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Abstract. Ubiquitous location-aware sensing devices have facilitated collection
of large volumes of mobility data streams from moving entities such as people
and animals, among others. Extraction of various types of periodic behavioral
patterns hidden in such large volume of mobility data helps in understanding the
dynamics of activities, interactions, and life style of these moving entities.
The ever-increasing growth in the volume and dimensionality of such Big Data
on the one hand, and the resource constraints of the sensing devices on the other
hand, have made not only high pattern recognition accuracy but also low com-
plexity, low resource consumption, and real-timeness important requirements for
recognition of patterns from mobility data. In this paper, we propose a method for
extracting periodic behavioral patterns from streaming mobility data which ful-
fills all these requirements. Our experimental results on both synthetic and real
data sets confirm superiority of our method compared with existing techniques.

1 Introduction

With ever-increasing emergence of ubiquitous location-aware sensing technologies, col-
lecting huge volumes of mobility data streams from moving entities has nowadays become
much easier than before. Mining and analyzing such large mobility data can uncover
information about behaviors, habits, life style of moving entities, and their interaction [1].
Periodicity is an important essence of the activities of humans and animals. Animal’s yearly
migration and weekly work pattern of humans are examples of periodic behavioral pat-
terns. Knowledge of such periodicity is required in various domains. For example, ecol-
ogists are interested to know the periodic migration pattern of animals and how human
activities in vicinity of their living terrain cause abnormality in this behavior [2, 3].
In humanitarian studies, it is interesting to identify interruptions in periodic routines by
major life events or daily hassles, as this identification helps in understanding stress-
induced changes in daily behavior of people [4]. Identification of such abnormalities in
human behavior can be useful in designing solutions which alleviate the effect of such
stresses (as used in various healthcare based participatory sensing systems [5]).

Apart from uncertainties associated with mobility data (such as noise and missing
samples) which make mining periodic patterns challenging, online extraction of pat-
terns from streaming mobility data is difficult due to availability of limited processing
and memory resources. The problem of identification of periodic behavioral patterns
has been studied previously. What distinguishes this paper from the existing research,
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however, is its focus on identification of periodic patterns from streaming mobility data
through a light, accurate, and real-time technique. Our automatic pattern recognition
method requires limited storage and processing capability and is able to detect periodic
patterns upon arrival of every new mobility measurement. To this end and in the
context of identification of periodic patterns from streaming mobility data, our con-
tributions in this paper are:

• accurate discovery of periods of repetitive patterns from streaming mobility data
• real-time extraction of periodic patterns with bounded memory requirement
• performance evaluation using both synthetic and real data sets.

The rest of this paper is organized as follows. Related work is presented in Sect. 2.
In Sect. 3, we will define the problem of finding periodic patterns from streaming
mobility data. Our methodology is described in detail in Sect. 4. Sections 5 and 6
present performance evaluation, and conclusions, respectively.

2 Related Work

Existing solutions for pattern mining from mobility data can be divided into solutions
addressing either frequent pattern mining or periodic pattern mining. The former
techniques focus on the “number of times” a pattern is repeated, while the latter focus
on the “temporal trend by which” a pattern repeats itself.

Frequent Pattern Mining: Association rule mining [6] has been popularly used for
extracting frequent trajectory patterns [7–11]. The general approach taken by all these
techniques is to use a support-based mechanism to find the longest frequent trajectory
pattern. Support-based mechanisms focus on the number of occurrences of patterns.
The main drawback of exiting frequent pattern mining techniques is that the longest
frequent pattern cannot completely and accurately describe the normal behavior.
Specifically, these techniques fail to detect behaviors that do not occur frequently but
they happen more than a prior expectation at a certain period.

Periodic Pattern Mining: In the domain of time series analysis there are a number
of papers considering different questions regarding periodicity [12], such as asynchro-
nous periodic patterns [13], and partial periodic patterns [14] of time series. Recently,
mining periodic patterns from mobility data has also received attention [15–17]. The
authors of [15] proposed an automatic periodicity detection mechanism to find the
periodic behaviors. They further extended their work for extracting periodicity from
incomplete observations in [17]. Similar to [17] we are interested in detection of periodic
patterns from incomplete data. However, there are two main differences between the two
techniques. Firstly, detection of periodic behavior in [17] is based on reference spots.
These spots are places where the moving object spends a considerable amount of time.
Therefore, it is needed that the regions of interest are extracted beforehand. This requires
a preprocessing phase, which is not needed by our technique, as we work with raw GPS
measurements. Secondly, method of [17] is not designed for streaming data and con-
sumes considerable amount of memory. Our method, on the other hand, has low resource
consumption and complexity which makes it applicable in streaming settings.
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3 Problem Definition

In this section, we clearly define the problem of finding periodic patterns from
streaming mobility data. We first start by providing some definitions:

Definition 1: A trajectory L1; L2; . . . is composed of a sequence of points denoted by
Li ¼ xi; yi; tið Þ where xi; yið Þ represents a spatial coordinate and ti is a time-stamp.

Definition 2: A period of length T is a time frame composed of T equally-sized
segments denoted by segT1::T .

Definition 3: A spatial neighborhood snðxi;yiÞ is a set of all points that fall within the
radius r of ðxi; yiÞ:
Definition 4: A spatial neighborhood is visited periodically in a period T, if the
probability of being in this neighborhood in a segTt of period T is more than a threshold
in all or a fraction of observation time.

Problem: Having memory of size 6Tmax where Tmax is our guess about the maximum
period followed in data, we are interested in the latest periodic pattern followed in data
stream L1. . .Li i[ 6Tmaxð Þ in form of \T ; SNT

1 ; . . .; SN
T
T

� �
[ where T is a period and

SNT
t is either empty or it is a spatial neighborhood snðxj;yjÞ which is expected to be

visited periodically in segTt .

4 Methodology

Our method to find periodic patterns from streaming mobility data is composed of three
stages (shown in Fig. 1): (i) Measuring the self-similarity of the streaming data in
different lags (described in Sect. 4.1), (ii) discovery of the periods of repetition from the
self-similarity graph (described in Sect. 4.2), and (iii) extracting periodic patterns
(described in Sect. 4.3).

4.1 Measuring Self-Similarity of the Mobility Data in Different Lags

Behavioral patterns can have different periodicities (e.g. daily, weekly, monthly, and
yearly). Therefore, it is important to be able to identify the period of repetition of visits
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Fig. 1. Our framework for finding periodic patterns from streaming mobility data.
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to a certain spatial neighborhood. One of the most commonly used methods1 for
identifying these periods is the circular Auto-Correlation Function (ACF) [18].
ACF measures the similarity of a time-series to itself in different lags. ACF of a time
series ts, of size N over lags s 2 1. . .Nf g is computed as follows:

ACFN sð Þ ¼
XN

i¼1
ts ið Þ:tsðiþ sÞ ð1Þ

Due to difficulties such as cloud cover, or device malfunction, GPS data is often
sparsely measured and mixed with noise while ACF requires the data to be uniformly
sampled.

In order to measure the self-similarity from GPS measurements we propose the
following optimization to the original ACF: Assuming that we denote missing samples
with invalid and the rest with valid, we calculate the Uncertain circular Auto-Correlation
Function (UACF) for a set of the mobility data L1. . .LNð Þ using Eq. 2:

UACFN sð Þ ¼ 1
vs1::N

XN

i¼1
Wi;iþs ð2Þ

Where Wi;iþs is equal to 1 when the Euclidean distance between a valid pair Li and
Liþs distðLi; LiþsÞð Þ is less than a threshold h, and vs1::N is the number of pairs (i; iþ s) in
which both Li; Liþs are valid. Computing UACF in this way will help us to measure the
self-similarity of GPS data only in an offline fashion when the entire mobility data is
available. In the next section, we optimize UACF (Eq. 2) to lower down its memory
requirements and enable it to measure self-similarity over different lags upon arrival of
each mobility data measurement.

4.1.1 Measuring Self-Similarity in Streaming Setting (Online)
We believe that finding periodic behavioral patterns in real-time helps in reducing the
data transmission and storage (as not the raw data but only the patterns or whether the
entity conforms to the pattern can be transmitted or stored). Computing UACF requires
the entire data to be kept in memory. Therefore, its memory requirement is O Nð Þ (N is
the number of measurements). Ubiquitous location-aware sensing devices have limited
resources (both memory and power). Therefore, storing the entire data set (especially in
case of high frequency sampled data set) for a long period of time or transmission of
this data set to a central server for further analysis is neither practical nor possible. This
motivates us to lower down the memory requirements. To do so, we need to calculate
the UACF in such a way that upon arrival of each new GPS measurement LN , we can
still measure self-similarity over lags fsjN mod s ¼ 0g. We claim that it is possible to
reduce the memory requirement from O Nð Þ to OðTmaxÞ, by having an estimation of the
maximum period being followed in data Tmax � Nð Þ. (Since N mod s ¼ 0 in what
follows instead of N we use ns).

1 Fourier transfrom is also used for period detection. However, this method has a low performance in
identifying large periods [15].
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Theorem. Suppose that L1L2. . . represent the stream of mobility data. We can compute
the fUACFns sð Þjs\Tmaxg for each fn[ 3g of this stream by having OðTmaxÞ memory.

Proof. In order to prove the above theorem we first prove that we can re-compute Eq. 2
through an alternative way. Consequently, we prove that in its new form, the memory
requirement of computing UACF is bounded by 6*Tmax. Therefore, we will first prove
through mathematical induction that for each ðn[ 3Þ;UACFns sð Þ can be computed as
follows:

UACFnsðsÞ ¼ 1
vs1::ns

vs1::ðn�1Þs UACFðn�1ÞsðsÞ
� ��

�
Xs

i¼1
Wðn�2Þsþi;i þ

Xs

i¼1
Wðn�2Þsþi;ðn�1Þsþi þ

Xs

i¼1
Wðn�1Þsþi;i

� ð3Þ

Base Step. The base step is to check the validity of the above equation for n ¼ 4. For
n ¼ 4 computing UACF4s sð Þ by Eq. 2 results in Eq. 4 and computing this value by
Eq. 3 will result in Eq. 5 (please note that due to circular shift operationPs

i¼1 w2sþi;3sþi ¼
Ps

i¼1 w2sþi;i

� �
:

UACF4s sð Þ ¼ 1
vs1::4s

X4s

i¼1
Wi;iþs

¼ 1
vs1::4s

ð
Xs

i¼1
Wi;sþi þ

Xs

i¼1
Wsþi;2sþi

þ
Xs

i¼1
W2sþi;3sþi þ

Xs

i¼1
W3sþi;iÞ

ð4Þ

UACF4s sð Þ ¼ 1
vs1::4s

ðvs1::3s:ðUACF3s sð ÞÞ �
Xs

i¼1
Wi;2sþi

þ
Xs

i¼1
W2sþi;3sþi þ

Xs

i¼1
W3sþi;iÞ

ð5Þ

We replace UACF3s sð Þ in Eq. 5 to see if it is equal to Eq. 4. Using Eq. 2 we will have:

UACF3s sð Þ ¼ 1
vs1::3s

X3s

i¼1
Wi;iþs

¼ 1
vs1::3s

ð
Xs

i¼1
Wi;sþi þ

Xs

i¼1
Wsþi;2sþi þ

Xs

i¼1
W2sþi;iÞ

ð6Þ

By replacing UACF3s sð Þ in Eq. 5 with Eq. 6 we get Eq. 4 as:

UACF4s sð Þ ¼ 1
vs1::4s

ðvs1::3s:ð
1

vs1::3s
Þð
Xs

i¼1
Wi;sþi þ

Xs

i¼1
Wsþi;2sþi þ

Xs

i¼1
W2sþi;iÞÞ

�
Xs

i¼1
W2sþi;i þ

Xs

i¼1
W2sþi;3sþi þ

Xs

i¼1
W3sþi;iÞ

¼ 1
vs1::4s

ð
Xs

i¼1
Wi;sþi þ

Xs

i¼1
Wsþi;2sþi

þ
Xs

i¼1
W2sþi;3sþi þ

Xs

i¼1
W3sþi;iÞ

ð7Þ
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Induction Step. Let fk 2 Njk[ 3g be given and assume Eq. 3 is true for n ¼ k. Then
we can prove that the Eq. 3 is valid for n ¼ k þ 1 as below:

Now we prove that we can calculate Eq. 3 with bounded memory. In this equation,Ps
i¼1 W n�1ð Þsþi;i is calculated from L1...s and Lðn�1Þsþ1...ns �

Ps
i¼1 W n�2ð Þsþi; n�1ð Þsþi is

calculated from L n�2ð Þsþ1...ns. UACF n�1ð Þs sð Þ and
Ps

i¼1 W n�2ð Þsþi;i

� �
are single values

computed in the previous round. It is straightforward with induction to prove that we
can also compute vs1...ns from vs1... n�1ð Þs through ðvs1...ns ¼ vs1... n�1ð Þs � vsn�2ð Þs...s þ
vsn�2ð Þs...nsÞ where vsn�2ð Þs...s; v

s
n�2ð Þs...ns are computed from L1...s and L n�1ð Þsþ1...ns (The

proof is omitted due to lack of space). We know that s\Tmaxð Þ so L1...sL1...Tmax
ð Þ and

Lðn�2Þsþ1...ns� 2 L ns�2Tmaxþ1ð Þ...ns
� �

. Therefore, if we have L1. . .Tmax; L ns�2Tmaxþ1ð Þ...ns
and fvs1...ns;UACFðn�1Þs sð Þ;Ps

i¼1 Wi;ðn�2Þsþijs\Tmaxg in memory we can compute
UACFN¼ns sð Þ for any s. Thereby, instead of keeping N measurements in memory we
only need to keep 6TmaxðTmax � NÞ values and the rest of data can be removed. As
stated before, by having an estimation of Tmax, the correct periods can be extracted. In
order to have the highest accuracy, choosing Tmax can be performed considering the
maximum memory available and changing the sampling rate.

4.2 Discovery of Periods of Repetition

If there is a single period of repetition in a time-series, the self-similarity graph (with
both ACF and UACF) will show a peak in that period and all of its integer multiples.
For instance, if there is a pattern repeated with period of 24 then the peaks will appear
at 24, 48, 72, and so on. In order to extract periods of repetition from the self-similarity
graph, normally the first highest peak is chosen. Since we cannot ignore the fact that
there may exist multiple periodic patterns in mobility data, it is advantageous to be able
to extract all periodic patterns and not only the one with the first highest peak. To
clarify the case, in which multiple periodic patterns exist, let us consider the following
example. Consider Bob, a student, who goes to school every weekday during the study
year and stops going to school during summer. From one perspective, this behavior is
periodic over a year (9 months going to school and 3 months holiday). From another
view, we can also observe some other periods of repetition in this behavior (24 h,
7 days) as Bob goes to school every weekday and stops going to school on weekends.
If we build a binary presence sequence for this activity of Bob for four years by
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placing 1 at each time stamp when Bob is present at school and 0 at other times, the
self-similarity graph by computing ACF on this sequence will look like Fig. 2(a, b).

As seen in Fig. 2(a, b), in this self-similarity graph there are multiple valleys and
hills, which are hierarchically ordered. The peaks with the highest ACF result are the
ones which belong to the multiples of longer periods (in this example 365 days) and the
lower hills belong to multiples of shorter periods (24 and 168). We can see intuitively
in Fig. 2(c) that if we iteratively get peaks of self-similarity graph we can find such
periods by choosing the first peak in each iteration. This will enable us to define periods
of repetition as:

Definition 5: Time lags T1. . .Tn are the periods of repetition in a data stream if (i) the
self-similarity graph has a local maxima in lags T1. . .Tn and (ii) Ti is the first peak
among peaks of level i−1 which is repeated in integer multiplies ð2Ti;3Ti;...:Þ.

Our procedure of extracting the periods of repetition is presented in Algorithm 1.

4.3 Extracting Periodic Patterns in Streaming Setting

Successful discovery and extraction of periods of repetition only tells us that some
spatial neighborhoods are visited periodically. This, however, does not indicate which
spatial neighborhoods and when (in which segment of the period) they have been
visited. Considering that the random existence of a moving entity in a spatial neigh-
borhood snðxj;yjÞ at seg

T
t of a discovered period T follows a Bernouli distribution (being

in snðxj;yjÞ 1ð Þ; not being in snðxj;yjÞ 0ð Þ), the probability that this entity appears in snðxj;yjÞ
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at segTt randomly is 1/2. If this probability is more than 1/2, it shows that the moving
entity has not appeared in that snðxj;yjÞ randomly and its visit conforms to a periodic
pattern. Therefore, in order to find the periodic patterns we need to find spatial neigh-
borhoods which have been visited with a probability more than½ in each segment of the
discovered period of repetition. Algorithm 2 summarizes how we can extract both
temporary and permanently periodic behaviors from streaming data. The algorithm
proceeds as follows. Firstly, we use UACF to extract the periods. Next, for each dis-
covered period of repetition Ti, we update the entries of a list of size Ti (referred to as
PLTi ;PLTi ¼ PTi

1 ; V
Ti
1 ; SNTi

1

� �
; . . .; PTi

Ti ; V
Ti
Ti ; SN

Ti
Ti

� �� �
). For each spatial neighborhood

SNTi
i , P

Ti
i denotes the number of presences in SNTi

i and VTi
i represents the number of

valid observations VTi
i in segment segTii . In each timestamp entities of PLTi lists get

updated. Each measurement fLN jN mod Ti ¼ tg will be compared with the value of
SNTi

t of PLTi list. In case the measurement lies within 2r from SNTi
t , the value of SNTi

t

will be updated with the average of the previous SNTi
t values and the new value LN . The

values of PTi
t and VTi

t will be also updated correspondingly. Finally, the pattern com-
posed of the value of spatial neighborhoods with a probability over (1/2) will be returned
as periodic pattern and those SNTi

t with a probability less than (1/2) will be removed.

5 Performance Evaluation

5.1 Complexity Analysis

In this section, we analyze the processing complexity and memory resources needed for
extracting periodic patterns from streaming data of size N by Algorithm 2 assuming
that the maximum repetitive period in the stream is less than Tmax. We compare our
method with the method proposed in [17] and with the original ACF. It should be
mentioned that ACF and [17] only measure self-similarity. Therefore, we only have to
address their memory and processing power in this task. In our method, arrival of each
new point, extracting repetition periods, and updating the PL lists have processing
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complexity of ðTmaxÞ;OðTmax log TmaxÞ, and OðT2
maxÞ; respectively. As shown in

Sect. 4.1.1, we reduced the memory requirements of measuring self-similarity to
OðTmaxÞ and discovery of the periods of repetition has memory complexity of OðTmaxÞ.
In pattern extraction, we keep a PL list of size T for each period ðT\TmaxÞ. Therefore,
memory requirement of this task is OðT2

maxÞ. The method proposed in [17] extracts
periodicities from each region of interest (rather than original data). In order to perform
real-time and streaming period extraction, this method should be able to identify the
regions of interest first. The regions of interest are not known beforehand. Therefore, to
be able to compare our technique with [17], we simply assume that we compare each
new GPS measurement with cells of a grid of size G. In this case, the processing
complexity for this comparison will be OðGÞ. In order to measure the self-similarity,
this method requires having all the previous points in memory and update probability
of presence in each segment of each period. Then it measures the self-similarity for
each possible period by OðTmaxNÞ processing. This task should be performed C num-
ber of times (C is a constant value) in order to normalize the data. Therefore, the
processing power is OðCNTmaxÞ þ O Gð Þ and memory requirements will be OðNÞ.
Complexity of ACF using Eq. 1 is OðN2Þ and it also requires the whole data in
memory. Table 1 summarizes the memory and processing complexity of these three
techniques. As seen, only our method is suitable for streaming settings.

5.2 Performance Evaluation Using Synthetic Dataset

5.2.1 Synthetic Dataset
Validation with a synthetic dataset helps us to check the sensitivity of our period
detection algorithm under several parameters which cause imperfections in mobility
data. We wrote a moving object sequence generator to produce a synthetic periodic
sequence of a person’s movement in N number of days. This periodic sequence is in
form of testi ¼ fðxi; yiÞji 2 ½1;N � 24�g where each index represents a spatial neigh-
borhood where a person is between ½ði� 1Þmod 24; imod 24� on the ð i

24 þ 1Þ th day.
Ten spatial neighborhoods are defined, each composed of two dimensional points lying
within radius r from a predefined center. We consider two of these spatial neighbor-
hoods (representing home and office) being periodically visited (daily, and weekly) in
specific intervals. For workdays, the interval 10:00-18:00 is chosen for “being at work”
and 20:00-8:00 for “being at home”. On weekends, the interval between 01:00-24:00 is
chosen for “being at home”. Each of these intervals is subject to a random event with

Table 1. Complexity comparison

Method Processing Memory

Measuring
self-similarity

Period
extraction

Pattern
extraction

Period
extraction

Period
extraction

Pattern
extraction

Our method OðTmaxÞ OðTmax log TmaxÞ OðT2
maxÞ OðTmaxÞ OðTmaxÞ OðT2

maxÞ
[17] O Gð Þ

+OðGNTmaxÞ
– – OðNÞ – –

ACF O N2ð Þ – – OðNÞ – –
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probability of μ and is normal otherwise. In normal intervals with defined start ðtstartÞ
and end (tend), the event of “visit” (being at home or office) starts somewhere between
ðtstart � r1Þ and ends around ðtend � r2Þ. The behavior in abnormal intervals is ran-
domly chosen from other 9 spatial neighborhoods with a random start-time and random
duration. Such abnormal intervals can represent different un-periodic events such as
absence at work, working overtime, or visit to places such as cinemas, shops, etc. After
defining the normally and abnormally visited places (spatial neighborhoods) for each
day, we add trajectories between them, each with different duration. This can represent
different modes of transport (for instance, car, or bike). The effect of missing samples
was tested by removing data from the random indexes with probability of α. In order to
add noise, we formed a randomly permuted array of data between the maximum and
minimum longitude and latitudes in selected spatial neighborhoods. Next, we randomly
picked indexes with probability of β and replaced them with the values in the random
array. The parameters used to form the test sequence are: radius of spatial neighbor-
hood (r = 100 m), number of periodic repetition (N = 100), missing samples
(α=0–50 %), noise (β = 0–50 %), standard deviation of start/end-time ðr1; r2 ¼ 2), and
probability of random events (µ = 0–50 %).

5.2.2 Performance Evaluation with the Synthetic Dataset
The synthetic dataset generated by movement generator entails two periods of repeti-
tion (24, and 168 h corresponding to a day and a week). In this section, we evaluate
Algorithm 1 to see how successful we are in extraction of these two periods using ACF
and UACF self-similarity graphs (method of [17] is not applicable on raw data). We
calculate self-similarity in different lags by ACF on latitude (lat), longitude (long) and
their root mean square ðRMSÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lat2 þ long2

p
. We test the effect of noise (β), missing

samples (α), and random events (µ) on detection of correct periods by running the
experiments 100 times (Fig. 3(a–f)). Figure 3(g) compares the precision computed by
Pþ

PþþP� where Pþ is the sum of correct prediction of two periods and P� is the number of
false alarms in all the previous experiments.

Looking at Fig. 3, we can see that UACF clearly outperforms ACF in presence of
noise, missing samples and random events. Even when these parameters is near 50 %,
considerably high percentage of correct periods is discoverable through using UACF
by overcoming the effect of pattern-less data through taking into account the effect of
points that fall into a spatial neighborhood. ACF, however, measures self-similarity by
multiplying pattern-less data and those which follow a pattern. The overall precision
using UACF is also higher than ACF.

5.3 Performance Evaluation Using Real Dataset

5.3.1 The Real Dataset
The real dataset we use (plotted in Figs. 4a and 5a), was collected using custom-
designed GPS-enabled wireless sensor nodes carried around by two researchers. The
devices were set to take one measurement per minute for a period of 31 days by first
candidate and 109 days by the second one. When used inside the building, the nodes
were placed near the window to obtain data. This however had made the dataset
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extremely noisy. The data collected by first candidate is extremely sparse. This person,
has kept the node off for all the weekends and the rest of data partly shows his regular
behavior in commuting between home and work (weekdays) and very few irregular
visit. The data collected by second candidate has less missing samples, while this
person had a more dynamic behavior. She has gone on (i) work days to office,
(ii) Saturdays to the open market in the city center, and (iii) regularly to a language
class for a short period of time, and (iv) irregularly to a supermarket and a gym. Several
other irregular behaviors have emerged for this person during the short period, such as
traveling to another city, being absent at work or working overtime.

5.3.2 Performance Evaluation
Using the real data set, we calculated the self-similarity over different time lags with
UACF and ACF (root mean square) (shown in Figs. 4b–c, 5b–c). We used Algorithm 1
to extract the periods of repetition from the self-similarity graph for both candidates. For
the first candidate, we were able to extract the period of 24 h using UACF, while no
period was found using ACF. We noticed that it was not possible to extract the period of
168 as no data was available for weekends. For the second candidate, UACF was able to
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Fig. 3. (a–f) Comparison of the accuracy of Algorithm 1 in extracting periods of repetition
(24,168) using UACF and ACF in presence of noise, missing samples and random events.
(g) Average precision of Algorithm 1 in extracting periods of repetition.
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detect both periods of 24 and 168 h, while ACF could only find the period of 24. This is
because as it can be seen in Fig. 4b–c, the lag of 24 has the first highest peak in ACF
graph and there is no distinguishable peak after that. The hierarchy of peaks, however, is
clearly distinguishable using UACF. Therefore, both periods were easily found using
Algorithm 1. After finding the spatial neighborhoods for each segment of discovered
periods using Algorithm 2, we merged those ones which were closer than the diameter
of the spatial neighborhood. Our approach is able to find two spatial neighborhoods for
the first candidate (his home and office) (Fig. 4a) and 3 spatial neighborhoods are
identified for the second candidate (her home, office, and city center) (Fig. 5a).

(a) (b)         (c)

Home

Office

24 Hrs

x5

(d)                                         (e)

0 100 200 300
0

1

2

3

4

5 x 10 6 ACF(RMS)
A

C
F(

R
M

S
)

Hour
0 100 200 300

0.5

0.6

0.7

0.8

0.9

1
UACF

U
A

C
F

Hour

24

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Hour

P
ro

ba
bi

lit
y

Periodic patterns (T=24)
Home (1)
Office (2)

Fig. 4. (a) Mobility data stream (shown in blue) and identified periodically visited spatial
neighborhood corresponding to this dataset (shown in red) of candidate 1. (b, c) Extracting
periods from self-similarity graph of real dataset using ACF and UACF. (d) Periodic patterns
extracted from algorithm 2, (e) state-diagram of periodic behavior.
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The histograms in Figs. 4d and 5d are representing the probability of appearance in
SPT

i in segment segTi of each of the larger discovered period found (from Algorithm 2).
The state diagrams on right are drawn based on the histograms to represent the periodic
pattern. As illustrated in the state diagrams, the periodic pattern of the first candidate is
composed of a loop between home and work. For the second candidate, a periodic
pattern of two loops is identified. These loops are repeated 5 times with the duration of
24 h (Weekdays). Next, a new loop of 48 h emerges which is only followed once, after
which the first loop is repeated again.

6 Conclusion

In this paper, we address the problem of accurate and real-time extraction of periodic
behavioral patterns from streaming mobility data using resource constrained sensing
devices. We propose a method to identify correct periods, in which periodic behaviors
occur from raw streaming GPS measurements. We then use these periods to extract
periodic patterns. We empirically evaluated the performance of our method using a
synthetic data set under different controllable parameters such as noise, missing sam-
ples, and random events. We also tested our technique on a real data set collected by
two people. Results of our evaluations on both synthetic and real data sets show
superiority of our technique compared to the existing techniques. In our future work,
we plan to (i) test our technique for real data set of a large group of people and
(ii) finding “abnormal” behaviors using streams of mobility data.
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