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Abstract. One of the main challenges for large-scale computer clouds dealing
with massive real-time data is in coping with the rate at which unprocessed data
is being accumulated. In this regard, associative memory concepts open a new
pathway for accessing data in a highly distributed environment that will facil-
itate a parallel-distributed computational model to automatically adapt to the
dynamic data environment for optimized performance. With this in mind, this
paper targets a new type of data processing approach that will efficiently par-
tition and distribute data for clouds, providing a parallel data access scheme that
enables data storage and retrieval by association where data records are treated
as patterns; hence, finding overarching relationships among distributed data sets
becomes easier for a variety of pattern recognition and data-mining applications.
The ability to partition data optimally and automatically will allow elastic
scaling of system resources and remove one of the main obstacles in provi-
sioning data centric software-as-a-service in clouds.
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1 Introduction

While the opportunities for parallelization and distribution of data in clouds have
brought some efficiency, existing relational and object-oriented data models in par-
ticular, make storage and retrieval processes very complex, especially for massively
parallel real-time data. Chaiken et al. [1] observe that the challenge of processing
voluminous data sets in a scalable and cost-efficient manner has rendered traditional
database solutions prohibitively expensive. At the other end of the spectrum high-
performance computing (HPC) has advanced rapidly but dominantly focused on
computational complexity and performance improvements. Virtual HPC in the cloud
has significant limitations especially when big data is involved. According to Shiers
[2], “it is hard to understand how data intensive applications, such as those that exploit
today’s production grid infrastructures, could achieve adequate performance through
the very high-level interfaces that are exposed in clouds”. The efficiency of the cloud
system in dealing with data intensive applications through parallel processing essen-
tially lies in how data is partitioned and processing is divided among nodes. As a result,
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data access schemes are sought to be able to efficiently handle this partitioning auto-
matically and support the collaboration of nodes in a reliable manner. Google’s Ma-
pReduce [3] and Microsoft Dryad [4] have achieved greater scalability than parallel
databases. However this comes at a cost; time-consuming analysis and code custom-
ization are required when dealing with complex data inter-dependencies. Moreover,
real-time reliability guarantees remain elusive. Conceptually, the approach also suffers
from certain key limitations:

In the MapReduce type of query processing, the map tasks are assumed to to be
fully independent. Applied to massive relational or object-oriented data, however, large
records or objects resulting after aggregation and analytics are themselves often broken
into parts and distributed creating dependencies and requiring trade-offs between
redundancy (for speed), coherence (for integrity under frequent updates) and com-
promises to parallel schedulability, as they break assumptions of mutual independence.
In practice, MapReduce functions are implemented imperatively and produce numer-
ous intermediary entities - between the map and reduce stages e.g. in the form of
intermediate files. In many applications, these files must be sorted and moved around
before they are input to the reduce function. This system wide sort and redistribution
incurs considerable processing and communication costs and is either fundamentally
non-scalable or requires fine-tuned architecture-aware access mechanisms.

While assisting designers and developer s with few predefined architectural patterns
[5] for many applications, the MapReduce data flow model is also rigid, limits variation
and hence increases the complexities of dealing with errors, fault-tolerance, perfor-
mance and other end-to-end non-functional issues. Some exploratory research imple-
mentations are using key/value pairs with distributed “Spaces” (for instance Java
Spaces or other derivatives of Linda tuple spaces [6]) to simplify data sharing and
conceptually separate shared data from the computational tasks. However, this sim-
plification comes with significant efficiency loss and exacerbates uncertainty of pre-
dicting reliability and real-time behavior.

Hence, MapReduce cannot automatically scale up for many applications and data sets,
in practice. Reconciling MapReduce with Associated Memory concepts, in particular for
adaptive and fast data access, aggregation and movement will be a key contribution of the
proposed technique in this paper. Our proposed scheme preserves the strength of the
MapReduce model and eliminates/alleviates most of these constraints in a well-integrated
manner where there is no outward change to the way in which MapReduce models are
deployed and used. In this context, our proposal will investigate inclusion of an asso-
ciative approach in the MapReduce model to support application specific pattern recog-
nition and data-mining operation. For efficient analytics, Map functions need to be
embedded in streams as it is unrealistic to literally preserve and record all raw data from
sensor streams. On the other hand the complexity of some analytics tasks renders them
inappropriate for real-time online processing (for example in transport and plant health
monitoring). Hence it necessitates a combination of (1) selective stream functions that
efficiently query, filter and aggregate information in adaptable ways and, (2) streaming the
results into the cloud for later offline processing and analytics.

An associative memory based processing scheme that efficiently performs large-
scale data processing will offer a broad spectrum of innovative cloud applications by
formatting data universally within the network. It helps alleviate data imbalances by
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replacing rigid referential data access mechanisms with more distributable associative
processing. Hierarchical structures in associative memory models are of interest as
these have been shown to improve scalability whilst preserving accuracy in pattern
recognition applications [7]. Our proposal is based on a special type of Associative
Memory (AM) model, which has been specially designed for distributed processing
[8—14] and readily implemented within distributed architectures. Thus our primary aim
in this paper is to introduce an access scheme that will enable fast data retrieval across
multiple records and data segments associatively, utilizing a parallel approach. Doing
so will yield a new form of database-like functionality that can scale up or down over
the available infrastructure without interruption or degradation, dynamically and
automatically.

2 Graph Neuron for Scalable Recognition

Transforming big data into valuable information requires a fundamental re-think of the
way in which future data management models will need to be developed on the
Internet. Unlike the existing relational, hierarchical and object-oriented schemes,
associative models can analyze data in similar ways to which our brain links infor-
mation. Such interactions when implemented in voluminous data clouds can assist in
searching for overarching relations in complex and highly distributed data sets with
speed and accuracy. This proposal improves MapReduce-based cloud applications in a
number of different ways by uniformly formatting data in a standard two-dimensional
representation. It eliminates data imbalances and completes transition to cloud by
replacing referential data access mechanisms with more versatile and distributable
associative functions, which allow complex data relations to be easily encoded into the
keys as patterns. These patterns can be applied in a variety of applications requiring
content recognition e.g. image databases, search within large multimedia files, and data
mining. Algorithmic strengths of the MapReduce approach are investigated for the first
time in context with the effectiveness of one-shot learning based parallelism provi-
sioned via our distributed pattern recognition approach.

The principle of associative memory based learning will be implemented through
the use of hierarchically connected layers, with local feature learning at the lowest layer
and upper layers combining features into higher representations. Our approach will
entail a two-fold benefit. Applications based on associative computing models will
efficiently utilize the underlying hardware that scales up and down the system resources
dynamically and automatically, controls data distributions and allocation of the com-
putational resources in the cloud. In order to achieve the aforementioned objectives, an
initial step would be to develop a distributed data access scheme that enables record
storage and retrieval by association, and thereby circumvents the partitioning issue
experienced within referential data access mechanisms. In our model, data records are
treated as patterns. As a result, data storage and retrieval can be performed using a
distributed pattern recognition approach that is implemented through the integration of
loosely-coupled computational networks, followed by a divide-and-distribute approach
that facilitates distribution of these networks within the cloud dynamically. Our online-
learning associative memory scheme is conceived on the principle that “moving
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computation is much cheaper than moving data”. Hence, it will provide methods for
automatic aggregation and partitioning of associated data in the cloud for widely used
data sets.

The MapReduce model does not explicitly provide support for processing multiple
related heterogeneous datasets. While processing data in relational models is a common
requirement, this restriction limits its functionality when dealing with complex and
unstructured data such as images. Relational databases use a separate, uniquely-
structured table, for each different type of data for specific applications; programmers
must know the precise structure of every table and the meaning of every column a
priori. To overcome this, we explored possibilities to evolve a novel virtualization
scheme that can efficiently partition and distribute data for clouds. For this matter,
loosely-coupled associative techniques, not considered so far, can be pivotal to
effectively partition and distribute data in the cloud. Our associative model will use a
universal structure for all data types. Information about the logical structure of the data
— metadata — and the rules that govern it may be stored alongside data. This allows
programmers to work at a higher level of abstraction without having to know the
structural details of every data item. Hence, our approach to cloud-based data pro-
cessing is unique. It elevates the MapReduce key-value scheme to a higher level of
functionality by replacing the purely quantitative key-value pairs with higher order data
structures that will improve parallel processing of data with complex associations (or
dependencies). By having an associative key/value framework, we can deal with data
in any form and in any representation simply by using a pattern matching model
(including fuzziness), which treats data records as patterns and provides a distributed
data access scheme that enables balanced data storage and retrieval by association. We
believe that the performance of MapReduce parallelism as a scalable scheme for data
processing in clouds may be significantly improved by transforming the data pro-
cessing operations into one-shot distributed pattern matching sub-tasks, which in dis-
tributed computations are performed in-network, enabling data storage and retrieval by
association (instead of pre-set referential data access mechanisms).

2.1 Graph Neuron (GN)

Graph Neuron (GN) [12] is an associative memory algorithm, which implements a
scalable AM device through its parallel in-network processing framework. Associative
memory architecture differs from conventional memory architecture in the sense that
the store and recall operations on memory contents are based on the association with
input value rather than based on the address of the memory content. Hence, associative
memory-based pattern recognition algorithms are able to offer high recognition accu-
racy as compared to other algorithms which implement recognition using conventional
memory architecture. In addition to its associative memory architecture, GN also fol-
lows some characteristics of graph-based pattern recognition algorithms [8]. However,
GN implements in-network processing that solves the scalability issue (computation-
ally prohibitive against an increase in the size and database of patterns) in other graph-
based pattern recognition algorithms [9].
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GN recognition process involves the memorization of adjacency information
obtained from the edges of the graph. Adjacency information for each GN is repre-
sented using the (left, right) formation. Each activated GN therefore records the
information retrieved from its adjacent left or right nodes as illustrated in Fig. 1. In the
GN terminology, this adjacency information is known as bias entry where each GN
maintains an array of such entries. The entries for the entire stored pattern are col-
lectively stored in the bias arrays. Each GN would hold a single bias array containing
all the bias entries obtained in the recognition processes. In this context, GN offers low
storage complexity in recognition process since each GN is only required to store a
single array. Furthermore, each GN’s bias array only stores the unique adjacency
information derived from the input patterns.

Fig. 1. GN activation from input pattern “ABBAB”

GN’s limited perspective on overall pattern information would affect a significant
inaccuracy in its recognition scheme. As the size of the pattern increases, it is more
difficult for a GN network to obtain an overview of the pattern’s composition. This
produces incomplete results, where different patterns having similar sub-pattern
structure leads to false recall. The limited perspective of GNs, owing to purely adja-
cency based computations, was widened through the Hierarchical Graph Neuron
(HGN) approach [11].

2.2 Hierarchical Graph Neuron (HGN)

In order to solve the issue of the crosstalk due to the limited perspective of GNs, the
capabilities of perceiving GN neighbors in each GN is expanded in Hierarchical Graph
Neuron (HGN) to prevent pattern interference. The underlying principle of HGN
implementation is such that the capability of “perceiving neighbors” in each GN within
the network must be expanded. This is achieved by having higher layers of GN neurons
that oversee the entire pattern information. Hence, it will provide a bird’s eye view of
the overall pattern. HGN extends the functionalities of GN algorithm for pattern rec-
ognition by providing a bird’s eye view of the overall pattern structure. It thus,
eliminates the possibility of false recalls in the recognition process.
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3 Edge-Detecting Hierarchical Graph Neuron (EdgeHGN)

An important aspect in the development of pattern recognition scheme is its algorithmic
design. A proper design will lead to high efficiency and has the ability to generate a
more accurate classification strategy. Graph Neuron based algorithms have been
developed based upon two different concepts known as graph-matching and associative
memory. These two concepts have given an added advantage in terms of scalability for
GN-based algorithm implementations. GN has the ability to perform pattern recogni-
tion processes on distributed systems due to its simple recognition procedure and
lightweight algorithm. Furthermore, GN incurs low computational and communication
costs when deployed in a distributed system. Previous parts of this paper have analyzed
GN and HGN. In this section, the algorithmic design of a newly proposed Edge
Detecting Hierarchical Graph Neuron (EdgeHGN) algorithm for distributed pattern
recognition scheme for large-scale data sets is presented. The proposed approach
extends the scalability of the existing Hierarchical Graph Neuron (HGN) implemen-
tation by reducing its computational requirements in terms of the number of neurons for
recognition processes while providing comparable recognition accuracy as HGN
implementation. EdgeHGN provides a capability for recognition process to be
deployed as a composition of sub-processes that are being executed in parallel across a
distributed network. Each sub-process is conducted independently from each other,
making it less cohesive as compared to other pattern recognition approaches.

3.1 EdgeHGN Architecture

In our proposed novel EdgeHGN model, we reduce redundant data content for rec-
ognition by applying a Drop-Fall algorithm on the input pattern. This results in lesser
number of processing neurons which in turn results in lower communication overhead
within the scheme. The dividing path produced by Drop-fall algorithm depends on
three aspects: a start point, movement rules, and direction. In our approach, a drop-fall
scheme will be applied to the pattern which ensures producing the least number of
neurons. By applying a simple drop-fall algorithm, we can reduce number of redundant
processing neurons in the binary character image while maintaining all character data
bits. This approach is shown in Fig. 2 where a Descending-left drop-fall algorithm is
applied on the input pattern reducing number of processing nodes for each EdgeHGN
subnet significantly (total number of GN nodes are decreased from 49 to 39 in this
example). This reduction will not only minimize communication costs but also having
an edge detection feature within the scheme can improve recognition accuracy to a high
degree. Furthermore, lesser number of neurons results in lower response time which is
of high interest for real-time pattern matching problems. EdgeHGN adds a clustering
mechanism in pattern recognition by dividing and distributing patterns into sub-pat-
terns. Each of the sub-patterns undergoes a one-shot recognition procedure. The results
of sub-recognition will cumulatively add up to obtain the actual recognition result.
Each processing node in clustered EdgeHGN configuration may perform recognition
on each sub-pattern independently from other processing nodes.
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Fig. 2. EdgeHGN progressively removes unnecessary nodes from the two dimensional data
representation.

This configuration is intended to be used on coarse-grained networks such as grid
and cloud computing, in which additional processing and storage capacity made
available to be used. An important benefit of having this EdgeHGN cluster performed
on a single processing node is such that it eliminates all the communication actions
involved in EdgeHGN message passing model for distributed systems. For each sub-
pattern recognition process, each node only communicates back the corresponding
index generated, therefore reducing the chances of recognition failures due to trans-
mission or communication errors.

3.2 EdgeHGN Subnet Communication Scheme

In EdgeHGN implementation, after applying drop-fall scheme on the input pattern and
removing redundant processing neurons, we will form EdgeHGN subnets. In Edge-
HGN implementation, the core recognition process is conducted at the sub-pattern
level. There are four stages involved in this process for each EdgeHGN subnet:

Stage 1. After receiving an input, each activated GN at the base layer will send a signal
message to other nodes in the adjacent columns containing the row number/address of
the activated node. Those activated nodes that are at an edge of the layer will only send
the activation signal messages to the GNs in the penultimate columns. The activated
GNs that receive the signal messages from their adjacent neighbors will respond by
updating their bias array noting the activation signals. All other GNs will remain
1active.

Stage 2. All active GNs at the base layer will then update their bias arrays. If the bias
entry value, received from both the activated nodes in proceeding and succeeding
columns have been recorded, the index of the entry will be sent to the respective GN in
the same position at the higher layer. If the value is not found within the bias array, then
a new index will be created and sent to the GN node in the higher layer. Note that
active nodes at the edges of the base layer will not be communicating with higher layer
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nodes since there is no node present at the edges of the higher layer owing to the
pyramid-like structure of the EdgeHGN subnets.

Stage 3. GN nodes at a layer above the base that receive a signal message, containing
the index of the bias entry that has been created or recalled from stage 2, will be
activated. Similar process as in stages 1 and 2 will occur. However, the contents of the
signal messages from preceding and succeeding columns would be in the form of (left,
middle, right) for non-edge nodes and either (left, middle) or (middle, right) for the
edge nodes. The values for left, middle, and right are derived from the indices retrieved
from the lower layer nodes. After the message communication between adjacent nodes
has completed, the active GNs will update their bias arrays and send the stored/recalled
index/indices to the node at the same position in the higher layer (except for the GNs at
the edges). This stage will be repeated for each layer above the base layer, until it
reaches the top layer GN nodes.

Stage 4. One of the top layer GNs will receive a bias index from a GN in the layer
underneath it. This top layer activated node will search its bias array for this index. If
the index is found, then this node will trigger a recall flag with the recalled index.
Otherwise, it will trigger a store flag and store the new index in its bias array. The
signal message sent by the top layer active GN marks the completion of the recognition
at sub-pattern level.

3.3 EdgeHGN Communication Complexities

Communications in the EdgeHGN recognition scheme involve a message-passing
mechanism, in which a single processing node communicates with other nodes in the
network for exchanging messages. It is composed of two different types, namely
macro- and micro-communication. In macro-communication, communication costs at
system level are taken into account, i.e. communications incurred between SI Module
and EdgeHGN subnets. On the other hand, micro-communication deals with GN
communications within a particular subnet for each pattern introduced into the system.

EdgeHGN Macro-Communications. Macro-communication in EdgeHGN imple-
mentations happens between SI Module node and either base layer GNs or top GNs in
each subnet. It occurs at three different phases:

Network generation phase: SI module is responsible for communicating possible input
values of the patterns, which will be used in the recognition process to all base layer
GNs within EdgeHGN subnets.

msg —
NgpZssup = Msub X S'Wb xv

Pattern input phase: SI module decomposes pattern into a number of sub-patterns
according to the number of subnets available. Consequently, these sub-patterns will be
sent to each subnet within the network. However, in the actual format, SI module will
communicate directly with each GN at the base layer of each EdgeHGN subnet. Hence,
the number of messages communicated is similar to the number of messages in network
generation phase
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msg
N cup = Msub X Ssub X V

Result communication phase: After recognition process in each EdgeHGN subnet is
completed, the results (in terms of recall or store) will be communicated back to SI
module for further analysis. In regards to the communication cost, the total number of
messages communicated from subnets to SI module is equivalent to the number of
subnets available:

msg o
Ngub—sr = Msub

EdgeHGN Micro-Communications. In terms of micro-communications, we have
communications among GNs within the base layer. For each GN in the base layer, the
amount of message communications incurred could be derived from the number of
messages communicated between adjacent neurons for each input sub-pattern.

Base Layer: For GNs at the edge of base layer, the number of communication exchange

is equivalent to the number of different elements within the sub-pattern. For non-edge

GNs, the communication is required between adjacent neurons in both the preceding

and the succeeding columns as well as the communication of bias indices to the GNs at

the next higher layer. In this context, the amount of message exchange is v* + /.
n = ((V41) (S — 2) + 2v)

lpase

Middle layers: The communication costs for GNs in the middle layers are similar to
that at the base layer. However, the difference would be in the number of nodes
available within each layer. For each middle layer i, where 1 < i < fop—I, the number
of message exchanges occurred for single input sub-pattern recognition could be
derived as the following:

n = (1) (Soup — (26 +2)) +2v)

top—1

s = Y ((P41) (Sow — (20 +2)) +2v)

! i=1

Top layer: These GN nodes are only responsible for communicating the final index for
each sub-pattern stored/recalled to the SI module. The costs for communicating these
indices have been included in the macro-communication evaluation.

4 Simulation and Results

Hadoop can be set-up and configured in 3 different modes. Standalone or local mode is
where no Hadoop daemons running and everything runs in a single JVM. In Pseudo-
distributed mode, Hadoop daemons run on the local machine, thus simulating a cluster
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on a small scale. And in a fully distributed mode the Hadoop daemons run on a cluster
of machines. For our performance benchmarks, a Pseudo-distributed mode Hadoop
environment is set-up with default configuration settings but some changes are made to
the settings to gain better performance, e.g. the max data chunk size is set to 256 MB
instead of 64 and heap size for task executer JVM is increased to 512 MB for better
memory allocation and garbage collection. In addition, the performance of Hadoop MR
and newly proposed EdgeHGN based MR against is compared against one of the
commonly used parallel database management systems called Vertica. The Vertica
database is a parallel DBMS designed for large data warehouses. The main distinction
of Vertica from other DBMSs is that all data is stored as columns, rather than rows. In
Fig. 3, we can see performance of all three schemes while performing a simple task of a
pattern search. In Vertica, a pattern search for a particular field is simply running a
query in SQL which requires a full table scan:

SELECT % FROM Data WHERE field LIKE ‘% XYZ%’;

On the other hand, the MR program consists of just a Map function that is given a
single record already split into the appropriate key/value pair and then performs a sub-
string match on the value. If the search pattern is found, the Map function simply
outputs the input key/value pair to HDFS. Because no Reduce function is defined, the
output generated by each Map instance is the final output of the program. As clearly
shown here, distributed MapReduce and EdgeHGN based MapReduce perform equally
well. For some data input splits EdgeHGN even responds sooner in time and average
response time looks better. Vertica performs the best here as we simply run a very
single query against the database.
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Fig. 3. Comparing Distributed MapReduce, EdgeHGN based MapReduce and Vertica,
performing alphanumeric pattern search on input data splits of 256 MB in size.
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One of the reasons that Hadoop performance and EdgeHGN performance are lower
compared with Vertica is the fact that we are running both in a Pseudo-distributed
mode and not in a fully distributed mode in a cluster where memory is allocated to the
process independently. The other reason is that considering the limited number of data
chunks that we process in both Pseudo distributed Hadoop and EdgeHGN based MR,
Hadoop’s start-up costs can become the limiting factor in its performance. In fact for
small queries, Hadoop startup costs can dominate the execution time. In our obser-
vations, we found that it can take 10-20 sec before all Map tasks have been started and
are running at full speed.

5 Conclusion and Remarks

Existing cloud frameworks such as Hadoop MapReduce involve isolating low-level
operations within an application for data distribution and partitioning. This limits their
applicability to many applications with complex data dependency considerations. This
paper explored new methods of partitioning and distributing data in the cloud by
fundamentally re-thinking the way in which future data management models will need
to be developed on the Internet. Loosely-coupled associative computing techniques,
which have so far not been considered, can provide the break through needed for a
distributed data management scheme. Using a novel lightweight associative memory
algorithm known as Edge Detecting Hierarchical Graph Neuron (EdgeHGN), data
retrieval/processing can be modeled as a pattern recognition problem, conducted across
multiple records within a single-cycle, utilizing a parallel approach. The proposed
model envisions a distributed data management scheme for large-scale data processing
and database updating that is capable of providing scalable real-time recognition and
processing with high accuracy while being able to maintain low computational cost in
its function.
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