
A New Method for Automated GUI Modeling
of Mobile Applications

Jing Xu1(B), Xiang Ding1, Guanling Chen1, Jill Drury1, Linzhang Wang2,
and Xuandong Li2

1 University of Massachusetts Lowell, Lowell, MA, USA
{jxu,xding,glchen,jdrury}@cs.uml.edu

2 Nanjing University, Jiangsu, China
{lzwang,lxd}@nju.edu.cn

Abstract. It is often necessary to construct GUI models for automated
testing of event-driven GUI applications, so test cases can be generated
by traversing the GUI models systematically. It is, however, difficult to
apply traditional modeling techniques directly for mobile platforms as
common static models cannot reflect application behaviors under dif-
ferent contexts. To address these challenges, we propose a novel app-
roach for automated GUI modeling of mobile applications and introduce
our unique definition of GUI state equivalence, which can reduce state
space and facilitate model merging. The proposed modeling method can
already discover subtle implementation issues. Real-world case studies
show that the proposed approach is effective for adaptive GUI modeling
on the Android platform.

Keywords: Automated modeling · Mobile applications · Android · Con-
textual behaviors

1 Introduction

Mobile apps are playing an increasingly important role in ubiquitous comput-
ing environments and cost-effective solutions are urgently needed to support the
testing of mobile apps. Mobile apps are a subset of the more general class of
event-driven Graphical User Interface (GUI) applications [1] and are often con-
text aware [2]. Traditional GUI modeling techniques typically assume a static
model and fall short on context-aware apps that have dynamic behaviors and
are not just driven by GUI events.

In this paper, we present a new approach to automatically model GUIs for
mobile apps and we focus on the Android platform. We propose a Coarse Grained
GUI Model (CGGM) based on state machines. CGGM only uses the unique

This work is supported partly by the National Science Foundation under Grant No.
1016823 and 1040725. Any opinions, findings, and conclusions expressed in this work
are those of the authors.

c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014
I. Stojmenovic et al. (Eds.): MOBIQUITOUS 2013, LNICST 131, pp. 688–693, 2014.
DOI: 10.1007/978-3-319-11569-6 54



A New Method for Automated GUI Modeling of Mobile Applications 689

composition feature of a screen when identifying a GUI state. By not including
a comprehensive set of properties of UI elements (thus called coarse grained),
the GUI model is compact yet comprehensive; it also allows easy and meaningful
aggregation of multiple models obtained through different runs, such as under
different contextual situations.

2 Definition of Android Coarse-Grained GUI Model
(CGGM)

To provide a cost-effective modeling solution for Android apps, the first major
concern comes from the scaling issue of state machine models (the state explosion
problem) [3]. To overcome that, we define the state of the GUI by emphasizing
the group composition of GUI elements on the screen to identify a GUI state. The
second concern is that most current GUI modeling techniques employ a static
model. Therefore, they are unable to take into account context-based execution
behaviors of GUIs. To tackle this problem, we perform multiple GUI rippings
under different contexts. Taking advantage of our unique definition of GUI state
equivalence, we can merge these models and obtain an adaptive model to include
as many context-based execution behaviors as possible.

The level of model granularity is determined by how to define equivalence
of two screen views. In previous research, the GUI state of a screen view (or
a window for desktop apps) is usually defined as a set of triples {(wi, pj , vk)},
where wi is the widget in current window, pj is the property of the widget and
vk is the value of the property and any change of any wi, pj or vk would be
considered to be a different state. In CGGM, each state represents a unique
screen view that users interact with. We define the equivalence of two screen
views in a way that if the composition of two screen views are the same, the two
screen views are equivalent. To describe the composition of a screen view, we
introduce the following definitions.

For Android app GUIs, android:id and android:visibility are two important
properties of a View object on the screen. Android IDs are integer identities
(IDs) associated with View objects and are used to find specific View objects
within the hierarchy structure of a given GUI. If two GUI widgets on the screen
share the same Android ID, they must also have similar behaviors. And we only
deal with visible widgets that users could interact with.

Definition: A visible widget is a GUI widget that it is a View object, not a
ViewGroup object, all its ancestors are visible and its visibility is set to VISIBLE.

Definition: Two widgets are siblings on a screen view if and only if they are
both visible to users, of the same Android ID, of the same type (Android View
type), and have the same structure of ancestors. Sibling widgets usually have
common behaviors when interacting with users.

Definition: All siblings form a group on the screen view. The composition of
a screen view is determined by widget groups. The most important property of
a group is the homogeneity of widgets.



690 J. Xu et al.

Fig. 1. Notepad screen views and their corresponding group composition

Definition: All sibling widgets in a group are of the same type, which is also
the type of the group.

Definition: A screen view is composed by a set of groups.

Definition: The set of types of all groups on the screen describes the pattern of
a screen view. As shown in Fig. 1(d), the pattern of screen view 1(c) is {TextView,
TextView}.

Definition: If two groups from different screen views are in the same activity,
of the same type and with the same Android ID for its elements, there is a
mapping between these two groups.

As shown in Fig. 1(b), (d), (f), the first group of each screen view is a mapping
to each other. They are actually the same widget on the screen but other parts
of the screen view have changed.

Definition: Two equivalent screen views must be in the same activity, with
the same number of groups, of the same pattern, and there is a one-to-one
mapping for groups in the two screen views.

Definition: Two GUI states are equivalent if and only if the screen views they
represent are equivalent.

3 Construction of Android Coarse-Grained GUI Model
(CGGM)

Android mobile apps accept not only GUI events but also contextual events (such
as network quality changes) [4]. To ensure the completeness of the model, we first
get models by executing GUI ripping in different contexts, aiming at exploring
varied execution behaviors caused by contextual changes. Then, models from
different runs of GUI ripping are put together to examine inconsistent state
transitions. Those inconsistencies can provide feedback to successive modeling
process and are considered to be indicators of potential software deficiencies or
context-based execution behaviors.

In each round, the GUI ripping process is driven by executing GUI events on
widgets to invoke screen view changes or activity transitions. It would terminate
normally when all scheduled GUI events are exercised according to the traversal



A New Method for Automated GUI Modeling of Mobile Applications 691

algorithm. However, three break conditions can also stop the current ripping
process: (1) another app is invoked from the AUT (Application Under Test),
since our toolkit uses Robotium APIs that cannot get GUI structural data from
a second app; (2) the app crashes due to certain actions; or (3) the screen view
is stuck for more than 5 min.

Between each round, we manipulate application context before ripping and
perform inconsistency examination between models. Inconsistent behaviors of
the same or sibling widgets in different models can help find incorrect event logic
or contextual application behaviors. The application and system status change
during different runs of GUI ripping, which could help discover more hidden
states. Most importantly, the CGGM enables a relatively high percentage of
equivalent states in different models, which makes the model merging process
feasible and also meaningful. By merging GUI models from different contexts,
we can actually construct a dynamic model which is open to revision.

4 Case Studies

In this section, we show two examples of using the proposed method to model
Android apps - Nihao and Ohmage. Nihao is a personalized intelligent app launcher
which dynamically recommends apps the user is most likely to launch [5]. Ohmage
is an participatory sensing platform which supports mobile phone-based data cap-
ture [6,7]. Both apps are sensitive to contextual information such as location, app
usage history, user’s preference, and network conditions.

4.1 Nihao

For the main activity of Nihao, as shown in Fig. 2(a), 7 constant screen views
that were not equivalent to each other were found during the process. One screen
view was not captured and a final model consisting of 13 states is established,
including 2 external states indicating a second app is invoked and 4 contextual
states discovered by inconsistent state transitions under different contexts.

Nihao allows users to set the scope of apps and change ranking layout between
Grid view and List view. Though the listed apps might change, the group com-
position of all the initial screen views are the same, thus they are all equivalent.
As shown in Fig. 2, they all contain 10 groups in total where Group 1 ∼ 7 are
static, Group 8 is a textview, Group 9 are app icons and Group 10 are app
names. Even if users choose a different view (grid or list), the CGGM model can
still adapt to such a significant UI change, as shown in Fig. 2(b) and (c).

4.2 Ohmage

We modeled major components of Ohmage, as shown in Table 1. Components
were modeled separately and could be reassembled to establish a model for the
whole app. We stayed logged in while performing GUI ripping with the purpose
of getting a re-visitable initial state.



692 J. Xu et al.

Fig. 2. Equivalent initial screen views of Nihao

Table 1. Inconsistent transitions in components

Components States Inconsistencies

Campaigns 23 6 × 2

Surveys 18 2 × 2 + 2 × 3

Response history 8 1 × 2

Upload queues 5 1 × 2 + 1 × 3

Help 3 0

As shown in Table 1, context-based transitions were counted for each com-
ponent model. In the last column, x × y means that there are x places in the
model that have y options of transitions depending on the context. Three types
of sources have led to the varied transitions. First, the transition could be sub-
ject to updates of content presented. Such updates could be invoked by either
actions triggered from GUIs or updates of sources on the ohmage server. Second,
network conditions influenced execution behaviors. For example, if an “upload”
event was triggered under a bad network condition, ohmage would present a dia-
logue with options “Retry Now, Retry Later, Delete” to deal with the situation.
In good network conditions, such behaviors were hidden from GUIs. Finally,
different exception handlers also resulted in various transitions.

5 Conclusions

The proposed method is proved to be an effective way to generate adaptive GUI
models for Android mobile apps aware of contexts. The CGGM model could
cover most of the functionalities of mobile apps and the results of model merging
were also satisfying in terms of real context-based application behaviors discov-
ered. The design of our ripping process, from the pure interaction perspective
as of a real user’s, could help find defective design of the layouts and support
dynamically created UI elements.



A New Method for Automated GUI Modeling of Mobile Applications 693

References

1. Yang, W., Prasad, M.R., Xie, T.: A grey-box approach for automated GUI-model
generation of mobile applications. In: Cortellessa, V., Varró, D. (eds.) FASE 2013
(ETAPS 2013). LNCS, vol. 7793, pp. 250–265. Springer, Heidelberg (2013)

2. Chen, G., Kotz, D.: A survey of context-aware mobile computing research.
Dartmouth College, Technical report TR2000-381, November 2000. ftp://ftp.cs.
dartmouth.edu/TR/TR2000-381.pdf

3. Graphical User Interface Testing Wiki Page. http://en.wikipedia.org/wiki/
Graphical user interface testing

4. Liu, Z., Gao, X., Long, X.: Adaptive random testing of mobile application. In:
ICCET (2010)

5. Zhang, C., Ding, X., Chen, G., Huang, K., Ma, X., Yan, B.: Nihao: a predictive
smartphone application launcher. In: Proceedings of MobiCase (2012)

6. Ramanathan, N., Alquaddoomi, F., Falaki, H., George, D., Hsieh, C., Jenkins, J.,
Ketcham, C., Longstaff, B., Ooms, J., Selsky, J., Tangmunarunkit, H., Estrin, D.:
Ohmage: an open mobile system for activity and experience sampling. In: Proceed-
ings of PervasiveHealth (2012)

7. Ohmage Homepage. http://ohmage.org/

ftp://ftp.cs.dartmouth.edu/TR/TR2000-381.pdf
ftp://ftp.cs.dartmouth.edu/TR/TR2000-381.pdf
http://en.wikipedia.org/wiki/Graphical_user_interface_testing
http://en.wikipedia.org/wiki/Graphical_user_interface_testing
http://ohmage.org/

	A New Method for Automated GUI Modeling of Mobile Applications
	1 Introduction
	2 Definition of Android Coarse-Grained GUI Model (CGGM)
	3 Construction of Android Coarse-Grained GUI Model (CGGM)
	4 Case Studies
	4.1 Nihao
	4.2 Ohmage

	5 Conclusions
	References


