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Abstract. Mobile devices are becoming the platform of choice for both
business and personal computing needs. For a group of users to effi-
ciently collaborate over the execution of a set workflow using their mobile
devices, the question then arises as to which device should run which task
of the workflow and when? In order to answer this question, we study two
common energy requirements: in the minimum group energy cost prob-
lem (MGECP) we build the model as a quadratic 0–1 program and solve
the optimisation problem with the objective to minimise the total energy
cost of the devices as a group. In the minimum max-utilisation problem
(MMUP) we aim to improve the fairness of the energy cost within the
group of devices and present two adjustment algorithms to achieve this
goal. We demonstrate the use of a Mixed Integer Quadratic Programming
(MIQP) solver in both problem’s solutions. Simulation result shows that
both problems are solved to good standards. Data generated by different
workload pattern also give us a good indication of the type of workflow
that benefit the most from MMUP. The model used in this work can also
be adapted for other energy critical scenarios.

Keywords: Mobile computing · Energy-aware · Collaboration · Work-
flow

1 Introduction

Recent years have seen significant growth in the size of the mobile computing
market, and yet the rarest commodity in the world of mobile computing remains
to be its battery power. Development in battery technology is slow compared
to other components of a mobile smart device. Hence, despite the moderately
improved battery capacity on modern smart devices, with increasingly more com-
plex functionality required from the user, developments of mobile applications
remain largely energy-constrained [17].

In less than a decade, mobile devices have enriched their functionalities from
being a simple dialling device to a hub of rich media applications. It is predicted
that by 2015, mobile application development projects will outnumber desktop
projects by a ratio of 4:1 [10]. The unique portability of a mobile device coupled
with its ever growing hardware capability brings business and ad hoc workflows
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that are traditionally supported by fixed location resources to be implemented
over wireless mobile platforms.

Researches show that in a mobile environment, communication tasks are
especially energy-demanding compared to local computation tasks [16]. Hence,
this type of applications, namely mobile workflows, which has a particular empha-
sis on collaboration between users, is likely to be more energy-demanding than
others and requires to be managed in an energy-efficient manner. Furthermore,
unlike its desktop counterparts, mobile computing devices are often exposed to
the open environment. Changing conditions in data connection, sudden drain of
battery caused by user actions can bring disruption to a device’s availability.

Our research investigate ways to model and analyse the energy efficiency of
such workflows running atop a group of mobile devices. Our goal is to provide
an energy efficient execution platform for mobile workflows, while utilising fair
share of each mobile device’s energy. Our objective is two-fold: First, in the
MGECP, we aim to minimise the workflow’s total energy consumption. Second,
in the MMUP, our objective is to minimize the maximum device utilisation in
the group while keeping the overall energy cost close to the minimum.

In this paper, we first give use cases from possible application areas of a
mobile workflow and discuss related work. We then construct the system energy
model in Sect. 3. The allocation problem is modelled as a quadratic 0–1 program,
and its two objectives (MGECP and MMUP) are studied in Sects. 4 and 5. We
conclude the paper in Sect. 6 with a simulation study the result of which verifies
our formulation and compares the results of our algorithms when applied to
different types of workflows.

2 Applications and Related Work

Mobile workflow can be found when a group of mobile users are to share or
communicate with each other in order to accomplish a certain task. Such scenario
commonly exists in a business environment. With growing adaptation of mobile
devices within their business models [10], modern enterprise applications often
include or are entirely based on mobile devices. For instance, in a supply chain
business, as illustrated in Fig. 1a, the commencement of a workflow is triggered
by a member of staff registering receipt/sales of goods on their mobile devices.
The system database is then updated via a query module1. A forecast module is
then evoked to produce a forecast based on the update, which is then projected
onto the manager’s smartphone as a live trend graph or a production plan. In
order to lower the overall energy cost of the workflow, our objective in Sect. 4, the
forecast module which requires complex computation for data mining purposes
is more suitable to be allocated to a device that has a fast processor and low
energy draw while running computation tasks. Additionally, it is preferable that
modules that communicate frequently, e.g. invoice and query, are allocated to
the same device to reduce communication cost.
1 E.g. we can assume that the support system is similar to that of an Excel application

with embedded VBA macro modules. Data is stored in the local spreadsheet.
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Fig. 1. Examples of mobile workflow use cases. In the centre of both figures, the tasks
between the pair of “) (” are not restricted to be executed on any specific device.
Allocation of these tasks can affect the energy-efficiency of the workflow.

Another use case illustrated in Fig. 1b includes the use of three smartphones
and a tablet, and expands on the idea of a popular consumer application [12]
which lets its users to play darts with their mobile devices. During the game,
a tablet is used to display the dartboard, participating players use their smart-
phones as darts. The workflow starts when a player throws a dart (by a throwing
gesture from the phone towards the tablet). Sensor readings (accelerometer and
gyroscope) are then taken from the phone and fed into a calculation module to
work out where the dart should land on the board. Result from the calculation
is then passed on to the display module on the tablet.

Like all multi-player competitions, the game can only function until its weak-
est player withdraws, which in this case, is the device that runs out of battery
first. Although the calculation module does not require much energy at each run,
repeated execution is required. As the game goes on, the battery of the device
to which the calculation task is allocated drains faster than the others’. A fair
task allocation, which we study in Sect. 5, is needed in such scenarios to balance
the contribution made by participating members of the mobile workflow.

A workflow engine is often required to oversee the execution of mobile work-
flows. In [15] a detailed mobile workflow engine is implemented and tested on
Nokia devices. A decentralised workflow coordination architecture designed for
mobile devices is presented in [1] for use in biological studies and the supply-chain
industry. Authors of [14] propose a rapid application development framework
based on a dynamic workflow engine for creating mobile web services.

Several researches has been carried out in workflow management issues in
Mobile Social Content Sharing applications [6,11,18]. A mobile P2P social con-
tent sharing framework was proposed in [6]. In [18], a Java API based mobile
workflow system was proposed. A content distribution protocol was proposed
in [13] for vehicular ad hoc networks (VANET). Clusters of mobile devices has
been proposed in [22] to support the execution of parallel applications.

The common approach towards an allocation problems often model the prob-
lem as a linear program [7,19,21]. A linear program is suitable for modelling
situations where communication time is not considered or when there are only
two devices involved in the process. However, in the cases of mobile workflows,
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communication tasks are an essential part of the workload and occurs significant
amount of energy cost [20]. Thus we construct our model as a quadratic program
in order to accurately capture the communication costs.

Several recent researches has developed methods to measure the energy cost
of mobile applications [8,16,20]. The difference in the current draw between
sender and receiver in a wireless network can be read at [9]. Reference [3] includes
a detailed characteristics of a WiFi network’s energy pattern. Our energy model
draws ideas from these researches.

3 System Model

3.1 Mobile Platform Model

We consider a mobile platform MP consisting of m mobile devices, M1, · · · ,Mm,
and denote a device profile as Mi

(
si, e

cmp
i , esnd

i , ercv
i

)
, i ∈ {1, 2, . . . ,m} with

parameters defined as follows:

si Peak processing speed of Mi, measured in the number of clock

cycles available in a millisecond;

ecmp
i Current draw from the battery when the device is executing

computation tasks at peak speed;

e
snd/rcv
i Current draw from the battery when the device is sending/

receiving data to/from the data network.

These devices are interconnected via a network, and we use bij to denote the
bandwidth between devices Mi and Mj , i, j ∈ {1, 2, . . . ,m}. Thus, we have an
m-matrix B = (bij)m×m which holds all of the bandwidth information of the
underlying network of the MP. When two adjacent tasks are assigned to the
same device, we assume that they share the same memory address space on
the device. Therefore, we assign positive infinite values to the principal diagonal
elements of B, that is bii = +∞, i ∈ {1, 2, . . . , m}.

3.2 Workflow Model

The workflow hosted on MP is represented by a directed acyclic graph W =
(T,R) whose vertex set T = {t1, . . . tn} denotes the set of tasks of the workflow.
We assume that all tasks are defined via a service-oriented architecture and that
all services are available from each device. An n-matrix D = (da,b)n×n denotes
the weighted adjacency matrix of W , where da,b is the size of the data package
that is to be sent from ta to tb for (ta, tb) ∈ R. The acyclic property of W implies
that D has all principle diagonal elements zero.

Each task has profile ta
(
d(.a), d(a.), ca

)
, a ∈ {1, . . . n} where d(.a) and d(a.)

are the a-th column and the a-th row of D which represent the incoming and
outgoing data respectively. ca denotes the size/workload of the task.
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3.3 Mobile Energy Model

Given an allocation scheme ψ : T → M , we first derive the energy cost of
computing ta, a ∈ {1, . . . n} to be

Ecmp
aψ(a) = ecmp

ψ(a) × ca

sψ(a)
(1)

where ψ(a) is the device to which ta is assigned. Secondly, we have the energy
cost of transferring dab, (ta, tb) ∈ R as

Etran
abψ(a)ψ(b) = esnd

ψ(a) × dab

bψ(a)ψ(b)︸ ︷︷ ︸
sender’s cost

+ ercv
ψ(b) × dab

bψ(a)ψ(b)︸ ︷︷ ︸
receiver’s cost

(2)

4 Minimum Group Energy Cost Problem (MGECP)

In this section, we first show that the Minimum Group Energy Cost Problem
can be modelled as a generalised Quadratic Assignment Problem (QAP) [5] and
then we convexify the objective function in order to solve it using a MIQP solver.

To represent an allocation scheme ψ, we first construct an n × m binary
matrix X = (xai), such that

xai =

{
1 if ψ(a) = i,
0 otherwise.

(3)

We call matrix X an assignment matrix and a valid assignment must satisfy the
following constraints

m∑

i=1

xai = 1, a = 1, 2, . . . , n, (4)

xai ∈ {0, 1} , a = 1, 2, . . . , n, i = 1, 2, . . . ,m. (5)

(4) ensures that every task must be assigned to one and only one device. (5)
states that all tasks are indivisible.

4.1 Quadratic Program Formulation

With (1) (2) and (3), we can derive the total energy cost function as

n∑

b=1

m∑

j=1

n∑

a=1

m∑

i=1

(
esnd
i + ercv

j

) dab

bij
xaixbj +

n∑

a=1

m∑

i=1

ecmp
i

ca

si
xai (6)

The quadratic terms in (6) gives the total energy cost for data transmission,
whereas the linear term gives the total energy cost for executing computing
tasks. We introduce (nm)2 coefficients qaibj
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qaibj :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ecmp
i

ca

si
+

(
esnd
i + ercv

j

) dab

bij
if (a, i) = (b, j),

esnd
i

dab

bij
a < b

ercv
i

dba

bij
a > b

(7)

and with (7) we can transform (6) to
n∑

b=1

m∑

j=1

n∑

a=1

m∑

i=1

qaibjxaixbj (8)

Theorem 1. Let coefficients qaibj be the entries of an mn×mn matrix Q, such
that qaibj is on row (i − 1) n + a and column (j − 1) n + b, and x = vec(X) =
(x11, x12, . . . , x1n, x21, . . . , xmn)T be the vector formed from the columns of X.
Equivalent formulations for the minimum workflow energy cost problem’s objec-
tive function are given by (8) and

vec (X)T
Q vec (X) (9)

Proof. From the construction of vec (X), we observe that its u-th element
vec (X)u = xai ⇔ u = (i − 1) n + a. Furthermore, given u = (i − 1) n + a
and v = (j − 1) n + b, u, v ∈ {1, 2, . . . ,mn}, we also get Quv = qaibj . Hence,

(8) =
mn∑

v=1

mn∑

u=1

vec (X)T
u Quv vec (X)v

=
n∑

b=1

m∑

j=1

n∑

a=1

m∑

i=1

xaiqaibjxbj = (9)

��
4.2 Convexification

In order to exploit the power of modern MIQP solvers, we first need to pre-
process the problem and convexify the objective function [4]. There are a number
of ways of convexification. Our process is similar to that use in [2].

Theorem 2. Let Q∗ := 1/2
(
Q + QT

)
+ αI, where I is the mn × mn identity

matrix, then Q∗ is positive definite if scalar α = 1+ ‖ Q ‖∞

Proof. Due to the length of this paper, interested reader are referred to the
appendix of [2] (on a negative definite matrix) for a similar proof. ��

Addition of a constant on the main diagonal of Q only add a constant to (9)
which does not change its optimal solution. Hence we can rewrite our objective
function as

min: vec (X)T
Q∗ vec (X) (10)

This together with (4) and (5) completes the formulation of the optimisation
problem of MGECP. The positive definite property of Q∗ ensures that (10) is
strictly convex and a global minimum can be found by an MIQP solver.
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5 Minimum Max-Utilisation Problem (MMUP)

While MGECP ensures that a workflow consumes minimum amount of energy
from the mobile devices as a group, it does not consider the stress it has on
individual devices. This causes unfair energy cost distribution within the MP ,
and creates over-utilised devices. Having such workflow executed repeatedly over
time without adjustment to its task allocation scheme could lead to early retire-
ment of the over-utilised devices. In a business environment, it is common to
have authorisation constrained tasks taking critical roles within workflows. In
such cases, the MP ’s inclusion of these authorised devices is critical to the fulfil-
ment of the workflow’s functionality. This requires the workflow engine to shift
its priority from reducing the total energy cost of the device group to ensuring
the availability of key devices.

Hence in this section of the paper, we investigate ways to adjust the task
allocation provided by the MGECP so that the availability period of a workflow
can be lengthened. We refer to this class of problem as the Minimum Max-
Utilisation Problem (MMUP). We first introduce the measure of utilisation:

Definition 1. Given an allocation scheme ψ, the utilisation of Mi, denoted Uψ
i ,

equals Eψ
i /ER

i , for 1 ≤ i ≤ m, where Eψ
i is the energy cost of Mi under ψ and

ER
i is the size of the residual energy in Mi.

The reciprocal of a device’s utilisation, (1/Ui), is the number of times the work-
flow can run with Mi before it runs out of battery. The availability of a workflow
is hence constrained by the member with the highest value of utilisation. As
illustrated in Fig. 2, we introduce a guide utilisation value UG to classify devices
into two groups: Over-Utilised (OU) and Under-Utilised (UU). The objective
then is to shift workload from devices in the OU group to those in UU.

We present two adjustment methods, both utilising the quadratic program
formed in MGECP and use the result it produces to apply tight constrains to
both methods’ variables so that the group’s overall energy cost remains min-
imised to a good degree. Upon need, or periodically, the workflow engine exe-
cutes the adjustment algorithm in order to map the workflow to an updated
task allocation scheme so that no device is over stressed unnecessarily and thus
improve the availability of the workflow.

Max Utilisation (% battery)

1 23

( IIAM ) ( GAM )

Guide 
Utilisation 
(% battery)

- Over-Utilised
- Under-Utilised

- Device Utilisation
- Energy Cap

M3M1 M2 M4 M5 M6 M1 M2 M3 M4 M5 M6

Fig. 2. MMUP adjustment algorithms
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For both adjustment methods, in order to constraint each device’s energy
cost, we introduce a device specific cost matrix Qi as an addition to the quadratic
program formulated in MGECP.

Theorem 3. Let

Qi
uv =

{
Quv if n × (i − 1) < u ≤ n × i,
0 otherwise.

(11)

Then given an allocation scheme ψ and its allocation matrix Xψ, we have the
energy cost of Mi to be Eψ

i = vec
(
Xψ

)T
Qi vec

(
Xψ

)

Proof. Proof is similarly to that of Theorem 1 and can be worked out easily. ��

5.1 Iterative Individual Adjustment Method (IIAM)

In this method, we aim to reduce the energy cost of devices in OU individually
(as illustrated in Fig. 2). With (11), we formulate a quadratically constrained
quadratic program (QCQP) with an objective function that minimise the energy
cost of the device with the highest utilisation value. As constraints in the QCQP,
we cap all other OU devices’ energy cost to their current value and all UU devices
to the guide utilisation value. (For brevity we use the average utilisation of the
current allocation scheme as our guide value. This can be replaced with tailored
values to suit the requirement of certain workflows).

If the solver returns a new allocation, we then update the OU and UU group
and again select the highest utilised device to the objective function. If this
device is same to the one we picked at the earlier iteration, this means that we
have reached the optimum solution under the constraints and exit. Otherwise,
we repeat the process with the updated group classification until no new device
can be picked from the OU group and provide a new allocation.

The advantage of this method is that it pin-points the highest utilised device
of the MP , and support its workload offload with the entirety of UU devices.
The disadvantage of this method is that all other members of the OU group is
capped at their current utilisation value, this restraints the workload offload on
the objective device when communication tasks exist between these devices.

5.2 Group Adjustment Method (GAM)

Similar to IIAM, our second adjustment method also caps the contribution from
the UU devices at the guide value which ensures that the relocation process does
not produce a new OU device (as illustrated in Fig. 2). It also apply cap to all
OU devices to their current value. Unlike IIAM, the objective function in GAM
include all devices in the OU group and also do not iterate.

The advantage of GAM over IIAM is that the workload offload is done
between two groups of devices and thus encourages workload offload between
members of each group. This in turn increase the possibility of producing a new
allocation. The main disadvantage is that it does not prioritise on reducing the
maximum utilisation which the workflow’s availability is limited to.
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6 Simulation

6.1 Environmental Settings

While it is intractable to cover all possible use cases of mobile workflows, we
aim to base our simulation closely to the characteristics of an average mobile
application and a modern smart device. We construct our simulation with the
multiples of two essential building blocks: a typical device and a unit workload.

Definition 2. A typical mobile device has a battery capacity of 2000mAh,
draws a current of 250–400mA during data transmission and 100–200mA when
executing local computation tasks.

In order to accurately emulate the correlation between modern mobile applica-
tions and the behaviour and capability of a state-of-the-art smart device, we
consult the data presented in recent researches [8,16,20].

Definition 3. A task has a unit workload if its execution takes 1 s to complete
on a typical device.

In our simulation, we specify each task’s workload size using multiples of a unit
workload. For instance, in the first plot of Fig. 3a, the tests are in 3 groups and
the workflow generated in each test group has a task size that ranges in from 8
to 16, 16 to 24 and 24–32 units of a unit workload.

Apart from task size, many other factors (e.g. network bandwidth, etc.) also
affects the energy cost of a workflow. Due to the length of this paper, we select
to present the effect of different device to task ratios in our simulation settings
to further verify our model and adjustment methods, as shown in the latter two
plots of Fig. 3a. We also present the effect of different workload size distribution
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Table 1. Comparison of adjustment methods

MMUP-IIAM (MGECP) MMUP-GAM (MGECP)

Workloads‡ Tests No. Max.† Avg.† Dev.† No. Max.† Avg.† Dev.†

Exp. 6 100 35 0.311(0.332) 0.210(0.192) 0.069(0.103) 29 0.295(0.320) 0.204(0.191) 0.062(0.098)
Uni. 4-8 100 41 0.329(0.360) 0.229(0.214) 0.068(0.105) 38 0.334(0.367) 0.230(0.214) 0.068(0.106)

Exp. 8 100 33 0.399(0.436) 0.266(0.242) 0.092(0.141) 30 0.403(0.437) 0.266(0.244) 0.093(0.141)
Uni. 4-12 100 45 0.440(0.486) 0.308(0.287) 0.087(0.140) 42 0.440(0.488) 0.306(0.289) 0.087(0.140)

Exp. 12 100 29 0.651(0.728) 0.425(0.391) 0.151(0.238) 31 0.628(0.706) 0.420(0.391) 0.137(0.225)
Uni. 4-20 100 44 0.640(0.716) 0.464(0.427) 0.124(0.221) 42 0.646(0.727) 0.452(0.424) 0.131(0.226)

Exp. 20 100 26 0.987(1.050) 0.640(0.598) 0.243(0.329) 26 1.014(1.082) 0.651(0.601) 0.250(0.349)
Uni. 4-36 100 49 1.113(1.244) 0.773(0.714) 0.234(0.378) 50 1.097(1.202) 0.754(0.701) 0.226(0.365)

† - All utility values are percentages (%) of residual battery (mAh). ‡ - Distribution and task size.

pattern in Table 1. For each simulation setting 100 instances are randomly gen-
erated and worked on. Averages are taken for comparison. We use AMPL and
CPLEX 12.5’s MIQP solver to solve the formulated problems.

6.2 Results and Analysis

Minimum Total Energy Cost. The first group of our simulations aims to
verify the formulation of MGECP. As a comparison, we use a baseline algorithm
which attempts to reduce the total energy cost by distributing the number of
tasks evenly across the MP . This algorithm provides a good baseline value
because although it does not seek the benefit of using an energy efficient device,
its chance of being able to take that advantage is consistent.

As shown in Fig. 3a, the total energy cost of a baseline allocation is reduced
by 30–35% with MGECP applied. Both adjustment algorithms are applied to
allocation produced by MGECP. As shown in Fig. 3a, the adjustments does
not significantly increase the total energy cost of the workflow, but boost the
workflow’s run count (the number of time the workflow can run before the first
retirement from the MP ). As discussed with the example illustrated in Fig. 1b,
the fair distribution of workload amongst the MP is critical. One series of sim-
ulation (16–24 in Fig. 3a) is magnified and plotted in Fig. 3b to illustrate the
effect our algorithms have in extending the run count of workflows.

Utilisation Adjustment. This group of simulations focuses on the adjustment
algorithms and their effect on workflows with different task workload range and
distribution. Results (cf. Table 1) show that first of all, not all MGECP alloca-
tions can be adjusted because of the tight constraints we apply in both IIAM
and GAM. 26–50% of the 100 test instances generated in each setting can be
adjusted in order to gain a lower maximum utility.

It is worth noting that workflows with uniformly distributed task sizes have
better chance to be adjusted than those with exponential distribution pattern.
Adjustments can be made when tasks can be offloaded or exchanged between
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Fig. 4. Effect of adjustments within the MP .

devices without causing sizeable disturbance in each devices’ energy cost. Con-
trary to that of exponential distribution, when workload’s distribution is uniform
within a set range, it is likely for a task to find another task that has similar
workload size, thus a “minor” exchange of tasks is more likely to exist.

Device Energy Cost. This group of simulation focuses on the energy cost of
individual devices. Figure 4 shows that in order to reduce the maximum utilisa-
tion, tasks has to be offloaded or exchanged to a device where it will cost more
energy to execute which increase the average utilisation of the group. Increase in
the group’s standard deviation caused by MGECP shows that in order to min-
imise the group’s energy cost, devices with better energy-efficiency are required
to take on more workload than the others. On the other hand, the reductions
of this value from MGECP to MMUP show that the workflow’s energy cost is
distributed more evenly within the MP after adjustments.

7 Conclusion

In this paper, we introduced a model that captures both computation and com-
munication costs of a workflow with a 0–1 quadratic program. We demonstrated
the use of MIQP solvers which produces exact solutions for the MGECP. We
also investigated ways to adjust the allocation to lengthen the workflow’s avail-
ability with minimal impact on its overall energy cost. Our simulation produces
good results for both problems and gives an insight into workflows of different
characteristics. Our model is also applicable to other energy critical scenarios,
its extension can be tailored for workflows of specific use cases.
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