, 911–934 (2003)

9. Liu, Z.: Reading behavior in the digital environment: changes in reading behavior over the
past ten years. J. Documentation 61(6), 700–712 (2005)

10. van Merrienboer, J.J.G., Ayres, P.: Research on cognitive load theory and its design
implications for e-learning. Educ. Tech. Res. Dev. 53(3), 5–13 (2005)

11. van Merrienboer, J.J.G., John, S.: Cognitive load theory in health professional education:
design principles and strategies. Med. Educ. 44, 85–93 (2010)

12. Moreno, R., Mayer, R.: Interactive multimodal learning environments. Educ. Psychol. Rev.
19(3), 309–326 (2007)

13. Protopsaltis, A., Bouk, V.: Towards a hypertext reading/comprehension model. In:
SIGDOC’05 (2005). http://delivery.acm.org/10.1145/1090000/1085349/p159-protopsaltis.
pdf

14. Singh, A.-M., Marcus, N., Ayres, P.: The transient information effect: investigating the
impact of segmentation on spoken and written text. Appl. Cogn. Psychol. 26(6), 848–853
(2012)

15. Taylor, B., Kaza, S.: Security injections: modules to help students remember, understand,
and apply secure coding techniques. In: Proceedings of the 16th Annual Joint Conference on
Innovation and Technology in Computer Science Education. 99, 3–7, ACM (2011)

16. Tseng, M.: The difficulties that EFL learners have with reading text on the web. Internet
TESL J. 14(2) (2008). Available at http://iteslj.org/Articles/Tseng-TextOnTheWeb.html

154 S. Raina et al.

http://delivery.acm.org/10.1145/1090000/1085349/p159-protopsaltis.pdf
http://delivery.acm.org/10.1145/1090000/1085349/p159-protopsaltis.pdf
http://iteslj.org/Articles/Tseng-TextOnTheWeb.html

	Segmented and Interactive Modules for Teaching Secure Coding: A Pilot Study
	Abstract
	1 Introduction
	2 Literature Review
	2.1 Hypertext Reading
	2.2 Cognitive Load Theory

	3 Proposed Solution
	3.1 Mapping Cognitive Overload Factors with Security Injection Modules
	3.2 Possible Solution

	4 System Implementation
	4.1 System Design
	4.2 Module Design

	5 Pilot Evaluation
	5.1 Method
	5.2 Assessment

	6 Conclusion and Future Work
	References


