

V.V. Das and P.M. El-Kafrawy (Eds.): SPIT 2012, LNICST 117, pp. 204–210, 2014.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014

A Resource-Independent Marker-Based Augmented
Reality Application

Suhaifi Syazani*, Abdullah Junaidi, and Ku Day Chyi

Multimedia University, Faculty of Information Technology,
Jalan Multimedia 63100 Cyberjaya Selangor Malaysia

{junaidi,dcku,syazani.suhaifi11}@mmu.edu.my

Abstract. Creating a marker based Augmented Reality (AR) usually requires a
series of files such as marker files and 3d model files. The series of files that
Marker Based Augmented Reality requires will limit its capability and reduces
its reliability. These files and resources have to be loaded from storage such as a
local machine or a web server. We propose a Resource Independent Marker
Based Augmented Reality (RIMBAR) by encoding resources such as 3D model
files as QR code and using the QR code itself as the marker. The AR system
does not need any marker file or 3d model file. We processed, shortened and
convert the content to make it fit into a QR code. Larger contents are then split
to multiple markers and the data is joined together at the other end. Currently
this system shows potential but further research needs to be done to remove the
issues.

Keywords: QR Code, Augmented Reality, 3D Model Transmision.

1 Introduction

The dependence to the resources that Marker Based Augmented Reality requires will
limit its distribution, capability and reliability. If the app needs to download its
resource from the internet, the application performance will then be dependent on the
speed of the user’s internet connection. One solution is to install them on the machine
running it. But, if the user wants to use many AR applications, it will be a
cumbersome to install each one of them on their machine. Resource independent AR
is not a concept useful to everybody in general. If the user has high speed broadband
or are able to drive to the nearest shop to buy AR app CDs and DVDs this concept is
totally irrelevant. If we want to deliver AR content for rural areas where it took 2
hours to go to town and the internet connection is using GPRS or worse 56k dial-up
modems, resource independence is very important. The use case scenario for AR in
these remote locations is mainly in education and medical purposes. Resource
independence is also very useful for content that changes frequently. A magazine
using a resource independent AR system only needs to generate the QR codes and
print it on the magazine. No uploading or updating is necessary on their server. We

* Corresponding author.

 A Resource-Independent Marker-Based Augmented Reality Application 205

have developed a system that is able to distribute AR content via the medium of QR
code. The system also has the capability to split the into multiple QR codes if
necessary.

2 Previous Works

Previous attempts on resource independence have been done by [1] in a system called
In-Place Augmented Reality. An AR marker is created with the image as the texture
and model for the application. They also included a 2D elevation map to form the
terrain model. The system created by [1] also allows embedding of behaviors. Icons
representing transportation are included in the marker image and they used the red
lines included in the marker as the path the marker will animate on. Their application
however did not embed complicated models as they have to rely to height maps for
3D information. They also highlighted an issue of quality in its textures, that the
qualities of the textures are dependant on the imaging devices used. Another attempt
is done by [2] using a system that recognizes hand-drawn sketches, and converts them
into 3D model for Augmented Reality. Notations written down on paper will also give
the models physical properties. Both of the works are very close in achieving resource
independance.

Delivery of content in multiple parts has been tried before by [4]. They came up
with a system that uses XML data to provide the content location, provides the ability
to do joint models with the minor models attached to a major model on another QR
code. However, the application did not embed the content directly inside the QR
codes itself and it has to be downloaded.

Using QR code as an Augmented Reality marker has been executed several times
in the past. A system that uses a QR code to carry the URLs of the model that their
system fetches from a server was created by [5] and [3]. The first proof of concept
FLARToolkit with QR codes was created by [6] in 2009. However, he did not embed
the resources in his proof of concept. These past work have hinted on a possibility
that content can be embedded inside QR codes. Recently, [7] has created a system
that can dynamically generate QR code using an ink senstitive to variations of
temperature. The ability to change QR code on-the-fly will give our system greater
practicality as no QR code needs to be printed.

3 Resource Independent Marker Based Augmented Reality
(RIMBAR)

The system is divided into two parts which is the deployment/developer system and
the user system.The developer system processes the models and textures. It will
process, inspect, and perform necessary conversions. The developer system also
determines how many part should the data be split into and to how many QR Codes.
The user system contains the FLARToolkit engine, the QR Code decoder and
Papervision3D as the 3D engine. The user system will read the QR code, parse it,
recreate the 3D scene and augment it to the live feed. The processes involved in
Developer Module and Client Module are listed in Table 1.

206 S. Syazani, A. Junaidi, and K.D. Chyi

Table 1. The processes involved in the RIMBAR module

Developer Module Client Module

1. Loading the VRML file
2. Parsing the VRML file
3. Compress the VRML text
4. Split the content to multiple QR

codes if necessary.
5. Generate the final QR code

containing the model

1. Read the QR code
2. Parse the QR code data
3. Recreate the 3D scene
4. Track the QR code as an AR

marker
5. Overlay 3D model on top of the

QR code

3.1 Compressing the VRML File

The file on its own is quite long and beyond the encoding capacity of one QR code.
Therefore the 3d formats undergo a process of shortening. Firstly, the whitespaces
inside the strings are removed. The empty-spaces are counted as one character by the
QR code encoder. Unnecessary empty-spaces will decrease considerably the amount
of data encodable. Then, the words inside the strings are replaced with shortened
codes. The system will check series of words inside an XML file, and if the words are
found inside the string, it will then be replaced with a shortened code. Figure 1 below
shows a sample of VRML string after shortening.

Fig. 1. Sample of VRML string after shortening

Table 2. Result of the shortening process of Box.wrl model

Character Count QR code required to fit the data
Raw unedited VRML 466 3
Whitespace removal 229 1
Dictionary replacement 135 1
Final Outcome 135 1
Reduction of Character
Count

71.03%

Reduction of QR 67%

However, the shortening process as we found out later does not totally solve the

problem. Although the results are promising as shown in Table 1, it is not enough for
our goal to fit in complex models. If one box is 135 characters long, one QR code will
be full if we put two boxes. That is not practical. Both formats contain a plethora of
information. However, not all of them are needed for Papervision3D to recreate the
scene. Therefore, we created our own proprietary format. This particular format
carries the exact information that the Papervision3D needs to reconstruct the scene.
We called this format the QRF format. Figure 2 shows a sample of the QRF format.

 A Resource-Independent Marker-Based Augmented Reality Application 207

Fig. 2. The same VRML as used in Figure 1 after conversion to QRF

The use of QRF allows for a significant decrease in the size of the VRML string as
it only contains the information needed to reconstruct the scene. Using the QRF
format allows more complex scenes to be embedded into QR code.

3.2 Multiple QR Codes

There is a need to split contents as we have set the limit of 250 characters per QR
code. Indeed the capacity of QR can take much more than 250. But, as the numbers
increase, we found that it becomes harder for the QR code reader to read.

We are able to embed larger 3d scene by splitting such information into multiple
QR codes. Part information metadata is attached to the split string. Whenever the
program decodes the QR codes, the metadata will inform the system the number of
parts does the system need to decode and recombine before processing the final
output. Once all the parts are present, a parser will parse the codes and recreate the 3d
scene. The process is shown in Figure 3.

Fig. 3. Process of QR splitting

By splitting the information, large amounts of data can be encoded into multiple
QR codes. It is possible, with the help of this system and metadata to encode data into
any number of QR codes. However, too many QR codes part will be very
cumbersome to scan.

3.3 Recovery of 3D Models

To recover the data, we have to piece together the jigsaw puzzle that we created using
the developer system. Firstly, the QR code is scanned using a QR code reader. We
used Logosware’ QR Code Reader as the QR code reader. The code reader then

208 S. Syazani, A. Junaidi, and K.D. Chyi

passes the decoded information back to the system. The system will then look for
metadata that is embedded together with the QR code. By using the metadata the
system will determine the part that the current data belong to in the whole total set of
data. If all the parts of the data are present, a parser will then parse the document.
Parsed information values needed for recreating the scene is then passed on to the
3dcreator() function to recreate the 3d scenes in Papervision 3D. Finally,
Papervision3D augmented the model on top of the live video.

3.4 Embedding and Recovery of Image Textures into QR Code

We are able to encode textures into QR codes by transmitting the pixel color values
instead of the whole image. The system iterates through the pixels and builds a table
or list of the color of each pixel. This information is then passed to the QR code
encoder to encode as QR code. During recovery, the system takes the data and
recreates the pixels according to its original color. However we found out that in
context of transmitting large images, this method is not at all practical if compared to
the methods used by [1] because 2 QR Codes is required to transmit a very small
image as shown in Figure 4.

Fig. 4. Two QR codes that carries the pixel values of a 6 by 6 pixel image

3.5 3D Pose Estimation

To estimate the position of the 3D graphics, we employed a normal marker tracking
approach with a twist to make it robust. Firstly, we generated a marker using the
position detection pattern on the QR code. In order to place the 3D object at the center
of the QR we used the transformation matrix from all 3 position detection pattern.
Similar to the works by [6], we assume that the markers are on a flat paper and the
position of the pattern faces the same direction, then the center of the QR code can
roughly be obtained by calculating the average of the 3 transformation matrix of the 3
position detection patterns. Instead of selective averaging we averaged all the
components of the transformation matrix. Overall, the method works with one QR
code, and continues to work with multiple QR codes. If there is 4 QR codes,
averaging the transformation matrix will result in the marker being in the middle

 A Resource-Independent Marker-Based Augmented Reality Application 209

of the QR code formation. Our approach provides a new level of robustness to
occlusion as shown in Figure 5 below.

Fig. 5. RIMBAR still works with almost all the QR code covered

By using our method, almost the whole QR code can be covered. If there is at least
one position detection pattern remain uncovered, the model will still appear. In order
to smooth out temporary loss of detection that happens especially when the marker is
moving, a timer is used to prevent the 3D object from disappearing upon loss
detection of all the position detection pattern. Such temporary disturbance rarely
happens for a long time. Usually within the range of less than 1 or 2 seconds before
the application can detect the position detection pattern again.

4 Future Research

Coping with temporary occlusion with Kalman filter as demonstrated by [3] will be a
useful feature for this system and we intend to implement it in our second version of
the system. Usage of High Capacity Color Barcodes such as Microsoft Tag will
largely improve the ability of this system to carry more information without the need
to split the data (into multiple barcodes). At the time of writing, there is no Microsoft
Tag reader for PC. Microsoft Tag reader is however available for smartphones with
Android iOS, and Symbian. In our attempt to build mobile solution, using Microsoft
Tag instead of QR code is very much possible.

This system if it can be used as mobile apps will prove to be very useful as mobile
phones and tablets are easier to carry around especially when the user goes to a
remote area. The application is already built using Flash to ease the transition to
mobile apps by using AIR for Android and AIR for iOS.

5 Conclusion

We proposed a Resource Independent Marker Based Augmented Reality (RIMBAR)
by encoding resources such as 3D model files to QR code and using the QR code
itself as the marker. We found that this method can transmit models in an acceptable
manner. But in order to transmit textures and images, it is not feasible.

210 S. Syazani, A. Junaidi, and K.D. Chyi

References

1. Hagbi, N., Bergig, O., El-Sana, J., Kedem, K., Billinghurst, M.: In-Place Augmented
Reality. In: IEEE International Symposium on Mixed and Augmented Reality (2008)

2. Bergig, O., Hagbi, N., El-Sana, J., Billinghurst, M.: In-Place 3D Sketching for Authoring
and Augmenting Mechanical Systems. In: EEE International Symposium on Mixed and
Augmented Reality 2009 Science and Technology Proceedings, ISMAR (2009)

3. Jian-tung, W.C.-N., Shyi Hou, T.W., Fong, C.P.: Design and implementation of augmented
reality system collaborating with QR code. In: 2010 International Computer Symposium
(ICS), pp. 414–418 (2010)

4. Kan, T.-W., Teng, C.-H.: A framework for multifunctional Augmented Reality based on 2D
barcodes. In: ACM SIGGRAPH 2010 Posters, p. 1 (2010)

5. Kan, T.-W., Teng, C.-H., Chou, W.-S.: Applying QR code in augmented reality
applications. In: Proceedings of the 8th International Conference on Virtual Reality
Continuum and its Applications in Industry, pp. 253–257. ACM

6. MakC:Augmented reality and QR codes, http://makc3d.wordpress.com/
2009/10/30/augmented-reality-and-qr-codes/7

7. Peiris, R.L., Fernando, O.N.N., Bee, C.S., Cheok, A.D., Ganesan, A.G., Kumarasinghe, P.:
dMarkers: ubiquitous dynamic makers for augmented reality. In: Proceedings of the 10th
International Conference on Virtual Reality Continuum and Its Applications in Industry, pp.
217–224. ACM

	A Resource-Independent Marker-Based Augmented Reality Application
	1 Introduction
	2 Previous Works
	3 Resource Independent Marker Based Augmented Reality (RIMBAR)
	3.1 Compressing the VRML File
	3.2 Multiple QR Codes
	3.3 Recovery of 3D Models
	3.4 Embedding and Recovery of Image Textures into QR Code
	3.5 3D Pose Estimation

	4 Future Research
	5 Conclusion
	References

