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Abstract. The problem of continuous spatio-temporal queries’ process-
ing was addressed by many papers. Some papers introduced solutions
using single server architecture while others using distributed server one.
In this paper, we introduce MobiPLACE*, an extension to PLACE* [13]
system, a distributed framework for spatio-temporal data streams
processing exploiting mobile clients’ processing power. We will extend
the Query-Track-Participate (QTP) query processing model, introduced
as a system architecture in PLACE*, by moving the Query server role
to mobile clients. This will reduce memory and processing load on our
regional servers in exchange for a little additional communication and
memory load on mobile devices. This makes the system more scalable and
enhances average query response time. Improvements in mobile devices’
and communication links’ capabilities encouraged us to introduce this
extension. In this paper, we will focus on range and k-NN continu-
ous queries and their evaluation on MobiPLACE*. Experimental study
is made to compare between MobiPLACE* and PLACE* in terms of
server response time and memory.

1 Introduction

Location detecting devices is now wide spread in wide range devices e.g. (mobile
phones, cars and many moving devices). Those objects can send their location
updates periodically to servers and these data can be used to solve navigation
and many location aware services’ problems. Such problems can be solved by
a system doing continuous queries over those data streams. One of the main
challenges to those systems is scalability. Mainly, it is about how to design the
system and distribute load between system components to scale up to support
larger number of moving objects and continuous queries.

Previously, system designers depended on servers to handle all query process-
ing because mobile clients’ were poor in capabilities. Nowadays, smart phones,
embedded devices in cars and all mobile devices have a PC like capabilities.
Designing a system to utilize those capabilities will lead to reduce server loads
and allow the servers to handle more client objects, queries and respond with
queries’ answers shortly. We will focus on continuous range and k-NN (k Near-
est Neighbor) queries on objects moving over road networks. In a range query,
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the issuer requires to find objects e.g., taxis or clients of taxis in a certain
range. In a k-NN query, the issuer requires to find the nearest k objects to
her location. We focused on continuous queries instead of snapshot ones. Also,
we considered query’s incremental evaluation instead of periodic re-evaluation
solution. In incremental evaluation, the result is calculated once and saved
on either client, server or both and updates to it is only calculated and sent.
In periodic re-evaluation, the result is re-calculated from scratch periodically.
Incremental evaluation is advantageous because it leads to less tracking and
response time but requires some additional memory to save query’s result. We
need a real-time responses for the query so we chose to save moving objects’
locations and do all our computations in memory instead of hard drive. We also
assumed that our objects are restricted to move on road networks. This means
that the shortest path between object will be used instead of Euclidean distance
as a distance metric.

The development of devices’ capabilities and mobile broadband services,
either in bandwidth or in cost, over the world encouraged us to migrate a server
role to mobile clients. This will reduce load on servers with a little increase on
communication messages. The ICT 2013’s report for mobile broadband service
development mentioned that by early 2013, the price of an entry-level mobile-
broadband plan represents between 1.2 and 2.2 % of monthly GNI p.c. in devel-
oped countries and between 11.3 and 24.7 % in developing countries, depending
on the type of service.

In this paper, we extend the work done in [11]. In [11], Sallam applied a modi-
fied version of the Incremental Monitoring Algorithm (IMA) [9] on PLACE* [13]
Query-Track-Participant (QTP) query processing model to make a distrib-
uted processing of continuous spatio-temporal queries over road networks.
We applied the same algorithms by Sallam but on MobiPLACE* QTP query
processing model. The difference between the 2 models is in the role distribution
of query processing steps between clients’ devices and servers.

The rest of this paper is organized as follows. In Sect. 2, we highlighted the
related work and explained the systems that we extend in this paper. We gave
an overview about MobiPLACE* architecture and communication messages in
Sect. 3. We explained how could we execute continuous range and k-NN queries
in our system in Sects. 3.3 and 3.4 respectively. Performance evaluation and
experiments made were introduced in Sect. 4. Finally, the paper is concluded in
Sect. 5.

2 Related Work

Many papers have addressed the problem of continuous queries over spatio-
temporal data streams. SINA [7], sets an algorithm to evaluate concurrent con-
tinuous spatio-temporal queries. It uses three phases, the hashing phase, the
invalidation phase, and the joining phase; to calculate positive and negative
updates. SOLE [6], keeps track of only the significant objects in order to save
the scarce memory resource. MQM [2] divided the region of study into domains
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and object reports its location to server whenever its movement affects any
range query results (i.e., crossing any query boundaries) or it changes its current
domain. MobiEyes [3] ships some part of the query processing down to the mov-
ing objects, and the server mainly acts as a mediator between moving objects.
CPM [8], YPKCNN [15], and SEA-CNN [14] introduce 3 algorithms for exact
k-NN continuous monitoring in Euclidean space. The above systems assumed a
central server architecture for query processing and the Euclidean distance as a
distance metric. Some papers considered some restriction on objects motion i.e.
(objects are moving in a road network). In this case, the shortest path between
objects would be considered as the distance metric. In [4], they designed a pro-
totype system and algorithm to answer nearest neighbor queries over objects
moving in road networks. Papadias, Zhang, Mamoulis and Tao integrated net-
work and Euclidean information to efficiently prune the search space and answer
range, nearest neighbor, closest pairs and e-distance join queries in the context
of spatial network databases [10]. In [5], Kolahdouzan and Shahabi proposed
a novel approach to efficiently and accurately evaluate KNN queries in spatial
network databases using first order Voronoi diagram. This approach is based on
partitioning a large network to small Voronoi regions, and then pre-computing
distances both within and across the regions. Shahabi proposed an embedding
technique that approximates the network distance with computationally simple
functions in order to retrieve fast, but approximate, k-NN results [12]. The Incre-
mental Monitoring Algorithm (IMA) and Group Monitoring Algorithm (GMA)
algorithms [9] are introduced to calculate continuous nearest neighbor in road
networks. IMA retrieves the initial result of a query q by expanding the net-
work around it until k NN’s are found. GMA benefits from the shared execution
among queries in the same path, and the reduction of the problem from moni-
toring moving queries to (monitoring) static network nodes. PLACE* [13] intro-
duces Query-Track-Participate (QTP) processing model to process continuous
queries. Figure 1 shows the steps of query evaluation in PLACE*. In PLACE*,
each moving object is associated with a server called its visiting server (V S(O),
initially it is object’s home server HS(O)). For a query q, the querying server
QS(q) is the regional server of that the query issuer, i.e., QS(q) = V S(iq). A
participating server for a query q, PS(q), is a regional server whose coverage
region overlaps the search region of q. For a query q, the tracking server TS(q)
is the regional server that q’s focal object, fq, currently belongs to. Participating
servers send update of the query result to the query server QS of the query. The
QS forwards updates to the query issuer (i). If the focal of the query changed
its position, TS(q) sends the new position to QS(q). QS(q) calculates the new
search region for q and updates the participating servers.

Sallam used an enhanced version of IMA, for query processing over road
networks, and applied it on PLACE* QTP distributed architecture [11]. In our
work, We applied Sallam’s algorithms in [11] for continuous queries over road
networks on our MobiPLACE* system architecture. We aim to provide more
system scalability by enhancing server response time and reducing memory
usage. A comparison between Sallam’s algorithms performance on PLACE* and
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Fig. 1. Query evaluation in PLACE*

on MobiPLACE* architectures is made to illustrate the benefit of using Mobi-
PLACE* architecture.

3 MobiPLACE*: An Overview

In this section, we discuss the details of MobiPLACE* architecture and algo-
rithms to process continuous queries. Query processing algorithms are introduced
in [11] with different roles of system components. We modified those algorithms
to work correctly with our architecture. In Sect. 3.1, we discuss the details of
system architecture and the role of system components. In Sect. 3.2, we present
the communication messages between system components in order to execute
queries, update object location and update query result.

3.1 System Architecture

MobiPLACE* system architecture is inspired from Query-Track-Participant
(QTP) communication model introduced in PLACE* [13]. We divided the area
where objects are moving into regions and each region is covered by a regional
server. In PLACE*, each regional server has 3 roles; querying, tracking and par-
ticipating server roles. In MobiPLACE*, the role of querying is moved from
server to mobile client. When clients connect to our system, a mapping file is
downloaded to those clients. This mapping file determines the IP address of each
regional server paired with its coverage region boundaries. When a client needs
to initiate a query, it connects to the home server of this query focal (HS(fq)) to
know its current regional server which will act as a tracking server to the query.
For simplicity, we assume that each object is the focal of its queries and in this
case the previous step could be ignored. Then the client determines the set of
regional server to participate on this query. It connects to them and gather the
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result. The result is summarized on the client. This will reduce the processing
and memory requirements on server. Now, each client device will be responsible
on handling its own query instead of depending on server to handle all steps of
queries from all objects on the system. Figure 2 illustrates the architecture of
MobiPLACE* system.

Fig. 2. MobiPLACE* system architecture

3.2 Communication Messages

The area is divided into n sub-regions that are covered with n regional servers;
each is responsible on a sub-region. Information of road junctions and roads
is stored at servers responsible on this region. All-pairs shortest paths, between
road junctions, matrix is pre-computed. Each server stores the shortest path cost
from all nodes in the network to the junctions it stores in a list sorted according
to the path cost and this will be used in query evaluation. When a new object
(O) connects to the system, the following steps are taken as below.

1. Object O sends a connection request to the Default Server DS (a previously
known server for all objects upon installing our application on O).

2. DS searches the regional servers and locate O’s Home Server (HS(O)) which
covers O’s location and sends its connection details to O.

3. O sends a connection message to HS(O).
4. HS(O) attaches O to the nearest road to its location and generate a unique

identifier for the object O by adding a prefix of server’s ID to object O ID
(will be used later to locate HS(O)).

5. O sends updates to its home server until it moves outside its coverage area and
in this case O migrates to another server which is called O’s visiting server
VS(O). HS(O) keeps track of O’s current visiting server for easier locating
later.
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Moving objects can issue range and k-NN queries. As a difference from
PLACE*, Querying Server role is now moved on mobile client. This means that
mobile client and participating servers cooperate to answer the query
continuously.

The steps of query execution on MobiPLACE* architecture are similar to
those on PLACE* architecture except moving the querying server execution
steps on mobile devices. In order to enable this, a mapping file of region/IP of
regional server (which tells the mobile client the coverage area of each server
and its communication information) is downloaded on new object connection to
our system. When a query initiated on the mobile client, the issuer i asks the
home server of query focal f (this is known from object’s ID prefix) about the
current visiting server of the focal VS(f) which will act as a tracking server for
this query TS(q). The home server informs the issuer about the current TS(q) of
its query. The issuer then contacts the TS(q) to know the exact location of the
query focal f. Using the regional server mapping file, the issuer i can determine
the set of participant servers PSs(q) for this query that will participate to collect
the query result. TS(q) informs the issuer of any updates of focal location and
based on those update, the issuer updates the plan and informs the participants
the new plan. Without loss of generality, we can assume that the issuer itself is
the query focal. In this case, the steps of asking about TS can be ignored.

When an object O issues a new query q (assuming that the issuer itself is
the query focal), the following steps describes how to evaluate range and k-NN
queries.

1. O expands the search from its position.
2. O finds the regional servers whose regions overlap the query search region

PS(q).
3. O sends an evaluation request to all PS(q). This request contains O’s position

and query parameters (i.e. range in range queries) and waits for answers from
PSs(q). O keeps track of its queries that have not been answered completely
yet by keeping track which servers have responded and which have not yet.

4. When receiving the answer from all servers in PSs(q), O gather the result
and display it as the final result to the user. O can display results incremen-
tally upon receiving any answer from any server but making sure that those
answers should be updated and may content some false results (i.e. in k-NN
query).

3.3 Continuous Range Query Evaluation

To evaluate a new range query q, the visiting server of the focal start expand-
ing from focal’s road ends to the neighbor road junctions. It either stops when
reaching nodes out of query’s range or reaching some road junctions covered by
another server. At the same time, each participant server start a similar process
(expanding) like the visiting server of the focal but from road junctions that
are within query range. Server can know which nodes are in range using all-pair
shortest path matrix, which is previously calculated offline, between road junc-
tions. Those junctions are pushed in a queue to continue the expansion process
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using similar algorithm in [11]. We define a leaf junction in 2 ways. Either it has
only one neighbor junction and we could not expand from it anymore or it is
out of range junction that is a neighbor to an in range junction. Those leaves
are used in incremental evaluation of queries as described later in Sect. 3.5.

3.4 Continuous k-NN Query Evaluation

The range of k-NN query is not known in advance. By assuming uniformity of
object distribution over servers, we can transform k-NN query to a range one
by estimating the range to find k neighbors. As in [13], we can calculate the
range of objects within object’s regional server by d∗√

k/n where d2 is the area
covered by objects’ server and n is the number of objects in this server (Fig. 3).
After calculating the range of the query, requests to PS are sent and results
are gathered and sorted in a min priority queue. If the result reaches k objects
or more, the algorithm is stopped and result is displayed. If not, the range is
expanded by a factor and the process is repeated. Server expand the search
of the query by starting from leaves junctions and start expanding to the new
range. Results are updated to client until reaching k moving objects. Participant
servers of the query store the leaves of the search tree in order to be used later
in the incremental updates.

Fig. 3. Calculate k-NN query’s range

3.5 Query Incremental Evaluation

Every object periodically updates its location to its current visiting server VS(O).
If O moves outside its current visiting server, it sends a connection request to
the new Visiting Server and a disconnection message from to the old one. It will
also notify its Home Server with the new visiting server ID.

Upon receiving an update from an object O, VS(O) performs the following
steps.
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1. Locate the new road for O and calculate the cost from O to this road end
junctions.

2. Update mobile clients whose queries are affected either by adding or removing
O.

3. Send message to O itself confirming its connection to VS(O).

4 Performance Evaluation

Amazon instances with dual 1.88 GHZ processors and 1.7 GB of RAM are used in
the experiments. The region under studying is divided into 4 equal sub-regions.
A regional server is responsible for each region. Each regional server runs on a
dedicated machine. Servers are connected on Amazon private network and TCP
connections are used as a connection protocol. Two more servers are used as a
default server and an event simulator server. There are many input parameters
to the simulation model: road network, represented by the set of nodes and edges,
moving objects number, objects’ velocity and update period. We used the city
of Oldenburg in Germany as the underlying network with 6105 road junctions
and 7035 edges. Input parameters are summarized in Table 1.

Table 1. Summary of system input parameters

Parameter Range values Default value

Network edges – 7035

Network nodes – 6105

Update period – 10 s

Moving objects velocity Low, medium, high Medium (50 Km/h)

Object update percentage 10, 50, 100% 10%

k of k-NN 1, 10, 100, 1000 100

R of range 2, 5, 7, 10, 30 (%) 10%

Population size 50K, 100K 50K

We used Thomas Brinkhoff [1] generator to generate 50K moving objects
over road networks. Objects update their position every 10 s and randomly gen-
erate continuous queries. We made many experiments to compare between Mobi-
PLACE* and PLACE* processing models. We focused on response time and
server memory usage in the comparison.

Figures 4 and 5 show the effect of varying the parameters of range and k-NN
queries respectively on response time of the proposed two architectures. Figure 4
studies the effect of changing the range between 2 %, 5 %, 7 %, 10 % and 30 % of
the network area when the population size is 50K moving objects, while Fig. 5
does the same with NN queries. The figures show that MobiPLACE* with client
connection bandwidth equals 1 Mb/s performs better than PLACE*, on the same
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Fig. 4. Range query response time with 50K population

Fig. 5. k-NN response time with 50K population

Fig. 6. Memory requirements for 10% range queries
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Fig. 7. Memory requirements for 100-NN queries

algorithms and conditions, when query range becomes large and show than it is
a little worth in case of k-NN because the amount of data sent to client object
is larger in case of MobiPLACE*.

Figure 6 shows the estimated total server memory usage of range queries on
the 2 architectures and verifies that MobiPLACE* requires a significant lower
amount of memory than PLACE*. Figure 7 shows the same for k-NN queries.

5 Conclusion

In this paper, we discussed MobiPLACE* a distributed framework for continu-
ous processing of spatio-temporal queries over road network by utilizing mobile
clients’ processing power. It is built based on PLACE* QTP communication
model. Experiments showed that moving Query Server role to mobile clients
slightly enhanced query response time and significantly reduced the server mem-
ory usage. We have many future extension that we could not cover in this paper.
Many papers, that solved the same problem, did not mention how to distribute
regional servers over region. We need to determine a set of standard experiments
to calculate the best number of servers and their distribution to achieve the best
query’s average response time for each application. Privacy issues should be taken
into consideration. Also, we need to make a detailed study of the communication
links effect on performance. We took connection bandwidth as a parameter and
simulated it only using delays. More connection details like latency, network con-
gestion and connection initiation time should be taken into consideration later
in order to provide more accurate results.
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