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Abstract. Detecting user context with high accuracy using smartphone
sensors is a difficult task. A key challenge is dealing with the impact of
different smartphone positions on sensor values. Users carry their smart-
phones in different positions such as holding in their hand or keeping
inside their pants or jacket pocket, and each of these smartphone posi-
tions affects various sensor values in different ways. This paper addresses
the issue of poor accuracy in detecting user context due to varying smart-
phone positions. It describes the design and prototype development of a
smartphone position discovery service that accurately detects a smart-
phone position, and then demonstrates that the accuracy of an existing
context aware application is significantly enhanced when run in conjunc-
tion with this proposed smartphone position discovery service.

1 Introduction

Modern smartphones embody a large set of sensors that can be utilized to learn a
wealth of information about a user’s surrounding environment. Researchers view
the availability of such sensors as an opportunity for developing context-aware
applications that can provide services tailored for each user’s context. Context-
aware mobile computing is not a new research topic, for example, a survey paper
[4] covering advances in this field was published more than a decade ago. Despite
the concept being there for a while, a breakthrough for the number of context-
aware applications offered in smartphones application markets (e.g., App Store
for Apple iOS or Google Play for Android OS) is yet to happen. For the most
part, the current context-aware applications do not meet users’ high expectations
from technology.

A key problem with current context aware applications is that they typically
provide low level of accuracy, particularly when used in an environment different
from what was conceived at the application development stage. A major reason
leading to low accuracy is the wide variety of ways a user may carry his/her smart-
phone, henceforth referred to as smartphone position. Users carry their smart-
phones in different positions, e.g. in hand, in purse, in pants pocket, in shirt pocket,
etc. Sometimes, their smartphones are in covered positions, in purse or pockets,
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while uncovered at other times, watching a video or talking on the phone. Sensor
values of different sensors naturally vary based on smartphone position, which in
turn impacts the accuracy of the context derived from these values.

The key idea explored in this paper is that the accuracy of context discovery
can be significantly improved if the applications rely not only on the sensor val-
ues, but also on the knowledge of smartphone positions from which these values
are collected. In particular, we propose a new classification methodology as a way
to utilize smartphone position information to improve context discovery. During
the training period, an application trains multiple classifiers, one for each smart-
phone position. During operational periods, the application first collects not only
the sensor values but also learns the smartphone position using a generic smart-
phone position discovery service. Next, it chooses a position-specific classifier to
discover the context.

We describe the design, implementation and evaluation of a generic smart-
phone position discovery service. This service utilizes sensor values collected from
some carefully chosen sensors and detects smartphone position with a very high
accuracy. We propose a two-stage classification method and demonstrate that
the accuracy of an existing context-aware application is significantly improved
when it is integrated with the proposed smartphone position discovery service
following this two-stage classification methodology.

2 Related Work

We focus on studies aimed at providing generic solution for the smartphone posi-
tion problem. The work in [9] anticipated the importance of body-position knowl-
edge even before the popularity of sensor-equipped smartphones. Their analysis
utilized wearable accelerometer sensor to differentiate between four body posi-
tions. Another early work [7], limited to on-table, in-hand, and inside-pocket
positions, augmented smartphones with a 2D accelerometer and demonstrated
an accuracy of 87 %. Some preliminary work to distinguish between the in-pocket
and out-of-pocket body-positions is provided in [13] for a smartphone based on
the microphone sensor. Good accuracy level of 80 % was achieved. However,
this study is also limited considering the number of positions covered. A recent
project [6] used accelerometer to detect nine body positions with an accuracy of
74.6 %. It identifies 60 relevant features for body position discovery. We believe
that this result can be integrated with our work to increase the number of posi-
tions covered and enhance the overall accuracy of position discovery.

The work in [15] suggested the use of a rotation-based approach to recognize
four body-positions. The presented solution is based on accelerometer and gyro-
scope. Achieved accuracy using SVM classification was 91.69 %. We achieve a
comparable accuracy while covering a larger set of seven positions. The work in
[3] targets body-position localization of wearable sensors used for health mon-
itoring applications. Authors used SVM to achieve a localization accuracy of
87 % when distinguishing between 6 body-positions. The studied positions are
typical for health sensors and are not applicable to smartphones. A completely
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different approach utilizing external multispectral material sensor is proposed in
[8]. The solution is based on the idea that smartphone positions are typically cor-
related with surrounding material with specific features, which the sensor they
used is able to detect. We defer from most of above solutions by covering a wide
set of positions and by introducing the two-stage classification methodology for
context-aware applications to utilize the smartphone position.

3 Position Discovery Service

3.1 Impact of Smartphone Position

Since context derivation starts from raw sensor data collected from smartphone
sensors, it is important to understand the impact a smartphone position may
have on the sensor values of different sensors. To understand this impact and
identify the sensors that can be used to detect smartphone positions, we have
conducted an extensive experimental study involving six popular smartphone
sensors: accelerometer, microphone, gyroscope, magnetometer, GPS and light
sensors. The details of this study are described in a technical report [1], and
due to space limitation, we provide only a summary of this study here. The
smartphone positions covered in this study and in our position discovery service
design are shown in Fig. 1.

Fig. 1. Inspected positions from left to right, hand holding, talking on phone, watching
a video, pants pocket, hip pocket, jacket pocket and on-table.

Table 1 summarizes the results for this study. All sensors, except for the
GPS, are affected by the smartphone position. Sensor values of accelerometer,
gyroscope and magnetometer are affected by the differences in vibrations at
different smartphone positions. So, a context aware application that is based on
these sensors values is likely to benefit from the knowledge of actual smartphone
position. Light sensor is affected by the blocking of light. Therefore, context-
aware applications using this sensor are likely to benefit from the knowledge of
whether the phone is covered or uncovered. Finally, the microphone is affected
by friction noise and an application utilizing this sensor will likely be interested
of whether the phone is in the upper body position where friction is low or in
the lower body position where friction is high. Also, this study has shown that
a major factor affecting the sensor values besides the smartphone position is the
physical context of the user. The sensor values of accelerometer, gyroscope, and
magnetometer are affected by the vibrations in case of a walking user. However,
these vibrations are missing in case of an idle user. As for running physical
context, it can take various paces. A user might run very fast in one situation
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Table 1. Summary of smartphone position impact study

Sensor Affected Cause Required position

Accelerometer Yes Vibrations Exact

Gyroscope Yes Vibrations Exact

Microphone Yes Friction noise Upper-body or lower-body

Light Yes Blocking of light Covered or uncovered

Magnetometer Yes Vibrations Exact

GPS No - -

and run relatively slower in another. These different paces make it difficult to
find any sensor data patterns from these three sensors that can be attributed to
the position since these patterns will be overwhelmed by the effect of a running
user. In addition, we looked at the popular position of on-table. Analogous to
an idle user carrying a smartphone, the smartphone at this position will not
experience any movement patterns. However, a distinguishing factor between
the two situations is the orientation of the smartphone. A smartphone placed on
a table will typically have the gravity component appearing in its z-axis.

3.2 Position Discovery Service: Design

Based on these observations, we have designed, implemented and evaluated a
smartphone position discovery service that provides four types of information:
(1) Is the user idle, walking or running? (2) Is the phone covered or uncovered?
(3) Is the phone placed in upper body or lower body? (4) What is the actual
smartphone position? This service is designed to be configurable, so that an
application can choose to receive only one or two or all types of information.

The challenge in building this service is that it utilizes sensor data from
specific sensors (e.g. accelerometer and gyroscope), whose values are dependent
on the physical contexts of the user. It is possible that the data from a particular
sensor under one smartphone position and user activity is indistinguishable from
the data from the same sensor under a different smartphone position and user
activity. We address this challenge by detecting user’s physical context (idle,
walking or running) and utilizing data from multiple sensors. The key idea is
that different sensors are affected differently by various user contexts, and we
exploit these differences to accurately detect smartphone positions.

To detect whether the smartphone is in covered or uncovered position, the ser-
vice compares the online captured light intensity data with a predefined thresh-
old. The situation is more complex when it comes to the other finer granularity
information. For both the upper-body/lower-body and the exact smartphone
position decisions, the service uses machine-learning libraries to compare knowl-
edge obtained from online sensor data with knowledge from labeled training data
prepared offline. This classification process involves data from accelerometer or
gyroscope, or both sensors based on the preference of the serviced context-aware
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Fig. 2. Design for the smartphone position discovery service

application. Figure 2 illustrates this design. It is worth noting that the complete
solution runs on the smartphone. The smartphone position service can be uti-
lized locally by other applications running on the same smartphone or remotely
by collaborative sensing applications running on other smartphones.

Offline Components: There are three offline components: Framing, Feature
extraction and Frame labeling. The Framing component aims at capturing the
repetitive patterns in the raw sensor data by dividing the data stream, from
accelerometer and gyroscope, into five-second frames. Our choice of five-second
frame size is based on analysis presented in [5] on the effect of frame size on step
detection accuracy. Their analysis revealed that a frame size larger than three
seconds is sufficient enough to provide good step detection accuracy and favored
the five-second frame as it gives more accurate results.

The features extraction component calculates statistical features for each
frame. Frame features must be chosen smartly to reveal the different patterns
induced by each smartphone position. Our frame features are subset from the
features presented in [10]. Based on our observations from smartphone position
impact on sensor data [1], we have chosen the mean, variance, and standard devi-
ation over 50 data points (10 data points per second) for each frame to capture
the variations in accelerometer and gyroscope data. We have also included two
other features related to each axis (average for each axis and average absolute
difference of each axis) so as to capture the different orientations a smartphone
can take for each position. This is because we noticed that each position has a
common orientation that occurs quite frequently. Average of each axis captures
the variation in the data due to body motion at the axis level. In addition, it
reveals the nature of the orientation the smartphone is experiencing for each
body position. Average absolute difference of each axis is the sum of the differ-
ences between each axis data point and the mean of that axis divided by the
number of data points. We include the average absolute difference to enhance
the solution accuracy in capturing the information revealed by axis data points.
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A recent study [6] identified an extensive set of features for detecting smartphone
positions. These features can be integrated to the position discovery service to
expand covered set of positions and further enhance the accuracy. Finally, the
frame labeling component labels each frame with the corresponding smartphone
position before loading the data to the training database. The labeling process
was done manually. We asked our users to capture the data for the different
smartphone positions while walking and labeled resultant frame segments with
the practiced smartphone position during the experiment. Each frame record
carries two labels: upper-body/lower-body position and the exact smartphone
position.

Online Components: There are seven online components: Training data,
Machine learning libraries, Sensor values from accelerometer, gyroscope and/or
light sensor, Framing, Feature extraction, Position classifier and Upload opti-
mizer. The training data is the output from the offline components. Sensor data
from ten users performing the same experiment for different smartphone posi-
tions was collected offline. After performing the (offline) framing and feature
extraction processes, the resultant frame records constitute the knowledge data-
base to be utilized for automatic discovery of smartphone position. Once ready,
the training data is placed on the external memory card of the smartphone to
be utilized by the smartphone position service.

We utilized Java language machine-learning libraries provided by the WEKA
tool for Android [11]. The correctness of used classifiers was tested by perform-
ing a test experiment with the same training and test data on a desktop by
normal WEKA and on Android device by WEKA for Android. Same results
were obtained for the two experiments.

We chose three sensors (accelerometer, gyroscope and light sensor) for the
service to operate on. Accelerometer is used for detecting physical context,
accelerometer and/or gyroscope are used for detecting the actual phone posi-
tion, and light sensor is used for detecting whether the phone is covered or
uncovered. The use of two sensors for detecting actual phone position is subject
to a tradeoff between energy consumption and smartphone position detection
accuracy. The framing and features extraction components have the same func-
tionalities as in the offline case. The only addition is the capture of average
light intensity per frame, which is not required for training the classifier. The
position classifier component receives the gathered online frame data and uses it
in three ways. First, it compares the standard deviation of accelerometer mag-
nitude with predefined thresholds to determine idle/walking/running contexts.
Second, it consults the machine learning classifier to detect smartphone position
information. Third, it compares the light intensity average of the frame with a
predefined threshold to determine covered/uncovered position. In the case of idle
or running contexts, the position service provides the latest smartphone posi-
tion discovered under walking context along with a timestamp and leave it to
the consuming context-aware application to use this cached smartphone position
based on its accuracy preferences. Our goal here is to exploit the fact that, in
some situations the user might change their physical context but maintain the
same smartphone position.
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Finally, the upload optimizer is utilized only in case the position is required
to be relayed over the network as part of a collaborative sensing solution. We
developed this component because we envision the smartphone position discov-
ery service to be an important part of collaborative sensing applications. The
upload optimizer logic is based on optimization techniques discussed in [14].
The optimizer implements three alternative techniques for upload optimization:
(1) Upload whenever a position change occurs; (2) Upload when a position
change persists for some period of time; and (3) Upload the position with the
highest number of occurrences within a window of given size. While the first
technique is simple and provides most accurate results, it is subject to noise due
to momentary smartphone position changes. The second technique eliminates
this noise and reports only more permanent position changes. Finally, the third
technique is suitable when there are frequent smartphone position changes. This
technique tries to report the most commonly occurring smartphone position.

Use Case Scenario: Assume a context-aware application that is interested
in finding the exact position. Figure 3 demonstrates the flow of execution of
the position discovery service to provide this information. In the beginning, the
service uses the variance of the accelerometer for the captured window to detect
the physical context. If the smartphone is idle, the service will detect if it is
placed on table or any other position. In case the smartphone is idle and not
on table, the exact position is difficult to provide and a cached recent value
along with the activity is returned instead. Also, a running context means that
position can’t be detected and a cached value is returned. If the user is walking,
the service will utilize the online features extracted from the accelerometer and
gyroscope to provide the exact position.

Fig. 3. Position service execution flow for a request for an exact position.
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4 Implementation and Evaluation

We have implemented the proposed smartphone position discovery service on
Samsung Galaxy Note device running Android version 4.0.3 (Ice Cream Sand-
wich). The device has a Dual-core 1.4 GHz ARM Cortex-A9 processor and 1 GB
of RAM and is equipped with the accelerometer, gyroscope and light sensors
required for the service. We collected data from ten different participants to train
the smartphone position discovery classifier. Before conducting the experiment,
an approval was obtained from the Institutional Review Board at the University
of Colorado, Boulder. We asked each participant to carry the smartphone in the
six smartphone positions. The experiment setup was kept as natural as possible.
Participants were free to move at their own pace and place their smartphones at
any orientation they liked. Next, we evaluate the accuracy of the service based
on this collected training data.

Physical Contexts: To detect the physical context of a user, we calculate
the standard deviation of the accelerometer magnitude and compare it to a
predefined threshold. By observing the data we have chosen the threshold values
of 0.5 m/s2 and 5 m/s2 to detect idle and running contexts respectively. These
thresholds achieved near-perfect accuracy in our experiments.

Covered vs. Uncovered: We used a threshold of three luminous flux to detect
a dimmed environment that results often from covered positions. This approach
works well except for corner cases (e.g. complete absence of any light source in
a room).

Upper-Body vs. Lower-Body: Smartphone positions covered in this research
can be divided into two groups: upper-body group, including hand holding, talk-
ing on phone, watching a video, and jacket pocket; and lower-body group, includ-
ing pants pocket and hip pocket. To detect the group that a smartphone is in, we
trained the classifier with accelerometer data from 10 users and carried a 10-folds
cross-validation test. The results of the classification process with different clas-
sifiers are shown in Table 2. The achieved accuracy using accelerometer is fairly
high for the simple logistic regression and J48 classifiers. Therefore, we conclude
that the accelerometer is the best candidate to perform this classification task
and exclude gyroscope from our analysis.

Table 2. Upper-body vs. lower-body accuracy using accelerometer features

Prediction accuracy (%)

Naive Bayes Simple logistic regression J48

Upper-body 89.2 91.2 92.8

Lower-body 77.2 90.5 83.9

Total accuracy 84.6 90.9 89.4
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Exact Smartphone Position: Both accelerometer and gyroscope have shown
sensitivity to smartphone positions. Our goal here is to compare between the
two sensors. In the beginning, we conducted a test experiment with the six
smartphone positions and collected the data for both the accelerometer and
gyroscope. Then, to evaluate a single sensor, we kept the data for that sensor and
deleted the data for the other sensor. By doing so, we ensure fair comparison since
the three results we show next are basically for the same experiment, but, with
different sensors included. Here we also used data from 10 users and performed
a 10-folds cross-validation test. The classifiers employed are NB: Naive Bayes,
MLP: Multilayer Perceptron, LR: logistic Regression, and J48. Table 3 illustrates
the results of smartphone position classification using only accelerometer. We
note that the J48 decision tree classifier achieves good accuracy of 88.5 % with
the accelerometer as the only input. On the other hand, the Naive Bayes classifier
had the lowest accuracy of 66.7 %. We also note that the source of confusion
varies from one classifier to another for the same experiment. For example, in
the multilayer perceptron experiment, the jacket-pocket position produced the
lowest accuracy. On the other hand, with the Logistic Regression in use, the
pants pocket position was the hardest position to classify.

Table 3. Accuracy using accelerometer

Prediction accuracy (%)

NB MLP LR J48

Handholding 75.9 83.8 94.5 97.8

Watching a video 91.8 93.2 96.0 97.0

Talking on phone 79.4 89.7 91.7 91.3

Pants pocket 65.4 67.9 58.0 78.2

Hip pocket 57.6 78.8 71.6 90.7

Jacket pocket 27.6 67.1 73.2 75.3

Total accuracy 66.7 80 80 88.5

Table 4. Accuracy using gyroscope

Prediction accuracy (%)

NB MLP LR J48

Handholding 72.2 78.4 85.4 63.6

Watching a video 64.7 81.8 84.8 84.2

Talking on phone 48.4 64.8 72.3 75.6

Pants pocket 60.6 82.0 75.5 55.2

Hip pocket 52.4 72.6 64.1 52.3

Jacket pocket 46.7 62.0 52.9 47.6

Total accuracy 57.6 74.0 72.7 62.9

Next, we evaluate the service when gyroscope is in use. Table 4 illustrates
the results of smartphone position classification using only gyroscope. We note
that all classifiers achieved lower total accuracy when compared to the use of
accelerometer. This shows that the gyroscope is less sensitive to smartphone
positions than accelerometer. Nevertheless, the accuracy achieved by the gyro-
scope is still at acceptable levels making the sensor worth considering for some
cases. For example, some positions achieved accuracy level of above 80 % for some
classifiers. However, the overall accuracy remains less than the values achieved
when the accelerometer is in use.

Now, we consider the situation where we use both accelerometer and gyro-
scope to detect the smartphone position. Table 5 provides the position discov-
ery results when features from both sensors are used in the classification. As
expected, mostly all the classifiers achieved a gain in accuracy when compared
to the previous two single-sensor configurations. We also note that three out of
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the four classifiers achieved very high accuracy levels (above 80 %). However,
this improved accuracy comes at the cost of increased energy demands. When
only accelerometer is employed the service drained 10 % from the battery in 10 h
whereas, using both accelerometer and gyroscope drained more than 50 % within
the same period of time. Finally, notice that none of the classifiers consistently
produced best results in all three cases. However, the Naive Bayes classifiers
always produced worst results due to its assumption of feature independence,
which doesn’t hold for our set of features.

Group Training vs. Custom Training: A smartphone is typically a personal
device owned by a single user. Therefore the idea of each user (custom) training
his/her position discovery classifier is worthwhile. We experimented with this
idea, where a user trained his smartphone by performing the above-mentioned
classifier training experiments. Next day, we collected sensor data from the same
user and ran our smartphone position discovery service using the custom-trained
classifier from the previous day. Table 6 shows the accuracy of smartphone posi-
tion detection when both accelerometer and gyroscope data were used. We can
see that the total accuracy for each classification algorithm has improved dra-
matically (compare the results with Table 5). One point to note is that the user
wore similar clothing on both days in this experiment. We expect that the detec-
tion accuracy may be slightly lower for different style of clothing. One way to
address this is to train the classifier with different clothing styles. The idea of
training a classifier on smartphone by the user before application use has been
used in [12]. However, the authors tried to keep the training period as minimum
as possible as they believed that users might refrain from using applications
requiring training beforehand. We share the same concern and believe that the
position service can be installed with multiple users training data, which has
shown acceptable accuracy levels, and the user is then given a choice for custom
training.

Table 5. Accuracy using
accelerometer and gyroscope

Prediction accuracy (%)

NB MLP LR J48

Handholding 76.6 86.4 98.9 92.6

Watching a video 92.4 91.3 98.0 95.8

Talking on phone 76.9 91.9 96.8 93.1

Pants pocket 73.2 85.8 78.8 75.9

Hip pocket 66.2 93.5 88.3 83.5

Jacket pocket 51.4 80.8 75.6 68.6

Total accuracy 73.0 88.6 89.3 84.9

Table 6. Accuracy using custom-
training-data

Prediction accuracy (%)

NB MLP LR J48

Handholding 100 100 100 66.67

Watching a video 92.30 100 100 92.31

Talking on phone 100 100 100 100

Pants pocket 100 94.44 100 83.33

Hip Pocket 100 100 93.33 100

Jacket pocket 100 100 100 100

Total accuracy 98.71 99.07 98.88 90.38

On-Table Position: Due to its special nature, the on table position is handled
separately. We directly use the window features of average x-axis, average y-axis,
and average z-axis to detect this position. The z-axis value will be nearly equal
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to the gravity pull value of 9.8 m/s2 whereas the x-axis and y-axis will have
the value of near zero. This approach detected this position with nearly perfect
accuracy. However, we can think of rare situations that can confuse the approach
such as placing the smartphone on a stand.

5 Two Stage Classification Method

Some context-aware applications are simply blocked by disadvantageous posi-
tions (e.g. camera-based application waiting for uncovered position). Other
context-aware applications can operate in different smartphone positions, but
with severe accuracy degradation when experiencing a smartphone position other
than the one trained for. To address this issue, we propose a two-stages classifi-
cation method. First, the offline training for the classifier is done with different
smartphone positions to generate a separate classifier trained for each position.
Second, with the presence of the smartphone position discovery service, the
application first determines the current smartphone position and then chooses
the classifier corresponding to that specific position during the classification
process. To demonstrate the effectiveness of this approach, we have implemented
a fall classification application that was proposed in [2]. This application detects
the type of fall from four different fall categories namely forward trips, backward
slips , left lateral falls, and right lateral falls. The output of this application can
be used by experts in the field of elderly care to develop fall prevention mech-
anisms and to assist first responders in providing more customized emergency
procedures. The experimental work in [2] placed the smartphone to the backside
of a belt and users were asked to wear this belt and simulate the different cat-
egories of falls. First, we start on reflecting how severe the situation gets when
arbitrary positions are introduced to the scene? We collected training and test
data from arbitrary positions for the four types of falls and report classification
accuracy in Table 7. The overall accuracy of this experiment is 72.22 %. Note
that [2] reported an accuracy of 98.7 % when single position is used. Second,
we collected multiple training files each corresponding to a smartphone position
and containing the four types of falls. Afterwards, the user was asked to simulate
the required four types of falls and the classifier was pointed to the training file
corresponding to the smartphone position, assuming the smartphone position is
known in advance. The confusion matrix of the second experiment is shown in
Table 8. The results from these two experiments reflect a significant accuracy
improvement from 72.22 % to 94.8 %.

Admittedly, the assumption of a complete knowledge of smartphone posi-
tion is not a valid one. Therefore, we integrated the fall classification application
with the online position discovery service and followed the above-mentioned two-
stage classification method. Figure 4(a) and (b) show the “per-fall” and “over-
all” accuracies for this case. We also included the results from Tables 7 and 8
to make it easier to grasp the effect of introducing the smartphone position dis-
covery service. Notice from Fig. 4(a) that the accuracies of trips and left lateral
falls detection have been improved. For the other two types of falls, introducing
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Table 7. Fall classification accuracy
with arbitrary position.

Table 8. Fall classification accuracy
assuming known position.

(a) Per-Fall Accuracy (b) Overall Accuracy

Fig. 4. Fall detection accuracy.

the position service to the scene didn’t improve the results but didn’t nega-
tively impact them. Figure 4(b) reflects the overall accuracy improvement. The
improvement in the case of “known-position” proves the fact that by introducing
the position service, context-aware applications will achieve better results. We
also saw an improvement for the case of with-the-position service. However, the
improvement was not as significant as in the optimal situation. We noticed that
our position service provided the correct position in most situations, but it was
the fall classification that is difficult to achieve. We attribute this difficulty to
arbitrary after fall behaviors such as standing immediately after fall or remaining
stationary.

6 Conclusion

This paper presents a solution that runs solely on the smartphone to address the
negative impact of different smartphone positions on context-aware applications
accuracy. The proposed solution can act as a service provider to context-aware
applications running on the same smartphone by providing them with smart-
phone position information. The service can answer the following four questions.
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(1) Is the user idle, walking or running: (2) Is the smartphone covered or uncov-
ered? (3) Is the smartphone attached to upper-body or lower-body? (4) What is
the actual position of the smartphone? We evaluated the service by integrating
it with an existing context-aware application for fall classification. Results show
significant accuracy improvement proving the utility of the service.
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