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Abstract. In this paper, we study the influence of noisy links on the 
effectiveness of cooperation in incremental LMS adaptive network (ILMS). The 
analysis reveals the important fact that under noisy communication, cooperation 
among nodes may not necessarily result in better performance. More precisely, 
we first define the concept of cooperation gain and compute it for the ILMS 
algorithm with ideal and noisy links. We show that the ILMS algorithm with 
ideal links outperforms the non-cooperative scheme for all values of step-size 
(cooperation gain is always bigger than 1). On the other hand, in the presence of 
noisy links, cooperation gain is not always bigger than 1 and based on the 
channel and data statistics, for some values of step-size, non-cooperative 
scheme outperforms the ILMS algorithm. We presented simulation results to 
clarify the discussions. 
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1 Introduction 

An adaptive network is a collection of spatially distributed nodes that interact with 
each other, and function as a single adaptive entity that is able to respond to data in 
real-time and also track variations in their statistical properties [1-3]. Based on the 
mode of cooperation between nodes, adaptive networks can be roughly classified into 
incremental [1-6], diffusion [6-11], and hierarchical [12], [13] algorithms. In 
incremental based adaptive networks, a Hamiltonian cycle is established through the 
nodes and each node cooperates only with one adjacent node to exploit the spatial 
dimension, whilst performing local computations in the time dimension [3]. This 
approach reduces communications among nodes and improves the network autonomy 
as compared to a centralized solution [1-3]. In the diffusion based adaptive networks, 
on the other hand, nodes communicate with all of their neighbors, and no cyclic path 
is required. The incremental adaptive networks in [1-6] assume ideal links between 
nodes. However, as we have shown in [14-18], the performance of incremental 
adaptive network changes considerably in the presence of noisy links. In fact, we 
show that  
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• noisy links lead to a larger residual MSD, as expected. 
• reducing the adaptation step size may actually increase the residual MSD. 

In this work, we present other interesting results about the performance of 
incremental adaptive networks with noisy links. To this aim, we first define the 
concept of cooperation gain for incremental adaptive networks. Then, we calculate 
the cooperation gain for incremental adaptive networks with ideal links and noisy 
links. We observe that, when links are ideal, incremental adaptive networks  always 
have a better steady-state performance than non-cooperative scheme, while in the 
presence of noisy links, depending on data and channel statistics, non-cooperative 
scheme may have better performance. We also present simulation results to support 
the derived expressions.  

Notation: Bold uppercase letters denote matrices, whereas bold lowercase letters 
stand for vectors.  Symbol * is used for both complex conjugation for scalars and 

Hermitian transpose for matrices. 
2 *x
Σ

= Σx x denotes weighted norm for a column 

vector x . MI  is M M×  identity matrix and 1N  is 1N ×  vector with unit entries. 

2 Incremental LMS Adaptive Network 

Let's denote by {1,..., }N=  a set of nodes that communicate according to a given 

network topology. At time i , each node k  has access to scalar measurement ( )kd i  

and 1 M×  regression vector ku  that are related via 

 ,( ) ( )o
k k i kd i v i= +u w  (1) 

where 1M ×  vector o MR∈w  is an unknown parameter and ( )kv i  is the observation 

noise term with variance 2
,v kσ . The objective of the network is to estimate ow from 

measurements collected at N  nodes. The collected data at all nodes are 

 [ ] [ ]1 2 1 2( ), ( 1)N N

T T
N M d d d N= × = ×U u u u d  (2) 

It must be noted that ow  is the solution of the following optimization problem 

 
2

arg min ( ) where ( ) { }J J E= −w w w d Uw  (3) 

The optimal solution of (3), is given by normal equations [1] 
 1o

u du
−=w R R  (4) 

where 

 { } { }* *, anddu uE E= =R U d R U U  (5) 

In order to use (4), each node must have access to the global statistical information 

{ },u duR R  which in many applications is not available. To address this issue, the 

incremental LMS adaptive network is proposed in [3]. The update equation in the 
ILMS algorithm is given by  
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 ( ) ( ) * ( )
, , , ,ˆ ˆ ˆ( ( ) )w w wi i i

k r k k k i k k i r kd iμ= + −u u  (6) 

where ( )ˆ i
kw denotes the local estimate of ow  at node k  at time i , kμ  is the step 

size parameter and ( )
,ˆ i

r kw  is the received local estimate which is given by 

 
( )

1( )
, ( )

1 ,

ˆ ideal links
ˆ

ˆ noisy links

i
ki

r k i
k k i

−

−

⎧⎪= ⎨ +⎪⎩

w
w

w q
 (7) 

where 1
,

M
k i R ×∈q , is the (time-realization) of channel the noise term between 

sensor k  and 1k −  which is assumed to have zero mean and covariance matrix 
*{ }k k kE=Q q q . Replacing (7) in (6), the update equation of ILMS algorithm with the 

noisy links changes to 
 ( ) ( ) * ( )

1 , , , 1 ,ˆ ˆ ˆ( ( ) ( ))i i i
k k k i k k i k k i k k id iμ− −= + + − +w w q u u w q  (8) 

As we have shown in [14, 15], noisy links lead to a larger residual MSE, and also, 
reducing the adaptation step size may actually increase the residual MSE. 

2.1 Steady-State Performance 

A good measure of the adaptive network performance is the MSD which for each 
node k  is defined as follows 

 
2( )

1{ }k kEη ∞
−=

I
w  (9) 

where 
 ( ) ( )

1 1ˆi o i
k k− −= −w w w  (10) 

In [14, 15], the mean-square performance of ILMS adaptive network with noisy 
links has been investigated using the space-time energy conservation argument that 
was initially proposed in [2]. The analysis relies on the following assumptions data 
(A.1) The regression data ,k iu  are temporally and spatially independent and 

identically distributed (i.i.d.) circular white Gaussian random variables with zero 
mean and diagonal covariance matrix MλI . 

(A.2) ,k iu and ( )kv j  are independent of each other for all i  and j . 

In [14, 15], a complex closed-form expression for MSD has been derived. 
However, if we consider the following assumption 
 2

, ,, ,k u k k c kμ μ λ σ= = =R I Q I  

and also assuming small μ , we can approximate kη  as 

 ( )inc,noisy 2 2 2
, ,

1

(1 2 )
2

N

k v k c k
k

M

N
η μ σ λ σ μλ

μλ =

= + −∑  (11) 

Obviously, the steady-state MSD for an ILMS adaptive network with ideal links 
can be extracted from (11) for 2

, 0c kσ =  as 

 inc,ideal 2
,

12

N

k v k
k

M

N

μη σ
=

= ∑  (12) 
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Note that (12) reveals an equalization effect on the MSD throughout the network, 
i.e. for ,k ∈ , we have kη η= ; thus, the average MSD is given as 

 ( )inc,noisy inc,noisy 2 2 2
, ,

1 1

1
(1 2 )

2

N N

k v k c k
k k

M

N N
η η μ σ λ σ μλ

μλ= =

= = + −∑ ∑  (13) 

Similarly, the average MSD over all nodes for the ILMS with ideal links becomes 

 inc,ideal inc,ideal 2
,

1 1

1

2

N N

k v k
k k

M

N N

μη η σ
= =

= =∑ ∑  (14) 

2.2 Non-cooperation Scheme 

It is noticeable that each node in the network can individually estimate ow using its 

own data { , }k kd u  and its previous time local estimate ( 1)
nc,ˆ i

k
−w  via 

 ( ) ( 1) * ( 1)
nc, nc, , , nc,ˆ ˆ ˆ( ( ) )i i i

k k k k i k k i kd iμ− −= + −w w u u w  (15) 

The steady-state MSD for non-cooperative scheme is given by [19] 

 
2
,nc

2
v k

k

M μσ
η =  (16) 

where in this case (non-cooperative scheme), the steady-state MSD is given by 

 
2nc ( )lim }{ i

k k Ii
Eη

→∞
= w  (17) 

The average MSD over all nodes of network is given as 

 
2
,nc 1

2

N

v kk
M

N

μ σ
η == ∑

 (18) 

3 Cooperation Gain 

In this section we compare the steady-state MSD performance of the ILMS algorithm 
(6) with a non-cooperative scheme (15). It must be noted that to compare the MSD of  
non-cooperative scheme with incremental LMS algorithm, we need to replace μ  with 

Nμ  in (18) . This is because the incremental algorithm uses N  iterations for every 

measurement time. So we have 

 

2
,

1nc

2

N

v k
k

M μ σ
η =

⎛ ⎞
⎜ ⎟
⎝ ⎠=
∑

 (19) 

Now, to define the cooperation gain for incremental LMS algorithm, consider a 
network composed of 2N ≥  nodes with a space–time data { , }d U  satisfying the 

model (1) and the assumptions (A1)-(A3). Let's denote by ncη , inc,idealη  and inc,noisyη , 

the average steady-state MSD provided by a non-cooperative scheme, the ILMS 
algorithm with ideal links and the ILMS algorithm with noisy links respectively. 
Thus, we can define the cooperation gain for ILMS algorithm with ideal links as 
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nc

inc,ideal
inc,ideal

η
η

=  (20) 

Replacing (19) and (14) in (20) we obtain 
 inc,ideal N=  (21) 

We can conclude from (21) that for all values of μ , the ILMS adaptive network 

with ideal links has better MSD performance than a non-cooperative scheme, or in 
formal terms 
 inc,ideal 1>  (22) 

In addition, the cooperation gain is proportional to the number of nodes N  and 

increasing the number of nodes increases the cooperation gain inc,ideal . Similarly, the 
cooperation gain for the ILMS algorithm with noisy links can be defined as 

 
nc

inc,noisy
inc,noisy

η
η

=  (23) 

Replacing (19) and (13) in (23) we obtain 

 

2 2
,

inc,noisy 1

2 2 2
, ,

1 1

(1 2 )

N

v k
k

N N

v k c k
k k

Nμ λ σ

μ λ σ μλ σ

=

= =

=
+ −

∑

∑ ∑
  (24) 

We can conclude from (24) that in the presence of noisy links, the cooperation gain 
is not always bigger than 1. We have 
 inc,noisy0 N< <  (25) 

The above equation indicates that for some values of data and channel statistics we 
may have inc,noisy 1< .  In fact, the required condition for the ILMS algorithm to 
outperform the non-cooperative scheme is 
 inc,noisy 1>  (26) 

or equivalently 

 

2 2
,

inc,noisy 1

2 2 2
, ,

1 1

1
(1 2 )

N

v k
k

N N

v k c k
k k

Nμ λ σ

μ λ σ μλ σ

=

= =

= >
+ −

∑

∑ ∑
  (27) 

The above equation is a quadratic equation in μ  which can be rewritten as 

 2 0a b cμ μ+ + >  (28) 

where 

 2 2 2
, , ,

1 1 1

( 1) , 2 ,
N N N

v k v k c k
k k k

a N b cλ σ λ σ σ
= = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ ∑ ∑  (29) 

Now, two different cases are possible: 

Case I: 2 4 0b acΔ = − < : Since 0a > , in this case, for μ∀ ∈  we have inc,noisy 1>  

so cooperation yields better steady-state performance. 
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Case II: 2 4 0b acΔ = − > : Let 1x  and 2x  be the roots of equation 2 0a b cμ μ+ + = . 

Since 1 2 0
c

x x
a

= < , roots are of opposite sign. If we assume 1 0x <  and 2 0x > , the 

inequality (26) holds when 
 2 sup{ }x μ< <   (30) 

Therefore, the above discussion reveals that under noisy communication, 
cooperation among nodes may not necessarily result in better performance. 

4 Simulation Results 

We consider a distributed network with 20N =  nodes, and choose 4M = , 

1 /o
M M=w , 2 1

, 10v kσ −= , and 2 4
, 10c kσ −= . Moreover, we assume that the regressors 

data arise from independent Gaussian, where ,u k =R I . Fig. 2 shows ncη , inc,idealη  and 
inc,noisyη  as a function of step size parameter μ . As we can see, both ncη  and inc,idealη  

are monotonically increasing function of μ  and inc,ideal ncη η>  for all μ . Moreover, 

for all μ , the difference between ncη  and inc,idealη  is constant, so that the cooperation 

gain is constant inc,ideal 20N= =  (see Fig. 1).  

 

 

Fig. 1. ncη , inc,idealη and inc,noisyη  as a function of step size parameter μ  

On the other hand, in noisy links case, the steady-state MSD ( inc,noisyη ) is not a 

monotonically increasing function of step size (see from Fig. 2). Specifically, for 
some values of μ , the non-cooperative scheme provides better 

performance inc,noisy 1< ; while for some values of μ  the ILMS algorithm has better 

performance ( inc,noisy 1> ). Fig. 2 also shows inc,noisyh  in terms of μ . 
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Fig. 2. inc,idealη versus μ  (left) and inc,noisyη  versus μ  (right) 

5 Conclusion 

In this paper, we considered the performance of incremental LMS adaptive networks 
in the presence of noisy links. We first defined the concept of cooperation gain for 
incremental adaptive networks. Then we showed that when the communication links 
are ideal, the ILMS algorithm has better performance than the non-cooperative 
scheme for every step size value, or equivalently cooperation gain is always bigger 
than 1. On the other hand, in the presence of noisy links, cooperation gain is not a 
constant function of μ  and depending on data and channel statistics, non-cooperative 

scheme may have better performance. Finally we presented simulation results to 
support the derived expressions. 
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