

V.V. Das and P.M. El-Kafrawy (Eds.): SPIT 2012, LNICST 117, pp. 19–25, 2014.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014

Incorporating First-Order Unification into Functional
Language via First-Class Environments

Shin-ya Nishizaki

Department of Computer Science, Tokyo Institute of Technology
2-12-1-W8-69, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan

nisizaki@cs.titech.ac.jp

Abstract. Unification is a useful process by which one attempts to find a
substitute satisfying a given set of equations. Among several kinds of
unification algorithms, the unification for equations between first-order terms is
known to be decidable and to satisfy the completeness. A unification
mechanism plays an important role in logic programming languages, such as
Prolog. In this paper, we propose an approach to incorporating a unification
mechanism into a functional programming language via first-class
environments. The first-class environment is a reflective feature in a
programming language, which enables us to reify environments, to handle them
as first-class values such as integers and Boolean values, and to reflect the
reified environment as an environment at a meta-level. By identifying
resulting substitutions of unification problems as first-class environments, we
can introduce unification into functional programming languages. In this paper,
we first give the syntax of a simple functional language with unifications.
Second, we give its operational semantics in the style of Kahn's natural
semantics. Finally, we introduce some related works and show the future
direction of our works.

Keywords: functional programming language, first-order unification, first-class
environment, unification.

1 Introduction

1.1 First-Class Environment and Environment Calculus

In program, variables are bound to certain values and refereed in expressions. The
correspondence between the variables and their values at some point in time is called
an environment. In the semantics of programming languages, this is usually
formalized by a partial function whose domain is a finite set of variables and whose
codomain is a set of denotable values.

In a programming language Scheme [13], we can use two kinds of runtime objects –
continuations and environments – as first-class citizens; that is, it is possible to pass
such values as parameters and to return them as results. The availability of first-class
continuations and environments increases the expressiveness of the programming

20 S. Nishizaki

language. In some versions of Scheme, the following primitives enable environments to
be treated as first-class citizens:

─ the-environment is a zero-ary procedure returning a representation of the current
environment in which the expression itself is evaluated;

─ eval is a binary procedure mapping the representation of an expression and the
representation of an environment into the value of this expression in this
environment.

An environment does not appear explicitly in a functional program's computation

expressed as reduction sequences. An environment is usually represented as a list of
pairs of variables and their bound denotation, which forms an implicit computational
structure of the lambda-calculus.

The substitution is used as a meta-level mechanism to describe the beta-reduction
of the lambda-calculus, but it is not an object-level mechanism of the lambda-
calculus, since it is not an explicit operation in the lambda-calculus. The idea of using
explicit substitutions [1,5–7] is an interesting approach to make substitutions work at
object-level in the lambda-calculus, and explicit substitutions are formalized as
object-level substitutions using an environment in the λσ-calculus.

Although explicit substitutions allow us to treat an environment at object-level in
the λσ-calculus, there is still a crucial difference between the object-level
environments of the λσ-calculus and the first-class environments of Scheme. In the
λσ-calculus, it is not possible to pass substitutions as parameters. For instance, the
following term is not permissible in the λσ-calculus. λsub.(x[sub]), where an explicit
substitution is passed to the argument sub. The point to be stressed is that, in the λσ-
calculus the syntactic class of explicit substitutions is precisely distinguished from its
terms. If we introduce first-class environments into the λσ-calculus, we should allow
λenv.(x[env]) as a permissible term in such an extended lambda-calculus. Roughly
speaking, the lambda-calculus with first-class environments is an extended lambda-
calculus that allows environments as additional permissible terms.

1.2 Embedding Unification into a Functional Programming Language via a
First-Class Environment

Unification [2,15] is processing by which one attempts to solve the satisfiability
problem given as a set of equations. The goal of unification is to find a substitution
which makes each equation hold by applying to both sides. There are various kinds of
unification depending on syntactic structures of terms. Unification is widely used in
automated reasoning, logic programming and programming language type system
implementation. In this paper, we focus on the first-order unification [2,15], which
solves unification problems for first-order terms. Variables in first-order terms are not
assumed to have functional values but individuals, similar to first-order predicate
logic.

 Incorporating First-Order Unification into Functional Language 21

2 The Lambda Calculus with Unifications, λunify

In this section, we introduce the syntax of a theoretical programming language,
λunify, which is an untyped lambda calculus into which we have incorporated first-
order unification.

A set Var of variables and a set FunSym of constructors (or sometimes function
symbols) are given in advance of the following definition of the λunify's syntax. As
the first-order predicate logic and the equational logic [2], to each function symbol f, a
non-negative integer, called arity, is assigned. This is written as arity(f). The symbols
x,y,z are typically used for variables and f,g,h for function symbols.

Definition 1 (Expression of λunify). The expressions of λunify are inductively
defined by the following grammar:

The first three kinds of expression are called a variable, a lambda-abstraction, and a
function application, respectively, and these are assumed to have similar meanings to
the traditional lambda calculus[4]. The next three expressions are called the identity
environment, an environment extension, and an environment composition respectively,
and are the same as the environment lambda-calculi's [9,10]. The last two kinds of
expression are called a construnctor term and a unificand respectively. The
constructor terms are similar to the first-order terms in the predicate logic. A
unificand

has the following intuitive meaning:

• Try the first-order unification of a set of equations { e1 = e1’, …, em = em’ }
─ If the unification succeeds, the unifier is regarded as a value of a first-class

environment.
─ Otherwise, the expression e is evaluated and its value is returned.

This intuitive meaning will be formalized as the operational semantics presented in
the later section. We sometimes use an abbreviation

for

3 Operational Semantics of λunify

In this paper, the operational semantics of the calculus λunify is given in the style of
the natural semantics proposed by G. Kahn[8].

22 S. Nishizaki

In the original natural semantics, the semantic relation takes two input arguments:
the first argument is an expression to be assigned a meaning, and the second an
environment that gives a meaning to each free variable occurring in the expression.

Both the input arguments of the semantics relation of λunify are expressions. More
precisely, the second argument is an expression denoting an environment. Though the
lambda calculus cannot represent environments as expressions, our calculus can
handle first-class environments and represent environments as expressions.

Definition 2 (Values). The set Value of values is defined inductively by the
following grammar. Meta-variables v,v',v1,…,vn stand for values.

Metavariable w and u stand for elements of subsets of Value, which are defined
inductively by the following grammar:

Definition 3 (Semantic Relation). The ternary relation 〈e, v〉⇓ v’ among a term e and
values v,v' is defined inductively by the following rules.

 Incorporating First-Order Unification into Functional Language 23

Definition 4 (Unification Procedure). Unification procedure Unify is defined by the
following equations, which takes a finite set of expressions as an argument and
returns either a substitution (or a unifier) or a failure signal failure.

4 Example of λunify

In order to give fruitful examples, we extend the language λunify by adding several
basic constructs such as conditionals and the recursive operator. In the lambda
calculus, it is known that such constructs are encoded. For example, the recursive
fixed-point operator can be represented as

in the call-by-value lambda calculus. In this paper, we introduce it as a primitive
construct with the following rule.

24 S. Nishizaki

We also introduce the conditional branch and the comparison operator as primitive
operators similar to the recursive operator.

For describing richer examples in this section, we introduce the constant symbols nil
and 0, which are function symbols succ and cons of arity 1 and 2, respectively.

By using the unification mechanism of λunif, we can describe destructing of the data
structures. For example, a function that returns the length of a list given as an
argument is represented as follows.

The following is a detailed explanation of the term ‘λunify’.

─ This term gives a recursive definition of the list-length function, using the fixed-
point operator Ycbv.

─ Before solving the unificand { l = cons(a1,l1) }, the variable l is assumed to be
bound to a list. After the unification, the variables a1 and l1 are bound to the head
and the tail of the list, respectively.

─ The conditional expression (if l = nil then 0 else (succ (len, l1)) is evaluated
under the environment obtained by evaluating the unificand.

We give another example of a function which searches for an item in the list; if found,
it returns the item's position; otherwise, it returns (the length of the list)+1.

5 Concluding Remarks

In this paper, we proposed a functional programming language with a unification
mechanism. We incorporated the unification by using first-class environments. We
first gave the syntax of the language, and second, we gave its operational semantics in
the style of Kahn's natural semantics. We finally introduced some related works and
showed the future direction of our works.

 Incorporating First-Order Unification into Functional Language 25

Discussions. There are several studies in which the unification is embedded into
programming languages. In the paradigm of functional programming, one such study
is Qute by Sato and Sakurai[12]. In their language, the beta-reduction and the
unification computation is tightly combined. The unification is processed as needed
by the beta-reduction. The characteristic feature of Qute is parallel execution of the
beta-reduction and the unification processing. However, handling of the variable
scope is more complicated than that of λunify.

One of the future research directions of λunify is parallel execution of beta-
reduction and unification processing, keeping the simple scoping feature of λunify.
In logic programming languages such as Prolog[14], the unification is the most
fundamental mechanism of handling data. However, the meaning of variables in the
logic programming languages is different to the other kinds of programming
language. On the other hand, we succeeded in introducing unification into λenv
keeping the standard meaning of the variables.

In this work, we focused on the first-order unification. The other kinds of
unification such as higher-order unification[3], which enables us to unify the lambda
terms. If we incorporate the higher-order unification into λunify, it enables us to
describe programs which handle data with variable-bindings more easily. We would
apply λunify to proof checking software such as the theorem prover Isabelle [11].

Acknowledgement. This work was supported by Grants-in-Aid for Scientific
Research (C) (24500009). I would like to express my gratitude to Takayuki Higuchi
for his collaboration and fruitful discussions in the early stage of this work.

References

1. Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.-J.: Explicit substitutions. Journal of
Functional Programming 1(4), 375–416 (1991)

2. Baarer, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press (1999)
3. Baader, F., Snyder, W.: Unification theory. In: Robinson, J., Voronkov, A. (eds.)

Handbook of Automated Reasoning, pp. 447–533. Elsevier Science Publishers (2001)
4. Barendregt, H.P.: The Lambda Calculus. Elsevier (1984)
5. Curien, P.L.: An abstract framework for environment machines. Theor. Comput. Sci. 82,

389–402 (1991)
6. Curien, P.L., Hardin, T., Lévy, J.-J.: Confluence properties of weak and strong calculi of

explicit substitutions. J. ACM 43(2), 363–397 (1996)
7. Dowek, G., Hardin, T., Kirchner, C.: Higher-order unification via explicit substitutions,

extended abstract. In: Proceedings of the Symposium on Logic in Computer Science,
pp. 22–39. Springer (1987)

8. Kahn, G.: Natural Semantics. In: Brandenburg, F.J., Wirsing, M., Vidal-Naquet, G. (eds.)
STACS 1987. LNCS, vol. 247, pp. 22–39. Springer, Heidelberg (1987)

9. Nishizaki, S.: Simply typed lambda calculus with first-class environments. Publications of
Reseach Institute for Mathematical Sciences Kyoto University 30(6), 1055–1121 (1995)

10. Nishizaki, S.: Polymorphic environment calculus and its type inference algorithm. Higher-
Order and Symbolic Computation 13(3), 239–278 (2000)

	Incorporating First-Order Unification into Functional Language via First-Class Environments
	1 Introduction
	1.1 First-Class Environment and Environment Calculus
	1.2 Embedding Unification into a Functional Programming Language via a First-Class Environment

	2 The Lambda Calculus with Unifications,
	3 Operational Semantics of
	4 Example of
	5 Concluding Remarks
	References

