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Abstract. Many fatal accidents involving safety-critical reactive systems have 
occurred in unexpected situations, which were not considered during the design 
and test phases of the systems. To prevent these accidents, reactive systems 
should be designed to respond appropriately to any request from an 
environment at any time. Verifying this property during the specification phase 
reduces the development costs of safety-critical reactive systems. This property 
of a specification is commonly known as realizability. It is known that the 
complexity of the realizability problem is 2EXPTIME-complete. On the other 
hand, we have introduced the concept of strong satisfiability, which is a 
necessary condition for realizability. Many practical unrealizable specifications 
are also strongly unsatisfiable. In this paper, we show that the complexity of the 
strong satisfiability problem is EXPSPACE-complete. This means that strong 
satisfiability offers the advantage of lower complexity for analysis, compared to 
realizability. 
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1 Introduction 

A reactive system is a system that responds to requests from an environment in a 
timely fashion. The systems used to control elevators or vending machines are typical 
examples of reactive systems. Many safety-critical systems, such as the systems that 
control nuclear power plants and air traffic control systems, are also considered 
reactive systems. 

In designing a system of this kind, the requirements are analyzed and then 
described as specifications for the system. If a specification has a flaw, such as 
inappropriate case-splitting, a developed system may fall into unintended situations. 
Indeed, many fatal accidents involving safety-critical reactive systems have occurred 
in unexpected situations, which were not considered during the design and test phases 
of the systems. It is therefore important to ensure that a specification does not possess 
this kind of flaw[6]. 
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More precisely, a reactive system specification must have a model that can respond 
in a timely fashion to any request at any time. This property is called realizability, and 
was introduced in [1, 12]. In [12], A. Pnueli and R. Rosner showed that a reactive 
system can be synthesized from a realizable specification.  

On the other hand, in [8, 9], we introduced the concept of strong satisfiability, 
which is a necessary condition for realizability. Many practical unrealizable 
specifications are also strongly unsatisfiable[9]. In [5], we presented a method for 
checking whether or not a specification satisfies strong satisfiability. We also 
proposed techniques for identifying the flaws in strongly unsatisfiable specifications 
in [4]. Another approach for checking strong satisfiability was introduced in [17]. 

However, there has been no discussion of the complexity of the strong satisfiability 
problem, which is an important consideration, since such knowledge would be useful 
for obtaining an efficient verification procedure for strong satisfiability. In this paper, 
we show that the complexity of the strong satisfiability problem is EXPSPACE-
complete. Since it is known that the complexity of the realizability problem is 
2EXPTIME-complete, this means that strong satisfiability offers the advantage of 
lower complexity for analysis, compared to realizability. 

The remainder of this paper is organized as follows. In Section2, we introduce the 
concepts of a reactive system, linear temporal logic(LTL) as a specification language, 
and strong satisfiability, which is a necessary condition for the realizability of a 
reactive system specification. In Section3, we show that the strong satisfiability 
problem for a specification written in LTL is EXPSPACE-complete. In Section4, we 
discuss the complexity of the strong satisfiability problem in relation to that of the 
satisfiability problem and the realizability problem. We present our conclusions in 
Section5. 

2 Specifications for Reactive Systems and Their Properties 

2.1 Reactive Systems 

A reactive system (illustrated in Fig. 1) is a system that responds to requests from an 
environment in a timely fashion. 

 

Reactive system

Environment

Input event

Output event

Input event

Output event

 

Fig. 1. A reactive system 

 



 Complexity of Checking Strong Satisfiability of Reactive System Specifications 43 

 

Definition 1 (Reactive System). A reactive system RS is a triple 〈X, Y, r〉, where X is 
a set of events caused by an environment, Y is a set of events caused by the system, 
and r : (2X)+→2Y is a reaction function. 

 
We refer to events caused by the environment as ‘input events,’ and those caused by 
the system as ‘output events.’ The set (2X)+ is the set of all finite sequences of sets of 
input events. A reaction function r relates sequences of sets of previously occurring 
input events with a set of current output events. 

2.2 Language for Describing Reactive System Specifications 

The timing of input and output events is an essential element of reactive systems. 
Modal logics are widely used in computer science. Among these, temporal logics 
have often been applied to the analysis of reactive systems, following the application 
of such logics to program semantics by Z. Manna and A. Pnueli[7]. A propositional 
linear temporal logic (LTL)[11] with an ‘until’ operator is a suitable language for 
describing the timing of events. In this paper, we use LTL to describe the 
specifications of reactive systems. We treat input events and output events as atomic 
propositions.  

Syntax. Formulae in LTL are inductively defined as follows: 
− Atomic propositions are formulae; i.e., input events and output events are 

formulae. 
− f∧g, ¬f, Xf, fUg are formulae if f and g are formulae. 

Intuitively, f∧g and ¬f represent the statements ‘both f and g hold’ and ‘f does not 
hold,’ respectively. The notation Xf means that ‘f holds at the next time,’ while fUg 
means that ‘f always holds until g holds.’ The notations f∨g, f→g, f↔g, f⊕g, fRg, Ff, 
and Gf are abbreviations for ¬(¬f∧¬g), ¬(f∧¬g), ¬(f∧¬g)∧¬(¬f∧g), ¬(f↔g), 
¬(¬fU¬g), and (¬⊥)Uf, ¬F¬f respectively, where ⊥ is an atomic proposition 
representing ‘falsity.’ 

Semantics. A behavior is an infinite sequence of sets of events. Let i be an index such 
that i ≥ 0. The i-th set of a behavior σ is denoted by σ[i]. When a formula f holds on 
the i-th set of a behavior σ, we write σ, i╞ f, and inductively define this relation as 
follows:  

 

 
 



44 M. Shimakawa, S. Hagihara, and N. Yonezaki 

 

We say that σ satisfies f and write σ╞ f if σ, 0╞ f. We say that f is satisfiable if 
there exists a σ that satisfies f. 

2.3 Properties of Reactive System Specifications 

It is important for reactive system specifications to satisfy realizability. Realizability 
requires that there exist a reactive system such that for any input events with any 
timing, the system produces output events such that the specification holds. 

Definition 2 (Realizability). A specification Spec is realizable if the following holds: 
 

 
 

where ĩ is an infinite sequence of sets of input events; i.e., ĩ ∈ (2X)ω. behaveRS(ĩ) is the 
infinite behavior of ĩ caused by RS, defined as follows. If ĩ = i0i1…, 
 

 
 
where oi is a set of output events caused by RS; i.e., oi = r(i0... ii), and ∪ denotes the 
union of two sets. 

 
The following property was shown to be a necessary condition for realizability in 

[8]. 

Definition 3 (Strong satisfiability). A specification Spec is strongly satisfiable if the 
following holds: 

 
 

where õ is an infinite sequence of sets of output events; i.e., õ∈(2Y)ω. If ĩ = i0i1… and 
õ = o0o1…, then 〈ĩ, õ〉 is defined by 〈ĩ, õ〉=(i0∪o0)(i1∪ o1)…. 

 
Intuitively, strong satisfiability is the property that if a reactive system is given an 
infinite sequence of sets of future input events, the system can determine an infinite 
sequence of sets of future output events. Strong satisfiability is a necessary condition 
for realizability; i.e., all realizable specifications are strongly satisfiable. Conversely, 
many practical strongly satisfiable specifications are also realizable. 

Example 1. Let us consider a simple example of a control system for a door. The 
initial specification is as follows. 

1. The door has two buttons: an open button and a close button. 
2. If the open button is pushed, the door eventually opens. 
3. While the close button is pushed, the door remains shut. 
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The events ‘the open button is pushed’ and ‘the close button is pushed’ are both input 
events. We denote these events by x1 and x2, respectively. The event ‘the door is open 
(closed)’ is an output event. We denote this event by y (resp., ¬y). The initial 
specification is then represented by Spec1: G((x1→Fy) ∧ (x2→¬y)) in LTL. This 
specification is not strongly satisfiable, and consequently unrealizable, due to the fact 
that there is no response that satisfies Spec1 for the environmental behavior in which 
the close button is still being pushed after the open button has been pushed. Formally, 
for ĩ = {x1, x2}{x2}{x2}..., ∃õ(〈ĩ, õ〉╞Spec1) does not hold. Hence ∀ĩ∃õ(〈ĩ, õ〉╞Spec1) 
does not hold. 

However, suppose the constraint 3 in the initial specification can be weakened to 3’: 
3’. If the close button is pushed, the door eventually closes. 
 
Then the modified specification is represented by G((x1→Fy) ∧ (x2→F¬y)), and this 
is both strongly satisfiable and realizable. 

3 Complexity of Checking Strong Satisfiability 

In this section, we show that the strong satisfiability problem (i.e., whether or not a 
specification written in LTL satisfies strong satisfiability) is EXPSPACE-complete. In 
other words, (1) the strong satisfiability problem is in the class EXPSPACE (the class 
of problems solvable in O(2p(n)) amount of space by a deterministic Turing machine, 
where p(n) is a polynomial function), and (2) all the problems in EXPSPACE are 
reducible to the strong satisfiability problem. 

3.1 Upper Bound 

First, we show that the strong satisfiability problem is in EXPSPACE. We 
demonstrate a procedure for checking strong satisfiability which uses O(2p(n)) amount 
of space. This procedure is a modified version of the technique introduced in [5]. 

A non-deterministic Büchi automaton is a tuple A=〈Σ, Q, q0, δ, F〉, where Σ is an 
alphabet, Q is a finite set of states, q0 is an initial state, δ ⊆ Q × Σ ×Q is a transition 
relation, and F ⊆ Q is a set of final states. A run of A on an ω-word α=α[0]α[1]… is 
an infinite sequence γ = γ[0]γ[1]… of states, where γ[0]=q0 and (γ[i], α[i], γ[i+1])∈ δ 
for all i ≥ 0. We say that A accepts α, if there is a run γ on α such that In(γ)∩F≠∅  
holds, where In(γ) is the set of states that occur infinitely often in γ. The set of ω-
words accepted by A is called the language accepted by A, and is denoted by L(A). 

Let Spec be a specification written in LTL. We can check the strong satisfiability 
of Spec via the following procedure. 

1. We obtain a non-deterministic Büchi automaton A = 〈2X∪Y, Q, q0, δ, F〉 such that 
L(A) = {σ | σ╞ Spec } holds. 

2. Let A′= 〈2X, Q, q0, δ′, F〉 be a non-deterministic Büchi automaton obtained by 
restricting A to only input events, where δ′ = {(q, i, q′) | ∃o (q, i∪o, q′)∈ δ}. Note 
that L(A′) = {ĩ | ∃õ 〈ĩ, õ〉∈ L(A)} holds due to the definition of δ′. 
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3. We check whether or not A′ is universally acceptable (which means that L(A′) = 
(2X)ω). If it is universally acceptable, we conclude that Spec is strongly satisfiable. 
If it is not universally acceptable, we conclude that Spec is not strongly satisfiable. 
 
A can be constructed within O(2|Spec|) amount of space, and the size of A is also 

O(2|Spec|)[16]. Since A′ is obtained by projection, A′ can be constructed within O(|A|) 
amount of space, and the size of A′ is O(|A|). The universality problem for a Büchi 
automaton is in PSPACE[15], and Step 3 is accomplished within O(p(|A′|)) amount of 
space. Therefore, we can check strong satisfiability in O(2|Spec|) amount of space, and 
we can conclude that the strong satisfiability problem is in EXPSPACE. 

Theorem 1. The strong satisfiability problem for specifications written in LTL is in 
the complexity class EXPSPACE. 

3.2 Lower Bound 

In this section, we show that the strong satisfiability problem is EXPSPACE-hard, by 
providing polynomial time reduction from the EXP-corridor tiling problem[3] to the 
strong satisfiability problem. It is well known that the EXP-corridor tiling problem is 
EXPSPACE-complete. 

Definition 4 (EXP-corridor tiling problem). The EXP-corridor tiling problem is as 
follows: For a given (T, H, V, tinit, tfinal, m) where T is a finite set of tiles, H, V ⊆ T × T 
are horizontal and vertical adjacency constraints, tinit, tfinal ∈ T are the initial and 
final tiles, and m∈N, determine whether or not there exists k∈N, and an assignment 
function f : [0,…,(2m - 1)] × [0, k] → T, such that the following conditions are 
satisfied: 

1. f(0, 0) = tinit 
2. f(2m - 1, k) = tfinal 
3. for any 0 ≤ i < 2m - 1, 0 ≤ j ≤ k, (f(i, j), f(i + 1, j)) ∈ H holds. 
4. for any 0 ≤ i ≤ 2m - 1, 0 ≤ j < k, (f(i, j), f(i, j + 1)) ∈ V holds. 

 
0 1 2m-1

0

1

For some k

1

tinit

tfinal

 

Fig. 2. The EXP-corridor tiling problem 
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As Fig. 2 shows, the tiling grid has 2m × ω points. Intuitively, this problem asks: 
“for a given tiling grid, does there exist k such that a tile can be assigned to each point 
(i, j) for which 0 ≤ i < 2m and 0 ≤ j ≤ k, satisfying the conditions 1-4?” The condition 1 
is the condition for the initial tile, and states that the initial tile tinit is assigned to the 
leftmost and topmost point. The condition 2 is the condition for the final tile, and 
states that the final tile tfinal is assigned to the rightmost and bottommost point. The 
condition 3 is the condition for horizontal lines, and states that each tile and the tile to 
its right satisfy the horizontal adjacency constraint H. The condition 4 is the condition 
for vertical lines, and states that each tile and the tile beneath it satisfy the vertical 
adjacency constraint V. 

We provide polynomial time reduction from the EXP-corridor tiling problem to the 
complement of the strong satisfiability problem. That is, for the EXP-corridor tiling 
problem (T, H, V, tinit, tfinal, m), we construct a formula φtiling such that ∃ĩ∀õ(〈ĩ, õ〉╞ 
¬φtiling) holds if and only if the answer to the tiling problem (T, H, V, tinit, tfinal, m) is 
affirmative. 

In this reduction, we relate “there exists a tiling assignment” in the tiling problem 
to “there exists an infinite sequence of sets of input events.” Furthermore, “the tiling 
assignment satisfies the conditions” is related to “the corresponding infinite sequence 
of sets of input events does not satisfy φtiling for any infinite sequence of sets of output 
events.” 

Input events.  To relate an infinite sequence of sets of input events to a tiling 
assignment, we introduce the following input events. 
− xt for each t∈T: “the tile t is placed on the point (i, j)” is related to “the input events 

xt occur at the time i + (2m)· j.” 
− end: “tiling assignment concludes at the point (i, j)” is related to “end occurs at the 

time i + (2m)· j.” 
− c0, …, cm-1: These are m bit counters that count the amount of time. By checking 

these counters, we can identify a column of the tiling grid. 

Output events. We introduce the following output events. 
− y0, …, ym-1: These are used to identify a column. 

The formula φtiling. The formula φtiling is the negation of the conjunction of the 
formulae (1)-(6) mentioned below. Here we use the following abbreviations: 
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− The constraint for m bit counters c0, …, cm-1. 

 
(1) 

This represents the statement “the value of ċ is 0 initially, and is incremented on every 
pass,” which means that “ċ is a counter.” 
− The relation between a tile and a point of the grid. 

 

(2) 

This represents the statement “at most one tile is assigned to each grid point, and if 
tiling is not finished, some tile must be assigned.” 
− The constraint for the condition 1. 

 (3) 

This represents the statement “the initial tile tinit is placed on the point (0, 0).” 
− The constraint for the condition 2. 

 (4) 

This represents the statement “the final tile tfinal is placed on some point in column 2m  
- 1, and tiling is finished.” 
− The constraint for the condition 3. 

 

(5) 

This represents the statement “if tiling is not finished and the current point is not in 
the (2m-1)-th column (i.e., a point exists to the right of it), then the tile at the current 
point and the tile to the right satisfy the condition H.” 
− The constraint for the condition 4. 

 

 

(6) 

This represents the statement “if the value of y is never changed, for any current point 
in the column indicated by y, if tiling is not finished at the point just below the current 
point, the tile at the current point and the tile beneath it satisfy the condition V.” Here 
“the tile at the current point and the tile beneath it satisfy the condition V” is specified 
by “(t, t′)∈V such that t is placed on the current point and t′ is placed on the point 
whose column follows that of the current point by y.” Hence (∀ỹ(…╞ (6)) represents 
the statement “for any column, tiles in the column satisfy the condition V,” which 
means “any tiles satisfy the condition V.” 

Theorem 2. The strong satisfiability problem for specifications written in LTL is 
EXPSPACE-hard. 
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Proof. As mentioned above, we can construct a formula φtiling such that the answer to 
the EXP-corridor tiling problem is affirmative if and only if the corresponding φtiling is 
not strongly satisfiable. The size of φtiling is polynomial in the size of the problem  
(T, H, V, tinit, tfinal, m), and φtiling can be constructed in polynomial time. Therefore, the 
EXP-corridor tiling problem is reducible to the complement of the strong satisfiability 
problem. Since the EXP-corridor tiling problem is EXPSPACE-complete, the 
complement of the strong satisfiability problem is EXPSPACE-hard, and the strong 
satisfiability problem is co-EXPSPACE-hard. Since EXPSPACE=co-EXPSPACE, 
the strong satisfiability problem is also EXPSPACE-hard.                       

4 Discussion 

In this section, we discuss the complexity of the strong satisfiability problem in 
relation to that of the satisfiability problem and the realizability problem. It is well 
known that the complexity of the satisfiability problem for specifications written in 
LTL is PSPACE-complete[14], and the complexity of the realizability problem for 
specifications written in LTL is 2EXPTIME-complete[13]. PSPACE is the 
complexity class of problems solvable in O(p(n)) amount of space by a deterministic 
Turing machine, and 2EXPTIME is the complexity class of problems solvable in 
O(2^(2^(p(n)))) amount of time by a deterministic Turing machine. The relationship 
between these classes is as follows: 

 
Therefore, the strong satisfiability problem is more difficult than the satisfiability 
problem, and is easier than or of equal difficulty to the realizability problem. 

5 Conclusion 

In this paper, we showed that the strong satisfiability problem is EXPSPACE-
complete. This indicates that the strong satisfiability problem is more difficult than 
the satisfiability problem, and is easier than or of equal difficulty to the realizability 
problem. 

In future work, we will investigate the complexity of stepwise satisfiability and 
strong stepwise satisfiability, which are properties of reactive system specifications 
that were introduced in [8]. Furthermore, we will discuss the complexity of the strong 
satisfiability problem for subsystems of LTL that are syntactically restricted. If we 
succeed in finding a subsystem for which specifications can be verified efficiently, 
verification of reactive system specifications will become more practical. For 
realizability, subsystems of LTL were given in [2, 10]. We will find another 
subsystem by taking strong satisfiability into account. The results presented in this 
paper will provide important guidelines for this future work. 
 
Acknowledgments. This work was supported by a Grant-in-Aid for Scientific 
Research(C) (24500032). 



50 M. Shimakawa, S. Hagihara, and N. Yonezaki 

 

References 

1. Abadi, M., Lamport, L., Wolper, P.: Realizable and unrealizable specifications of reactive 
systems. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 
1989. LNCS, vol. 372, pp. 1–17. Springer, Heidelberg (1989) 

2. Alur, R., La Torre, S.: Deterministic generators and games for ltl fragments. ACM Trans. 
Comput. Logic 5(1), 1–25 (2004) 

3. Boas, P.V.E.: The convenience of tilings. In: Complexity, Logic, and Recursion Theory, 
pp. 331–363. Marcel Dekker Inc. (1997) 

4. Hagihara, S., Kitamura, Y., Shimakawa, M., Yonezaki, N.: Extracting environmental 
constraints to make reactive system specifications realizable. In: Proc. of the 16th Asia-
Pacific Software Engineering Conference, pp. 61–68. IEEE (2009) 

5. Hagihara, S., Yonezaki, N.: Completeness of verification methods for approaching to 
realizable reactive specifications. In: Proc. of 1st Asian Working Conference on Verified 
Software. UNU-IIST Technical Report, vol. 348, pp. 242–257 (2006) 

6. Jackson, D.: Automating first-order relational logic. In: Proceedings of the 8th ACM 
SIGSOFT International Symposium on Foundations of Software Engineering: Twenty-
First Century Applications, SIGSOFT 2000/FSE-8, pp. 130–139. ACM (2000) 

7. Manna, Z., Pnueli, A.: Axiomatic approach to total correctness of programs. Acta 
Informatica 3(3), 243–263 (1974) 

8. Mori, R., Yonezaki, N.: Several realizability concepts in reactive objects. In: Information 
Modeling and Knowledge Bases (1993) 

9. Mori, R., Yonezaki, N.: Derivation of the input conditional formula from a reactive system 
specification in temporal logic. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) 
FTRTFT 1994 and ProCoS 1994. LNCS, vol. 863, pp. 567–582. Springer, Heidelberg 
(1994) 

10. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson, E.A., 
Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer, Heidelberg 
(2006) 

11. Pnueli, A.: The temporal semantics of concurrent programs. Theoretical Computer 
Science 13, 45–60 (1981) 

12. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings of the  
16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,  
pp. 179–190 (1989) 

13. Rosner, R.: Modular Synthesis of Reactive Systmes. Ph.D. thesis, Weizmann Institute of 
Science (1992) 

14. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. J. 
ACM 32(3), 733–749 (1985) 

15. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi automata 
with applications to temporal logic. Theor. Comput. Sci. 49(2-3), 217–237 (1987) 

16. Tauriainen, H.: On translating linear temporal logic into alternating and nondeterministic 
automata. Research Report A83, Helsinki University of Technology, Laboratory for 
Theoretical Computer Science, Espoo, Finland (2003) 

17. Yoshiura, N.: Decision procedures for several properties of reactive system specifications. 
In: Futatsugi, K., Mizoguchi, F., Yonezaki, N. (eds.) ISSS 2003. LNCS, vol. 3233, pp. 
154–173. Springer, Heidelberg (2004) 


	Complexity of Checking Strong Satisfiability of Reactive System Specifications
	1 Introduction
	2 Specifications for Reactive Systems and Their Properties
	2.1 Reactive Systems
	2.2 Language for Describing Reactive System Specifications
	2.3 Properties of Reactive System Specifications

	3 Complexity of Checking Strong Satisfiability
	3.1 Upper Bound
	3.2 Lower Bound

	4 Discussion
	5 Conclusion
	References




