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Abstract. Gene expression is a complex process controlled by underling 
biological interactions. One model that tries to explain these relationships at a 
genetic level is the gene regulatory networks. Uncovering regulatory networks 
are extremely important for live sciences to understand how genes compete and 
are associated. Despite measurement methods have been successfully developed 
within the microarray technique, the analysis of genomic data is difficult due to 
the vast amount of information considered. We address here the problem of 
modeling the gene regulatory networks by a novel linear model and we propose 
a Bayesian approach to learn this structure from microarray time series. 
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1 Introduction 

Microarray experiments have supposed a breakthrough into genomic research. With 
this technique, the expression of thousand of genes may be quantified simultaneously. 
Genomic studies demand help from computer science community to process and 
analyze such a vast amount of information. One topic of special interest is the study 
of genetic interactions. Uncovering that kind of relationships is extremely important 
to understand how genes compete and are associated to produce complex responses 
and co-operative effects, information which can be used in many fields such as 
disease treatment and new drug design. 

One model that tries to explain genetic interactions is the gene regulatory network 
(GRN). In a GRN it is considered that the expression of a gene, known as child, 
depends on others presented in the network, known as parents. We address here the 
problem of modeling and inferring the GRN from microarray time series. 
Specifically, this paper revises the linear model presented in [1] and proposes a new 
one that fits better microarray data. Additionally, a variational Bayesian method based 
on new model is proposed. 
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2 Gene Regulatory Networks Modeling 

Gene regulatory networks are characterized by two important aspects [2]. First is the 
connectivity, also referred as network topology, which represents the linkage pattern 
of the network. This logical structure have been modeled in [1] by a set of binary 
latent variables, denoted by  
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iii Gxx …x
 

 (1) 

where 1=)( jxi  specifies that the j -th gene is a parent of the i-th gene or 0=)( jxi  

otherwise. Second, genetic networks also specifies regulatory effects between 
elements, i.e. strength and type of interaction. This scheme has been described in [1] 
by an additional set of weights, denoted by 

  [ ] 1)(,(1),= ×Τ ℜ∈ G
iii Gωω …ω   (2) 

with 0>)( jiω  for gene activation and 0<)( jiω  for gene inhibition. 

3 Linear Models for Microarray Time Series Fitting 

Consider a microarray data set 1)( +×ℜ∈ NGY  with G  genes and 1+N  time samples, 
such as [ ] )(=, nyiniY  the observed expression level: relative mRNA abundance of 

the i -th gene at the n -th time sample. Assuming a Markov process, a first order 
autoregressive (AR1) model have been proposed in [1]. This approach expressed 
microarray data as a linear combination of the observations and the variables 
describing the gene regulatory network, plus independent and identically distributed 
(IID) Gaussian white noise, as  
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with  

 ( ) ( ) .,0,)(=)( 2 nneNnep iii ∀σ  (4) 

However, this model establishes relationships between the observed expression levels, 
)(nyi , which are supposed to be noisy. It would be much more realistic to establish 

these relationships between the real expression level, denoted by 
)()(=)( nenynz iii − . Therefore, we propose a novel approach where genetic 

relationships are established between the real expression levels instead of its noisy 
observation, leadding to a first order autoregressive moving-average (AR1MA1) 
model as  
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4 Variational Bayesian Expectation-Maximization Framework 

Consider iy  the set of observations, ix  the set of latent or hidden variables and iθ  

the set of unknowns parameters for the i -th variable. The posterior distribution could 
be derived from the priors and the likelihood as  
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with ( )ip y  the marginal likelihood obtained by marginalization as  
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Finding an analytical solution for the marginal likelihood and posterior 
distributions usually is a difficult task. An alternative to compute the posterior 
distribution by marginalization have been presented by Beal et al. in [3]. Instead of 
integrating out the unknowns, variational Bayes computes a lower bound of the 
logarithm of the marginal likelihood. In virtue of Jensen’s inequality, lower bound 
can be expressed by a functional depending on a free distribution as,  
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Optimization of (8) is a problem that may be solved by variational calculus. 
Alternatively, based on a mathematical convenience, variational Bayesian choose a 
free distribution that factorizes into conjugate families as  
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with { }
ii θx ξξξ ,=  hyperparameters that characterizes the conjugate families. 

For conjugate models, the computation of the posterior becomes into a set of 
posterior hyperparameters learning rules. Therefore, variational Bayesian 
Expectation-Maximization (VBEM) methods consist of the following two steps, in 
which one of the free distributions is optimized whilst the other one is fixed as  
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Subsequetnly, the lower bound is updated and VBEM algorithm iterates until the 
difference after two consecutive steps satisfies a convergence criterion as  
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5 VBEM Method Applied to the AR1MA1 Model 

Given a generative model as the AR1MA1 one in (5), we are going to consider the 
binary variables describing the topology of the network ix  as latent variables whilst 

the weights and noise variance { }2,= iii σωθ   are interpreted as model parameters. On 

the other hand, data will be a microarray time series for the i -th gene as 

[ ]Τ)(,(1),= Nyy iii …y .Taking into account (4) and (5), the likelihood function may 

be expressed as  
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with 
iω

D  a diagonal matrix with vector iω , ΤTYR = , [ ] 1)(= +×ℜ∈ NGN 01T  and  
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According to (9), probability distributions must be chosen from families that 
factorizes into hidden variables and parameters. We are going to choose priors from 
the same families as in method proposed in [1] as  

 ( ) ( )
iiii Nq xx Σμxx ,=  (15) 

 ( ) ( ) ( )iiiiiiiii IGNq βασσσ ,,=, 222
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a Gaussian and Normal scaled Inverse Gaussian distribution with { }
iii xxx Σμξ ,=  

and { }iiiii
βα ,,,= ωωω Σμξ  the hyperparameters to be learned from data. 

Likelihood function in (13) does not satisfies the requirements for the conjugate 
model. Specifically, dependence of variance scale (14) on the unknowns does not 
allows to define conjugate priors. As a suboptimal solution, we propose a fixed point 
approach where scale effect of iγ  is approximated according to the most probable of 

ix  and iω , given by its means as  
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6 Results and Discussion with Synthetic Data 

We have applied the proposed VBEM algorithm to synthetic data sets. Specifically two 
VBEM methods were considered: )(i  based on the AR1 model proposed in [1], refereed 

as AR1-VBEM method and )(ii  based on the new AR1MA1 proposed model, refereed 

as AR1MA1-VBEM method. To compare the performance, various sets have been 
generated with 50=G  genes, 50=N  time samples and different levels of noise with a 
signal-to-noise ratio SNR (1,80)∈ . Each data set have been generated by simulation 

using the priors and likelihood as in section 5 with subjective priors. According to 
biological knowledge, sugessting that in a real regulatory network each gene has a 
limited number of parents, we have set up the netkork topology for having 15 parents 
(about the 30% of the total number of genes). The inference procedure has been repeated 
one hundred times for having a satatistically significant result.  

In Figure 1 we have plotted the performance of each method as an error percentage 
versus the noise level. The most undesireable performance would correspond to a 
random assignment with constant error rate around the 50% . We have considered as 
a satisfactory result an error rate lower than percentile 5% . It can be noticed that 
AR1MA1-VBEM method outperforms the AR1-VBEM one, producing satisfactory 
error rates at lower levels of noise. 

 

Fig. 1. Performance of AR1-VBEM method (stroke with box tokens) and the AR1MA1-VBEM 
one (stroke with circle tokens). AR1MA1-VBEM method outperforms the AR1-VBEM one 
with an error rate under percentile 5% for SNR > 20. 

In binary decission, however, another kind of statistics are more suitable for 
analyzing these results [4]. We are going to consider the receiver operating 
characteristic (ROC) curve that represents the hits or true postive rate (TPR) versus 
the false postive or error rate (FPR). Random performance would correspond to a line 
through the origin with unitary slope, referred as the no-discrimination (ND) line. The 
area under the ROC curve (AUROCc) summarizes this analysis, with values between 

5.0  for the ND line and a maximum value equal to 0.1  corresponding to the best 
performance. 
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In Figure 2 we have plotted the AUROCc for both VBEM methods at different 
levels of noise. Results show that AR1MA1-VBEM method outperforms the AR1-
VBEM one, with values closer to one at for higher SNR. 

 

Fig. 2. AUROCc versus the level of noise for the AR1-VBEM method (stroke with box tokens) 
and the AR1MA1-VBEM one (stroke with circle tokens). AR1MA1-VBEM outperforms AR1-
VBEM with higher AUROCc at any level of noise and values closer to one for higher SNR. 
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