
MELON: A Persistent Message-Based
Communication Paradigm for MANETs

Justin Collins(B) and Rajive Bagrodia

University of California, Los Angeles, CA, USA
{collins,rajive}@cs.ucla.edu

Abstract. In this paper we introduce MELON, a new communication
paradigm tailored to mobile ad hoc networks, based on novel interactions
with a distributed shared message store. MELON provides remove-only,
read-only, and private messages, as well as bulk message operations. The
dynamic nature of MANETs is addressed with persistent messages, com-
pletely distributed message storage, and flexible communication patterns.
We quantitatively compare a prototype implementation of MELON to
existing paradigms to show its feasibility as the basis for new MANET
applications. Experiments demonstrate 40% better throughput on aver-
age than traditional paradigms, as well as 70% faster local insertion and
removal operations compared to an existing tuple space library.

1 Introduction

While smartphones are quickly becoming ubiquitous, most mobile applications
continue to use a client-server model rather than communicating through mobile
ad hoc networks (MANET). One reason may be the added challenges of develop-
ing a MANET application which must communicate with peers over unreliable
shifting network topologies. While communicating over a single-hop wireless net-
work (e.g., a WiFi access point or cellular tower) to a central server is simpler,
MANETs are useful when communication is between nearby devices or when
there is no network infrastructure, such as in disaster recovery situations or
locations without cellular service.

To alleviate application development challenges posed by MANETs, several
approaches to middleware and libraries have been proposed. The majority of
these proposals are adapted forms of traditional distributed computing par-
adigms such as publish/subscribe, remote procedure calls, and tuple spaces,
instead of MANET-focused paradigms [1].

In this paper, we introduce a new paradigm called MELON1. MELON over-
comes frequent network disconnections in MANETs by providing message persis-
tence in a distributed shared message store and can operate entirely on-demand,
avoiding coupling between nodes. MELONs offer remove-only, read-only, and pri-
vate messages, as well as bulk transfers. MELON also simplifies communication
1 Message Exchange Language Over the Network.

c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014
I. Stojmenovic et al. (Eds.): MOBIQUITOUS 2013, LNICST 131, pp. 716–720, 2014.
DOI: 10.1007/978-3-319-11569-6 59



MELON Communication Paradigm for MANETs 717

by returning messages in per host write order. We demonstrate that our proposed
paradigm is practical by comparing performance of a prototype MELON imple-
mentation to canonical implementations of traditional paradigms in a MANET
environment. Results show higher throughput with comparable latency.

2 MELON Design

Applications which are developed for MANETs must operate in an infrastructure-
less, unreliable, and dynamic distributed environment. We consider disconnec-
tion handling, addressing and discovery, and flexible communication important
features for MANET development.

The design of MELON is built around a distributed shared message store.
Each device in the network may host any number of applications which access
and contribute to the shared message store. Each application hosts a local mes-
sage store which may be accessed by any local or remote application. Applica-
tions request messages (which may be local or remote) using message templates.

By communicating through a shared message store, the concept of connec-
tions between hosts is eliminated and thus disconnections are no longer an appli-
cation layer concern. Hosts suddenly leaving the network do not disrupt an
application and applications do not need to handle operations failing from inter-
mittent network connectivity or physical wireless interference. The application
is insulated from these issues by the semantics of the operations.

MELON also includes features uncommon to shared message stores to further
simplify application development in MANETs. First, messages are returned in
first-in first-out order per host. When a single host generates the majority of the
messages, this removes the need to re-order messages in the application.

Secondly, MELON provides operations to only read messages which were
not previously read by the same process. This enables an application to read all
matching messages currently in the message store, then read only newly-added
messages in subsequent operations, avoiding the multiple read problem [2].

Finally, MELON differentiates messages intended to persist and be read by
many receivers from messages expected to be removed from the message store.
For example, a news feed would have many readers but messages should not be
removed. In contrast, in a job queue each job should be removed by exactly one
worker. MELON supports both scenarios.

2.1 MELON Operations

Messages can be copied to the shared message store via a store or write opera-
tion. A store operation allows the message to later be removed. Messages saved
with a write operation cannot be explicitly removed, only copied. Messages
saved with a store may optionally be directed to a specific receiver. Only the
addressee may access a directed message (Table 1).

Messages added via store may be retrieved by a take operation using a
message template which specifies the content of the message to be returned.



718 J. Collins and R. Bagrodia

Table 1. MELON operations

Operation Return type Action

store(message, [address]) null Store removable message

write(message) null Store read-only message

take(template, [block = true]) message or null Remove and return message

read(template, [block = true]) message or null Copy and return read-only

message

take all(template, [block = true]) array Bulk remove messages

read all(template, [block = true]) array Bulk copy read-only messages

A take operation removes a message with matching content and returns it to the
requesting process. A message may only be returned by a single take operation.

read operations also return a message matching a given template, but do
not remove the original message. Any number of processes may read the same
message, but repeated calls to read in the same process will never return the
same message. Only messages stored with write may be returned by read.

MELON also includes the bulk operations take all and read all which mir-
ror the basic operations, except all available matching messages will be returned.
For read all, only messages which were not previously returned by a read or
read all in the same process will be returned.

By default, all fetch operations will block the calling process until a match-
ing message is available. MELON also provides non-blocking versions of these
operations which return a null or empty value instead of blocking.

Due to the limited resources of most devices in a mobile network, storage
space in MELON is explicitly bounded. Any message may be garbage collected
prior to being removed by a take if capacity is reached.

Table 2. News server and reader

News Server News Reader

function report(category, headline) {
write([category, headline])

}

function fetch(category) {
return read_all([category, String])

}

Table 2 shows a sample application. One or more news servers generate news
messages containing a news category and headline. The server uses write to
disallow removal of news items. Any number of processes can consume the news
as readers, using read all to return all news items in a given category. Repeated
calls to fetch will only return news items not already seen.

3 Quantitative Evaluation

To determine if MELON is a feasible solution for actual MANET applica-
tions, we chose to compare its performance to canonical implementations of



MELON Communication Paradigm for MANETs 719

publish/subscribe, RPC, and tuple spaces. We evaluated applications with the
EXata network emulator [3] in order to run real applications and also have pre-
cisely repeatable environments with high fidelity network models. The scenario
distributed 50 nodes in a 150 m square grid moving with a random waypoint
mobility model. Signal propagation is limited to 50 m to match an indoor envi-
ronment and force multihop routes, and the two-ray model is used for path loss.
802.11b WiFi is used with the AODV routing protocol.

Operation Speed. To establish a performance baseline, we measured the time
for the write, read, store, and take operations directly on a local message stor-
age and compared the results to the LighTS [4] local tuple space implementation
used by LIME [5].

10 100 1000 10000 100000

Stored Messages

0

10

20

30

O
pe

ra
tio

n 
Ti

m
e 

(m
s)

MELON - read
MELON - write
Tuple Space - rd
Tuple Space - out

(a) Read Speed

10 100 1000 10000 100000

Stored Messages

0

2

4

6

8

10

O
pe

ra
tio

n 
Ti

m
e 

(m
s) MELON - take

MELON - store
Tuple Space - in
Tuple Space - out

(b) Take Speed

Fig. 1. Operation speeds

Since LighTS and MELON search messages linearly, non-destructive reads
are most affected by more stored messages. Removing messages is fast since the
matching message is always the first message in the store. All take/in operations
require less than 8 ms to execute on average. Storing messages is naturally faster
than removing for both implementations: storing a message takes less than 10 ms
on average, and usually less than 4 ms (Fig. 1).

Message Latency. Figure 2(a) shows the average latency between request and
receipt of a message. A single host writes out 1,000 messages with a 1 KB pay-
load, and the other hosts read the messages concurrently. Tuple spaces and
MELON use the rd/read operations to retrieve the messages singularly. For
publish/subscribe, latency was measured as the time elapsed between receiving
sequential publications.

In these experiments, MELON and tuple spaces were the most affected by the
increase in node speed and packet loss, as well as having the highest latency when
nodes were at rest. MELON latency increased 29 % and tuple spaces increased
24 %. In contrast, RPC only increased 7 % and publish/subscribe actually had
the lowest latency at the highest node speed. Since publish/subscribe is push-
based and has very low overhead, it is able to take advantage of the increased



720 J. Collins and R. Bagrodia

0 5 10 15 20

Node Speed (meters/sec)

0

20

40

60

80

100

120

La
te

nc
y 

(m
s)

0

10

20

30

40

Pa
ck

et
 L

os
s 

(%
)

(a) Message Latency

MELON
Publish/Subscribe
RPC
Tuple Space
Packet Loss

0 5 10 15 20
Node Speed (meters/sec)

0

5

10

15

20

Th
ro

ug
hp

ut
 (m

sg
s/

se
c)

(b) Message Throughput

Fig. 2. Communication performance

opportunities for transferring data. On the other hand, MELON and tuple spaces
have high overhead and must repeatedly request messages from remote nodes.

Message Throughput. Throughput was measured on the receiver side in mes-
sages delivered per second. Figure 2(b) shows the average throughput with vary-
ing node speeds. Tuple spaces perform the worst, delivering 12.5–10.1 messages
per second. MELON provides the best performance with 19.2–16.2 messages
per second. Publish/subscribe performs well at moderate speeds (18.8 msgs/s at
5 m/s), but packet loss reduces the number of delivered messages and throughput
drops 29 %–13.4 msgs/s at 20 m/s.

4 Conclusion

MELON is a new communication paradigm designed for MANET application
and middleware development. It provides a unique combination of new features
for interacting with a distributed shared message store, including separation
of read-only messages and removable messages, private messages, bulk message
operations, and tracking of read messages. In this paper we used real applications
to compare MELON performance to existing communication paradigms and
demonstrated acceptable performance in a MANET context.

References

1. Collins, J., Bagrodia, R.: Programming in mobile ad hoc networks. In: WICON ’08:
4th International Conference on Wireless Internet, pp. 1–9. ICST (2008)

2. Rowstron, A., Wood, A.: Solving the linda multiple rd problem. In: Hankin, C.,
Ciancarini, P. (eds.) COORDINATION 1996. LNCS, vol. 1061, pp. 357–367.
Springer, Heidelberg (1996)

3. Scalable Networks: Exata: an exact digital network replica for testing, training and
operations of network-centric systems. Technical brief (2008)

4. Balzarotti, D., et al.: The lights tuple space framework and its customization for
context-aware applications. Web Intell. Agent Syst. 5(2), 215–231 (2007)

5. Murphy, A., et al.: Lime: a coordination middleware supporting mobility of hosts
and agents. ACM Trans. Soft. Eng. Method. 15(3), 279–328 (2006)


	MELON: A Persistent Message-Based Communication Paradigm for MANETs
	1 Introduction
	2 MELON Design
	2.1 MELON Operations

	3 Quantitative Evaluation
	4 Conclusion
	References


