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Abstract. Unification is a useful process by which one attempts to find a 
substitute satisfying a given set of equations. Among several kinds of 
unification algorithms, the unification for equations between first-order terms is 
known to be decidable and to satisfy the completeness. A unification 
mechanism plays an important role in logic programming languages, such as 
Prolog. In this paper, we propose an approach to incorporating a unification 
mechanism into a functional programming language via first-class 
environments.  The first-class environment is a reflective feature in a 
programming language, which enables us to reify environments, to handle them 
as first-class values such as integers and Boolean values, and to reflect the 
reified environment as an environment at a meta-level.  By identifying 
resulting substitutions of unification problems as first-class environments, we 
can introduce unification into functional programming languages. In this paper, 
we first give the syntax of a simple functional language with unifications. 
Second, we give its operational semantics in the style of Kahn's natural 
semantics. Finally, we introduce some related works and show the future 
direction of our works. 

Keywords: functional programming language, first-order unification, first-class 
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1 Introduction 

1.1 First-Class Environment and Environment Calculus 

In program, variables are bound to certain values and refereed in expressions. The 
correspondence between the variables and their values at some point in time is called 
an environment. In the semantics of programming languages, this is usually 
formalized by a partial function whose domain is a finite set of variables and whose 
codomain is a set of denotable values.  

In a programming language Scheme [13], we can use two kinds of runtime objects – 
continuations and environments – as first-class citizens; that is, it is possible to pass 
such values as parameters and to return them as results. The availability of first-class 
continuations and environments increases the expressiveness of the programming 
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language. In some versions of Scheme, the following primitives enable environments to 
be treated as first-class citizens: 

─ the-environment is a zero-ary procedure returning a representation of the current 
environment in which the expression itself is evaluated; 

─ eval is a binary procedure mapping the representation of an expression and the 
representation of an environment into the value of this expression in this 
environment. 
 
An environment does not appear explicitly in a functional program's computation 

expressed as reduction sequences. An environment is usually represented as a list of 
pairs of variables and their bound denotation, which forms an implicit computational 
structure of the lambda-calculus. 

The substitution is used as a meta-level mechanism to describe the beta-reduction 
of the lambda-calculus, but it is not an object-level mechanism of the lambda-
calculus, since it is not an explicit operation in the lambda-calculus. The idea of using 
explicit substitutions [1,5–7] is an interesting approach to make substitutions work at 
object-level in the lambda-calculus, and explicit substitutions are formalized as 
object-level substitutions using an environment in the λσ-calculus. 

Although explicit substitutions allow us to treat an environment at object-level in 
the λσ-calculus, there is still a crucial difference between the object-level 
environments of the λσ-calculus and the first-class environments of Scheme. In the 
λσ-calculus, it is not possible to pass substitutions as parameters. For instance, the 
following term is not permissible in the λσ-calculus. λsub.(x[sub]), where an explicit 
substitution is passed to the argument sub. The point to be stressed is that, in the λσ-
calculus the syntactic class of explicit substitutions is precisely distinguished from its 
terms. If we introduce first-class environments into the λσ-calculus, we should allow 
λenv.(x[env]) as a permissible term in such an extended lambda-calculus.  Roughly 
speaking, the lambda-calculus with first-class environments is an extended lambda-
calculus that allows environments as additional permissible terms. 

1.2 Embedding Unification into a Functional Programming Language via a 
First-Class Environment 

Unification [2,15] is processing by which one attempts to solve the satisfiability 
problem given as a set of equations.  The goal of unification is to find a substitution 
which makes each equation hold by applying to both sides. There are various kinds of 
unification depending on syntactic structures of terms. Unification is widely used in 
automated reasoning, logic programming and programming language type system 
implementation.  In this paper, we focus on the first-order unification [2,15], which 
solves unification problems for first-order terms. Variables in first-order terms are not 
assumed to have functional values but individuals, similar to first-order predicate 
logic. 
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2 The Lambda Calculus with Unifications, λunify 

In this section, we introduce the syntax of a theoretical programming language, 
λunify, which is an untyped lambda calculus into which we have incorporated first-
order unification. 

A set Var of variables and a set FunSym of constructors (or sometimes function 
symbols) are given in advance of the following definition of the λunify's syntax. As 
the first-order predicate logic and the equational logic [2], to each function symbol f, a 
non-negative integer, called arity, is assigned. This is written as arity(f). The symbols 
x,y,z are typically used for variables and  f,g,h for function symbols. 

Definition 1 (Expression of λunify). The expressions of λunify are inductively 
defined by the following grammar: 
 

 

The first three kinds of expression are called a variable, a lambda-abstraction, and a 
function application, respectively, and these are assumed to have similar meanings to 
the traditional lambda calculus[4]. The next three expressions are called the identity 
environment, an environment extension, and an environment composition respectively, 
and are the same as the environment lambda-calculi's [9,10]. The last two kinds of 
expression are called a construnctor term and a unificand respectively. The 
constructor terms are similar to the first-order terms in the predicate logic. A 
unificand 

 

 
has the following intuitive meaning: 

• Try the first-order unification of a set of equations { e1 = e1’, …, em = em’ } 
─ If the unification succeeds, the unifier is regarded as a value of a first-class 

environment. 
─ Otherwise, the expression e is evaluated and its value is returned. 

This intuitive meaning will be formalized as the operational semantics presented in 
the later section. We sometimes use an abbreviation 

 
for 

 

3 Operational Semantics of λunify 

In this paper, the operational semantics of the calculus λunify is given in the style of 
the natural semantics proposed by G. Kahn[8]. 
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In the original natural semantics, the semantic relation takes two input arguments: 
the first argument is an expression to be assigned a meaning, and the second an 
environment that gives a meaning to each free variable occurring in the expression. 

 

 
 

Both the input arguments of the semantics relation of λunify are expressions. More 
precisely, the second argument is an expression denoting an environment. Though the 
lambda calculus cannot represent environments as expressions, our calculus can 
handle first-class environments and represent environments as expressions. 

Definition 2 (Values). The set Value of values is defined inductively by the 
following grammar. Meta-variables v,v',v1,…,vn stand for values. 

 

 
 

Metavariable w and u stand for elements of subsets of Value, which are defined 
inductively by the following grammar: 

 

 

Definition 3 (Semantic Relation). The ternary relation 〈e, v〉⇓ v’ among a term e and 
values v,v' is defined inductively by the following rules. 
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Definition 4 (Unification Procedure). Unification procedure Unify is defined by the 
following equations, which takes a finite set of expressions as an argument and 
returns either a substitution (or a unifier) or a failure signal failure. 

 

 

 

4 Example of λunify  

In order to give fruitful examples, we extend the language λunify by adding several 
basic constructs such as conditionals and the recursive operator. In the lambda 
calculus, it is known that such constructs are encoded. For example, the recursive 
fixed-point operator can be represented as 

 

in the call-by-value lambda calculus. In this paper, we introduce it as a primitive 
construct with the following rule. 
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We also introduce the conditional branch and the comparison operator as primitive 
operators similar to the recursive operator. 
 

 
 
For describing richer examples in this section, we introduce the constant symbols nil 
and 0, which are function symbols succ and cons of arity 1 and 2, respectively. 
 
By using the unification mechanism of λunif, we can describe destructing of the data 
structures. For example, a function that returns the length of a list given as an 
argument is represented as follows. 
 

 
 
The following is a detailed explanation of the term ‘λunify’. 

─ This term gives a recursive definition of the list-length function, using the fixed-
point operator Ycbv. 

─ Before solving the unificand { l = cons(a1,l1) }, the variable l is assumed to be 
bound to a list. After the unification, the variables a1 and l1 are bound to the head 
and the tail of the list, respectively. 

─ The conditional expression (if l = nil then 0 else ( succ (len, l1 ) ) is evaluated 
under the environment obtained by evaluating the unificand. 

We give another example of a function which searches for an item in the list; if found, 
it returns the item's position; otherwise, it returns (the length of the list)+1. 

 

5 Concluding Remarks 

In this paper, we proposed a functional programming language with a unification 
mechanism. We incorporated the unification by using first-class environments.  We 
first gave the syntax of the language, and second, we gave its operational semantics in 
the style of Kahn's natural semantics. We finally introduced some related works and 
showed the future direction of our works. 



 Incorporating First-Order Unification into Functional Language 25 

 

Discussions. There are several studies in which the unification is embedded into 
programming languages. In the paradigm of functional programming, one such study 
is Qute by Sato and Sakurai[12]. In their language, the beta-reduction and the 
unification computation is tightly combined. The unification is processed as needed 
by the beta-reduction. The characteristic feature of Qute is parallel execution of the 
beta-reduction and the unification processing. However, handling of the variable 
scope is more complicated than that of λunify. 

One of the future research directions of λunify is parallel execution of beta-
reduction and unification processing, keeping the simple scoping feature of λunify.  
In logic programming languages such as Prolog[14], the unification is the most 
fundamental mechanism of handling data. However, the meaning of variables in the 
logic programming languages is different to the other kinds of programming 
language. On the other hand, we succeeded in introducing unification into λenv 
keeping the standard meaning of the variables. 

In this work, we focused on the first-order unification. The other kinds of 
unification such as higher-order unification[3], which enables us to unify the lambda 
terms. If we incorporate the higher-order unification into λunify, it enables us to 
describe programs which handle data with variable-bindings more easily. We would 
apply λunify to proof checking software such as the theorem prover Isabelle [11]. 
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