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Abstract. In this paper we consider the performance of incremental least mean 
square (ILMS) adaptive network when it is implemented in finite-precision 
arithmetic. We show that unlike the infinite-precision case, the steady-state 
curve, described in terms of mean square deviation (MSD) is not always a 
monotonic increasing function of step-size parameter. More precisely, when the 
quantization level is small, reducing the step-size may increase the steady-state 
MSD. 

Keywords: adaptive networks, distributed estimation, least mean-square 
(LMS), quantization. 

1 Introduction 

An adaptive network is a collection of nodes that interact with each other, and 
function as a single adaptive entity that is able to respond to data in real-time and also 
track variations in their statistical properties. [1]. Although adaptive networks were 
initially proposed in the literature to perform decentralized information processing 
and inference tasks, they are also well-suited to model complex and self-organized 
behavior encountered in biological systems, such as fish joining together in schools 
and birds flying in formation [2-4].     

Depending on the manner by which the nodes communicate with each other, they 
may be referred to as incremental algorithms [5-9] or diffusion algorithms [10-13]. 
Incremental strategies rely on the use of a cyclic path through the network. In general, 
determining a cyclic path that covers all nodes is an NP-hard problem. The given 
algorithms in [10–13] use different adaptive filter in their structure, such as LMS, 
recursive least-squares (RLS), and affine projection. In comparison, in adaptive 
diffusion implementations, information is processed locally at the nodes and then 
diffused in real-time across the network and no cyclic path is required. 

In the original incremental LMS (ILMS) adaptive network [5], it is assumed that 
the infinite-precision weights (local estimates) are exchanged among the nodes 
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through ideal links. More precisely, in [5] some theoretical relations which explain 
the steady-state performance of ILMS algorithm (in terms of mean-square deviation 
(MSD), excess mean-square error (EMSE), and mean-square error (MSE)) are 
derived. In [14, 15] we have studied the performance of ILMS estimation algorithm 
when it is implemented in finite-precision arithmetic. The importance of such a study 
arises from the fact that the performance of adaptive networks (like ILMS) can vary 
significantly when they are implemented in finite-precision arithmetic. 

In this paper, our objective is to go beyond these earlier works in [14, 15] to show 
that the steady-state behavior of quantized ILMS adaptive network is different form 
its unquantized version. More precisely, unlike the infinite-precision case, the MSD 
curve is not a monotonically increasing function of step-size parameter. We use the 
derived results in [14, 15] to explain the mentioned result.  

Throughout the paper, we adopt boldface letters for random quantities and normal 
font for nonrandom (deterministic) quantities. The *  symbol is used for both complex 
conjugations for scalars and Hermitian transpose for matrices.  

2 Incremental LMS Algorithm 

Consider a network composed of N  nodes which are used to estimate an unknown 
vector o Mw R∈  from measurements collected at N  nodes in a network. Each node 

k  has access to time-realizations { },( ),k k id i u of zero-mean spatial data { },k kd u  

where each kd  is a scalar measurement and each ku  is a 1 M×  row regression vector. 

In [2] the ILMS adaptive network has been proposed to estimate ow . The update 
equation in ILMS is given by  
 ( )*

, 1, , ( )k i k i k i ku e iψ ψ μ−= −  (1) 

Where , 1,( ) ( )k k k i k ie i d i u ψ −= −  and μ  is the step-size. In (1) the 1M × vector ,k iψ  

denotes the local estimate of ow  at node k  at time i . Due to incremental cooperation, 
the calculated estimates are sequentially circulated from node to node (see Fig. 1). 

 

Fig. 1. A schematic of ILMS adaptive network 
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3 Quantized Incremental LMS, (Q-ILMS) 

The ILMS algorithm can be implemented in finite-precision at every node k  as 
shown in Fig. 2. In the finite-precision case the update equation (1) changes to [7, 8] 
 *

, 1, , ,( )q q q
k i k i k i k k iu e i pψ ψ μ−= + −  (2) 

where q
ke  and ,

q
k iψ  are the quantized values of ke  and ,k iψ  respectively. Moreover, 

,k ip stands for the effect of quantization errors in evaluation of ,
q
k iψ . Its covariance 

matrix is given by [7]  
 * 2 2 2 2

, , ,{ } 2 {| ( ) | }q
p k k i k i r M r kR E p p I E e iσ μ σ= = +  (3) 

In (3) 2
rσ is the variance of quantization error which is given by  

 
2

2 1

12 2 r

r
r n

Lσ =
2

2 1

12 2 r

r
r n

L
s =  (4) 

where rn  and rL , denote the number of bits and the saturation level of 

quantization. 

 

Fig. 2. A block diagram representation of quantized implementation of ILMS algorithm at 
node k  

The steady-state performance of adaptive networks can be expressed in terms of 
MSD at every node k  which is defined as 

 
2

1,{ }o
k kE wη ψ − ∞= −  (5) 

  
As we have shown in [7], for Q-ILMS with Gaussian data, the MSD at every node 

k  can be approximated as  

 2 2 2 2 1
1 ,1 1 1 ,( )T T T T

k v N v N k Nb b cη μ σ λ μ σ λ −≈ + + + + Ω  (6) 
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where 2
,v kσ  variance of modified noise variable defined in [7]. The other symbols 

are kΛ  is a diagonal matrix with the eigenvalues of ,u kR , kΓ  is a diagonal matrix with 

the eigenvalues of ,p kR , diag{ }k kλ = Λ  (a 1M × vector), diag{ }k kb = Γ (a 

1M × vector), diag{ }Mc I= (a 1M × vector), and also 

 1 1 2 22( )N Nμ μ μΩ = Λ + Λ + Λ  (7) 

To show the non-monotonic dependence of the MSD with respect to the step-size 
in finite-precision case we assume that for all nodes we have ,u k MR Iλ= , kμ μ= ,  

2 2
,v k vσ σ=  and diag{ }k Mb Iγ= . Using these assumptions we have 

 
2 2( )

2
v

k

M μ σ γη
μ

+
=  (8) 

which clearly is not a monotonic increasing function of μ . We can also easily see 

that as the number of bits (i.e. rn ) increases, we have 2 0rσ →  and ( ) 0kb → . As a 

result, kη approaches the MSD of a ILMS adaptive networks which is a monotonic 

increasing function of μ .  

To explain this behavior we consider again the update equation (2). For small μ , 

the channel noise term say ,k ip  is dominant term in update equation, so as 0μ → , the 

steady state performance deteriorates. As μ  increases, the effect of channel noise 

term decreases and finally as μ  becomes larger the steady state performance 

deteriorates again like any adaptive algorithm. 

4 Simulation Results 

In this section we present the simulation results to clarify the discussions. To this aim, 
we consider a network with 15N =  nodes with independent Gaussian regressors 
where their eigenvalue spread is 1. We assume that unknown vector [1111]o Tw =  

relates to the ,{ ( ), }k k id i u  via ,( ) ( )o
k k i kd i u w v i= +  where ( )kv i  is white noise term 

with variance 2 1
, (0,10 )v kσ −∈ . To implement the Q-ILMS, we set 1rL = . The steady-

state curves are generated by running the network learning process for 2000 iterations. 
The MSD curve is obtained by averaging the last 200 samples. Each curve is obtained 
by averaging over 100 independent experiments. 

Fig. 3 shows the global MSD (which is defined as
1

1/
N

kk
N η

=∑ ) for different 

values of μ  and rn  (including sign bit). As it is clear from Fig. 3, there the steady-

state curve is not a monotonic increasing function of step-size. Moreover, for 
sufficiently large number of bits, the MSD curve becomes a monotonic increasing 
function of μ . 
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Fig. 3. The steady-state MSD (in dB) curve as a function of μ  and for different number of bits rn  

5 Conclusions 

In this paper, we considered the steady-state evaluation of the finite-precision DILMS 
algorithm. Using the results derived in [7] and [8] it was shown that unlike the 
infinite-precision case, in the quantized case the steady-state MSD curve is not always 
a monotonic increasing function of step-size parameter. Specifically, when the 
quantization level is small, reducing the step-size may increase the steady-state MSD. 
This behavior of adaptive networks has also been observed when the links between 
the nodes in the network are noisy (see [9, 10]). 
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